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Abstract: This work introduces new routing algorithms for stochastic networks. The problem addressed here considers 
multiple stochastic, time-dependent disruption levels on different links. This type of network makes routing decisions a 
challenging problem due to its stochastic nature. A novel Markov Decision Process (MDP) has been proposed and 
developed to handle the issue of multiple disruption levels (four levels were tested in this article). In addition, the 
developed approach has a hydride policy for the optimal path between two nodes depending on online and offline data 
and when to switch between them. A modelling framework that implements available online and offline network data and 
a novel cost structure that estimates the probable change in travel time resulting from expected disruption levels is 
delivered to get an optimal, reliable path. The proposed offline and online algorithms based on the suggested approaches 
are proven to efficiently handle the problem of stochastic network routing with multiple disruption levels. Results showed 
the findings demonstrated the efficacy of the suggested approach, contingent upon the incorporation of the Expected 
transition Cost (ETC) function into the primary computational equations. These equations were evolved from the 
calculation methodology employed for the protocols. 

Keywords: Expected transition cost (ETC), Markov Decision Process (MDP), multiple disruption levels, Stochastic time-
dependent networks. 

 
1 Introduction 

In stochastic networks, such as communication and transportation: finding the optimal routing path is a critical problem 
that seeks to minimize a given objective function, such as the shortest path, the lowest cost, or the maximum flow. The 
problem of finding optimal routing in stochastic networks has significant practical applications in various fields, including 
transportation, communication, logistics, and supply chain management. For example, finding the optimal routing path 
in transportation networks can help minimize travel time, reduce fuel consumption, and improve the network's overall 
efficiency. Finding the optimal routing path in communication networks can help maximize network performance, reduce 
congestion, and ensure reliable data transmission [1,2,3,4]. There has been significant research interest in developing 
efficient and effective algorithms for finding optimal routing of stochastic networks. Finding the path with the lowest cost 
is possible in deterministic networks using classic methods like Dijkstra's algorithm combined with the Bellman-Ford 
algorithm, but these techniques may not be well-suited for stochastic networks due to their inherent uncertainty. Advanced 
algorithms, such as reinforcement learning, genetic algorithms, ant colony optimization, and machine learning-based 
methods, have been proposed for finding optimal routing in stochastic networks. Despite the significant progress in the 
field of finding optimal routing, there are still many challenges to be addressed. The dynamic nature of stochastic networks 
makes it difficult to predict the optimal routing path, and the trade-off between network performance and computational 
complexity needs to be carefully considered. Additionally, the emergence of new technologies and applications, such as 
the Internet of Things (IoT) and 5G communication networks, presents new challenges and opportunities for finding 
optimal routing in stochastic networks New literary works recently published contain dynamic versions of the shortest 
path to obtain reliable results from disrupted networks, Within the context of the presented research, a prominent challenge 
encountered by scholars was effectively addressed. This involved the intricate task of quantifying the cost associated with 
transitioning between disruption levels, accompanied by the incorporation of a pivotal factor (ETC) that enhanced the 
precision of outcomes, particularly for online and hybrid algorithm. 

The topology of a route can be divided into offline and online varieties to handle interruptions. The generation of 
connections is completed before starting the offline architecture. Therefore, changes in disruption levels cannot be taken 
into account. Thus, either a naive routing algorithm is used where disruption levels are ignored, which means deterministic 
travel times are considered, or a robust routing algorithm is employed. Disruptions are assumed to occur inevitably, so 
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the worst disruption level for travel time is implemented. For instance, the disadvantage of a negative routing policy is 
that, in the event of a disruption, the cost of traveling rises, while the drawback of a robust routing policy is that it relies 
on worst-case congestion, which takes place with a small probability and leads to a higher cost than a real one. The offline 
policies cannot cope with the real-time dynamics and cannot trace disruption changes by their nature. Online topology, 
on the other hand, allows policies to update the routes continuously according to the online realization of disruption levels 
and brings costs closer to reality. The study focuses on identifying efficient routing strategies in densely populated 
roadway networks, where trip duration variability adds uncertainty. It integrates discrete random variable analysis and a 
linear program approach to tackle the complex problem. Empirical data from Manhattan's street network is used to ground 
the study. A novel hierarchical control system is introduced, using a perimeter controller at the higher echelon and a 
reinforcement learning algorithm dynamically adapting to evolving traffic patterns. This framework harmonizes control 
operations across different levels, augmenting urban road network management through advanced computational 
techniques. A comprehensive methodology is proposed, using empirical traffic data to construct statistical models and 
fashion a stochastic, time-evolving road network model called STV. The formulation of the least expected time (LET) 
routing predicament is presented, leading to the generation of time-varying K-fastest pathways for assessing potential 
trajectories. Empirical experiments validate the prowess of this approach, particularly during peak hours. The study also 
shifts its focus to stochastic complex networks with mixed delays, focusing on a distinctive pinning impulsive controller 
for finite-time synchronization (FTS). This controller optimizes control resource allocation and ensures FTS by 
identifying nodes with substantial error norms. The study broadens the applicability of the proposed framework by 
expanding the encompassing conditions to encompass both general and mixed delays. These interconnected insights 
contribute to a deeper understanding of network optimization, traffic management, and synchronization dynamics 
[5,6,7,8]. All along the way, the shortest paths are generated and updated when the online data is obtained from the 
available communication systems. In this case, optimization cycles are continuously activated after retrieval of the online 
information at reached nodes of the network. This research suggests a new approach for finding the optimal path 
concerning dynamic conditions, and it handles all issues online with multiple stochastic disruption levels. 

2 Related works   

New techniques for finding the most reliable paths in stochastic and time-varying networks are the focus of [9]. The study 
evaluates dependability based on the ratio of the chance of reaching the destination on time to a specified arrival time 
threshold. The authors propose two different algorithms that can determine the optimal strategy and route on the network. 
The first algorithm utilizes a decreasing time order to identify the optimal strategy to achieve the best route from any node 
and time combination. The second algorithm uses network pruning and label correction methods to identify the optimal 
route between the source and sink points for a given departure time. The effectiveness of both algorithms is established 
through proof of correctness and the computation of complex expressions. The study provides useful insights into 
applying stochastic and time-dependent networks for reliability-based modelling and analysis, which can benefit large-
scale transportation networks. Markov To discover the best course of action in a stochastic network, among other things, 
decision processes have been widely introduced in the literature. [10]. In [11], The authors made it apparent that models 
are required for operations research to effectively explain difficulties and facilitate the construction and presentation of 
solution techniques. Rigorous methodologies have lagged behind rigorous models in dynamic routing, making it 
challenging for researchers to undertake rigorous science due to the complexity of capturing the combined development 
of sequential routing decisions and stochastic information. The authors provide a modelling framework that uses the vast 
literature on route-based planning and optimization and does a good job of bridging the gap between application and 
technique. The State, action, and reward structures of standard Markov decision processes (MDPs) are expanded in route-
based Markov decision processes (MDPs). Because of this, route-based MDPs simplify the conceptual link between 
dynamic routing problems and the route-based tactics commonly used to handle them, such as generating and revising 
routes in response to newly discovered information. The authors believe route-based MDPs can help dynamic routing 
studies be more rigorously scientific, provide academics with a common modelling language, enable better research, and 
enhance the categorization and description of solution approaches. Many other papers illustrated the concept of route 
plans and sequential decision models [12], [13], and [14]. The most related work is [15], where different online and offline 
algorithms are applied using MDP and a derived transition matrix connected to the Probability of disruption levels and 
its steady State. Finding the best route in congested street networks where travel times are typically uncertain can be a 
challenging problem with significant practical implications. As most existing methods focus on minimizing the expected 
travel time as their sole objective, such solutions may not be appropriate when the travel time variance is high. This study 
presents a new approach that addresses this issue by formulating the problem as finding a routing policy that minimizes 
the expected travel time while retaining a specified probability of on-time arrival. The study uses a discrete random 
variable model to represent the stochastic travel time on each segment of the road network, which translates into a Markov 
decision process model. This approach enables the problem to be viewed as a linear program, making it easier to solve. 
Additionally, the study includes a case study focused on the streets of Manhattan, New York. Real-world data was used 
to develop the model of travel times, and the proposed method was used to generate optimal routing policies [16]. This 
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research aims to develop a model that introduces a new representation of the MDP model for offline and online routing 
policies to handle many disruption-level transitions and get the best results by investing the acquired information about 
routes, if available elsewhere, depending on offline data, which is the case. The proposed model has novelty in transferring 
the disruption levels transition to an additional expected transition cost (ETC function, which will be explained in detail 
in subsection 4.5. The hybrid strategy considers both the time-varying and constant probabilities of network connection 
transit times and current data. The suggested hybrid routing policy handles the situation where some parts of the network 
cannot provide online data to clarify their congestion status. It can be used to compare results between all cases. Following 
the collected disruption level of the link, the updated data will be represented in the modification relating to the length of 
the link's trip cost, which will be fair enough to change the state value function of MDP and lead to better decisions for 
constructing a consequent route. The disruption levels and their probabilities are assumed to be pre-collected statistically 
about links and available to be implemented in the algorithm in a suitable form, whether online or offline. Briefly, some 
points that distinguish the developed approach are the hydride policy, the many levels of distributed levels for each node, 
and the transition between offline and online policies [17.18,19,20]. 

3 Problem Statement  

The network is represented as a graph with intersections as nodes and routes as edges, as common in the literature ( Zheng, 
Thangeda, & Savas, 2021), (Thomas & White, 2007). The network is modelled using a direct graph	𝒢(𝒩, ℰ), where 𝒩 =
)1,2,… , 𝑛./,	are graph nodes and ℰ = {1,2, … , 𝑛1} are the graph edges. Each intersection in the network is represented 
by a node	𝑛 ∈ 𝒩, and each route between any two intersections is represented by a direct edge e𝜖ℰ where	𝑒 ≝
(𝑛8, 𝑛9)|𝑛8, 𝑛9 ∈ 𝒩, 𝑛8 ≠ 𝑛9. 𝐸= is used to refer to vulnerable links, each vulnerable link can accept any number of pre-
modelled disruption levels, and travel time is discrete. Suppose that 𝒱 = ‖𝐸=‖, using a standard vector that represents the 
degree of disruption at each potentially weak node 𝐷 =	(𝐷A, 𝐷B, … , 𝐷𝒱), the element 𝐷C: 𝑖 = {1,2, … , 𝒱} and this vector 
right here symbolizes the 𝑖FGvulnerable link and it's linked to various degrees of instability 𝐿1 ∈ {𝐿A, 𝐿B, … , 𝐿IJ	} where 
𝑀1	 indicates the link's degree of breakdown, writers in (Gatie, Yew, Teasu, & Puay, 2016) For potentially disruptive 
edges, think about using two or three levels. 𝐿1 ∈ {0,1,2} (0: uncongested, 1: crazily clogged, 2: densely crowded), the 
advantage of the developed model in this paper is that it accepts as many levels as are required to characterize the 
disruption status, resulting in a more precise estimation of travel time between two nodes. S: source and D: destination. 

The model of the network should provide a probability matrix that models the Probability of moving from one disruption 
state to another, and every level of disruption is defined with consequent travel time. At specific epochs	𝑘, a random 
variable 𝐷N = (𝐷NA, 𝐷NB, … , 𝐷N𝒱) is used to represent the realization of the current disruption state of each link depending on 
its congestion state, the online routing status of links is updated continuously, and the absence of online data for some 
vulnerable links will be handled through this work. 

An extended discrete-time finite of the Markov decision process MDP is proposed, where directed and undirected edges 
can be handled. Discrete random variables represent the stochastic travel times on edges, where each travel time is 
associated with a disruption level with transition probability. The model below considers time-invariant edge travel time 
distributions and can be generalized to time-varying distributions without restrictions. 

A path Θ is defined as a chain of nodes	Θ = {𝑛A, 𝑛B, … , 𝑛P}	𝑤ℎ𝑒𝑟𝑒	𝑘 ≤ 𝑛.. On the graph	𝒢		. Let 𝜋	define a policy. This 
Policy works as a function that determines the next node to head on based on time and currently active nodes. Suppose Θ 
is the set of all possible paths and Π	 is the set of valid policies. For any	𝜃𝜖Θ, the total travel time along a path is	𝑇Y. The 
value 𝑇Y Is the sum of the path's edges' trip times, expressed as random variables, i.e., 𝑇Y = 𝑇Z[,Z\ + 𝑇Z\,Z^ + ⋯+
𝑇Z`ab,Zc. 

Given a source node	ne𝜖𝒩	 and a destination one	𝑛9𝜖𝒩\{𝑛8}, having 𝑇89 as the random variable represents the travel 
time from ne	to	𝑛9. The goal is to find a policy. 	𝜋∗𝜖	Π show that in Equation (1). 

𝜋∗ = argmin𝔼[𝑇89]				            (1) 

The main example for our approach is a flight system between cities; suppose the cities are the nodes, and edges are the 
available paths between them. It is important to know that airplanes must follow a specific path. H levels can represent 
the disruption levels here according to many cases: 

• The path is crowded (the number of airplanes that are in the path now (or at the time of flying) 

• The path is allowed not because of the relations between countries. 

• The climate conditions: 

o Wind. 
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o Clarity. 

o Barometric Pressure. 

o Temperature. 

• Other unexpected conditions  

H disruption levels might represent these conditions. These six levels of disturbance might look like this if the disruption 
scale were [0-1]: 

• Free [0-0.16] 

• Almost Free [0.17-0.33] 

• Normally Free [0.34-0.50] 

• Normally Crowded [0.51-0.67]  

• Almost Crowded [0.68-0.84]  

• Crowded [0.84-0.1] 

And according to these, the optimal path should reconsider all conditions in this stochastic network. 

4 Markov Decision Process (MDP) 

4.1 Markov Decision Process Definitions 

Markov decision processes have been widely used in literature. In work (White, 1993), D.J. White introduces a survey of 
real applications that uses MDP where it is implemented and affects decisions taken. There were eighteen different fields 
in the survey, which emphasizes the importance and efficiency of this structure in various applications in the real world, 
especially where stochasticity is involved. 

A Markov decision process (MDP) is a reward or penalty process with decisions. It forms an environment where all states 
are Markov, and it's represented as a tuple (𝒮,𝒜,𝒫,ℛ, 𝛾) 	(Silver, 2015) 

𝒮 is a finite set of states. 

𝒜 is a finite set of actions 

𝒫 is a state transition probability matrix 

𝒫88z{ = ℙ[𝑆F~A = 𝑠z|𝑆F = 𝑠, 𝐴F = 𝑎] 

ℛ is a reward (cost) function, ℛ8
� = 𝔼[𝑅F~A|𝑆F = 𝑠, 𝐴F = 𝑎] 

𝛾 is a discount factor 𝛾𝜖[0,1]. 

4.2 State 

The current node 𝑐𝑛P𝜖𝒩and the disruption realization vector 𝐷NP Display the current system state.	𝑘, 𝑠P𝜖𝕊	. 𝐷NP Defines 
the disruption level of disrupted links at stage	𝑘. Thus, the possible disruption level change of the disrupted link to adjacent 
levels can be inferred. 

 A revised version of the disruption state vector is created at each step. 𝐷NP Is implemented. That is an observation result 
of the realization of the disruptions in the network. (𝐷NP=𝜖L�) at each stage. There is a one-to-one correspondence between 
the status of the network and the disruption state vector, reflecting congestions resulting from different environment states 
(mainly accidents, bad weather cases in road networks, and excessive load of link capacity). 

Therefore, the System's Condition at Each Step 𝑘 is: 𝑆P 	= 	 (𝑛P, 𝐷NP). The process of termination occurs when the 
destination is reached. The possible goal states are the pairs of the destination and the possible disruption realizations. 
These goal states form a set 𝔾𝜖𝕊, where it is expected that all desired outcomes are expensive and time-consuming-free. 

4.3 Action  

The stage action 𝑘, 𝑥P, is to evaluate in the next node to head on under a policy. Given the current State, this protocol 
seeks to reduce the estimated trip time to the target node, n d. The action set only includes neighbours of the current node, 
May k, with the same transition probability. 
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𝑋P�(𝑆P): Decision function determines, at step 𝑘 under a Policy 𝜋	given State	𝑆P , the node at stage	𝑘	 + 	1, (𝑛P~A). 

Π: Set of possible policies. Each 𝜋	𝜖	Π represents a different policy where )𝑋P�	(𝑆P)	/���	is the set of decision functions. 

4.4 Cost function  

Moving of node 𝑛P	𝑡𝑜	𝑥P = 𝑛P~A under-realized disruption state vector 𝐷NF Outcomes in a nonnegative real cost that, 
given the present disruption state, equal the deterministic transit time between the two nodes. Let's refer to this known 
and discrete travel time as	𝑡Z`,�`(𝐷NP). At every node	𝑛P, an instant expense incurred as a result of the action 	𝑥P, this cost 
is  𝑐(𝑆P, 𝑥P) since show that in Equation (2): 

𝑐(𝑆P, 𝑥P) = 𝑡Z`,�`�𝐷NP�																																          (2) 

It is presumable that the trip of the links directly relates to the network's State of interruption at the time the link is entered. 
The online retrieved data determines the trip and immediate cost incurred due to the action. 𝑐𝑛P if possible, to all 
surrounding nodes based on the actual disruption state of links  𝑐𝑛PIs reached. 

4.5 The state Transition function 

In this kind of network, two transitions are considered. The first one concerns nodes, the other one is related to disruption 
states. take a State 𝑆P as well as a chosen action 𝑥P , Under a given disruption status, a transition is made to the next node, 
𝑆P~A 	= 	 (𝑛P~A = 𝑥P, 𝐷NP). The state transition results show in Equally (3) from the activity and includes  

𝑛P~A = 𝑥P																														           (3) 

The other transition is connected to the disruption status vector transition from 𝐷NP to 𝐷NP~A based on a matrix of Markovian 
transitions. The arrow 𝐷P~A  comprises random variables indicating each weak link's network disruption level for the 
following stage. 

Note 1: Something interesting about such systems is that transition to a lower disruption state must minimize the expected 
cost of traveling across the link. In comparison, transitioning to a higher state must increase the expected cost of traveling 
while maintaining the same disruption state must not add cost to the expectation of traveling time. 

The transition probability matrix described by Equation (4) is supposed to represent a model input. Having 𝑃�,�z= 	the 
Probability of a unit-time transition between any two weak link disruption levels 	𝑃�,�z= = 𝑃)𝐷NP~A= = 𝑙z�𝐷NP= = 𝑙}, a 
susceptible link's unit-time transition matrix  𝑣, 𝑣	𝜖	𝐸=, with 𝐿� The following are examples of hypothetical interruption 
scenarios: 

PF,F~A= =

⎣
⎢
⎢
⎢
⎡ 𝑃�b,�b

= 𝑃�b,�\
= … 𝑃�b,��J

=

𝑃�\,�b
= 𝑃�b,�\

= … 𝑃�\,��J
=

⋮
𝑃��J,�b
=

⋮
𝑃��J,�\
=

⋮
…

⋮
𝑃��J,��J
=

⎦
⎥
⎥
⎥
⎤
				          (4) 

∀𝑡 = 0,1,2, …∀	𝑣𝜖𝐸= 

𝒯= =

⎣
⎢
⎢
⎢
⎡ 𝑡�b

=

𝑡�\
=

⋮
𝑡��J
= ⎦
⎥
⎥
⎥
⎤
																																											                              (5) 

𝒯=: Defines the time related to disruption levels of disrupted link	𝑣	shown in equation (5). 

𝑀1: Maximum disruption level.  

The transition involves a specific row depending on the realized disruption level of the link and consequently will add 
cost to the objective function. 

The proposed transition method involves neighbour disruption states depending on the current realized disruption level 
of the link. In other words, to implement 𝑙~A, 𝑙, 𝑙£A	 states only. That is to stay at the same disruption level and transit to 
the previous or next disruption level, as these states are more probable to happen during the same stage. Consequently, 
this will add cost to the objective function at the same stage as the link (𝑛C, 𝑛C~A) under concerns. 

In the realization of this notion considering.  

Note 1, this should minimize or maximize the travel time of the link under concerns Equation (7), where 𝐸𝑇𝐶(𝐷NP=) is the 
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function to calculate the change in travel time. 

Note 2: To maintain probability distribution for this State, Probability can be normalized by using factor	𝛼 =
A

¦§,§ab~¦§,§~¦§,§¨b
, if the disruption state is revealed to be in the no-disruption or maximum disruption levels, the related 

coefficient of the previous and next disruption state is omitted, respectively. 

A discount factor 𝛾 ∈ [0,1] is used to minimize the effect of transition; its value depends on how much the updated 
information about links is trusted, in addition to the nature of the network. The ultimate transition cost is the summation 
of Equation (7) Which contains two parts: Equation (7a), which represents the transition to a higher disruption level, and 
Equation (7b), which represents the transition to a lower disruption level, which is elucidated by the details provided in 
Equation (6). 

𝐸𝑇𝐶�𝐷NP=� = ∑ 𝑃(𝐷P~A|𝐷P)�𝑡𝑟(𝐷P)�				ª«
¬           (6) 

𝐸𝑇𝐶�𝐷NP=� = a(A + B)							            (7) 

A = 𝑝�,�ab
= �𝒯=(𝑙£A) − 𝒯=(𝑙)�			                      (7 a) 

𝐵 = 𝑝�,�¨b
= �𝒯=(𝑙~A) − 𝒯=(𝑙)�			                      (7 b) 

𝛼𝑝�,�ab
= : is the scaled Probability to transit the previous disruption state of 𝑣 link. 

𝛼𝑝�,�¨b
= : is the scaled Probability to transit the next disruption state of 𝑣 link. 

4.6 The Optimal Policy and travel cost 

The purpose of optimum routing is to reduce the total anticipated travel time in a discrete random horizon K from the 
source node to the destination state. This objective was ascertained by minimizing the value of equation (9). 

min
���

𝐸	∑ 𝑐�𝑆P, 𝑋P�(𝑆P)�Z
P²A 																																						         (8) 

where 𝑥P = 𝑋P�(𝑆P)	 is the decision based on the decision function 𝑋P�(𝑆P)	under Policy 𝜋, given the current State 𝑆P.The 
computation of the state value function employs a retrospective recursion method through the utilization of the Bellman 
optimality equation (9a) and (9b). 

𝑉P∗(𝑆P) = min
�`�𝒳`

𝑐(𝑆P, 𝑥P) + 𝑉P~A∗ (𝑆P~A) + 𝛾 × 𝐸𝑇𝐶(𝐷NP=)											                   (9a) 

𝑉Z(𝑆Z) = 0											                        (9b) 

where 𝑆Z is the goal state, 𝑆Z𝜖	𝔾. the relationship is given by Equation (10): 

𝑥P∗ = 𝑎𝑟𝑔 min
�`�𝒳`

𝑐(𝑆P, 𝑥P) + 𝔼�𝑉P~A(𝑆P~A)�						                     (10) 

The anticipated aggregate cost of the optimal trajectory will be presented in Equation (11). 

𝑇Y∗ = ∑ 𝑐(𝑒) + 𝛾 × 𝐸𝑇𝐶(𝐷NP=, 𝑒)1��`
∗ .																	                     (11) 

e: is a link in the optimal path. 

As there is an absorbing cost-free goal state, information is propagated backward using a value iteration algorithm. The 
condition of termination in this algorithm terminates when all states, 𝑆	𝜖𝕊 have a fixed cost until the goal state destination is 
reached. To do this, it is necessary to define a value function. 𝑉F(𝑆) that will retain the anticipated total cost beginning in a 
Steady State for a range of 𝒕 steps till the destination. The algorithm searches for a stable optimal approach that shortens the 
time required to reach the goal state the following conditions are met, the value iteration is shown to converge to an optimal 
stationary value function for the stochastic shortest path problem (Prakash, 2020), ( Zheng, Thangeda, & Savas, 2021): 

1.The state set includes a termination state or a goal (𝔾	𝜖	𝕊) which is free and absorbent:	𝑃�𝑑, 𝐷NP~A�𝑑, 𝐷NP� = 1. 

2.There are no absorbing cycles (self-loops) in any non-goal states. 

𝑃�𝑛P = 𝑛P~A, 𝐷NP~A�𝑛P, 𝐷NP� = 0, ∀	𝑆𝜖	𝕊\𝔾. 

3.From each state, at least one appropriate strategy that achieves the desired State with a limited cost and a probability of 
1 (𝑉F(𝑆) < ∞,∀	𝑆	𝜖	𝕊. This is also known as a connectivity assumption, which ensures that every State has at least one 
path leading to the desired State. 
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4. Every bad Policy results in an infinite cost from every stage that doesn't reach the desired State.  

5. By satisfying these five conditions, the value iteration is guaranteed to converge in a finite number of stages where the 
graph cannot contain absorption cycles for the non-goal states. 

Numerically, we consider 𝜖 consistency rule for the termination condition where 𝜖	 > 	0 and modest enough to purchase 
a coverage that is certain to expire within a year 𝜖 of optimum	𝜖 = 0.1. 

5 Suggested algorithms  

The suggested algorithm can be shown in the next flowchart: 

Initialization  

∀	𝑆	𝜖	𝕊, define	 

𝑉¾(𝑆) = ¿0 𝑖𝑓	𝑛𝑜𝑑𝑒	𝑣	𝑖𝑠	𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑆𝜖𝔾	
∞ 																																					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

			 

While loop  

      Determine link status (disrupted or not) 

      Get transition probabilities if they existed 

      Calculate state values backward    

		∀	𝑆�𝑛, 𝐷N�𝜖𝕊	 ∖ 𝔾:	
		𝑉F∗(𝑆) = 	 min��Â1(Z),

𝑐�𝑛, 𝐷N, 𝑥� + 𝑉F£A∗ (𝑆z) + 𝛾 × 𝐸𝑇𝐶�𝑛, 𝐷N�	
		𝑉(𝑠) = min

F
𝑉F(𝑆)		 

  Where (𝑵𝒆(𝒏) = 𝑵𝒆𝒊𝒈𝒃𝒐𝒖𝒓𝒔(𝒏))  

      Compute stabilization at iteration 𝒕 

  Δ𝑉F(𝑆) = |𝑉F(𝑆) − 𝑉(𝑆)| 

      Test stabilization condition   

   maxΔ𝑉F(𝑆) < 𝜖	𝑎𝑛𝑑	𝑉F(𝑆) < ∞	∀	𝑆𝜖𝕊 

End Loop 

Choose the optimal routing policy. 

𝜋ÏÐ(𝑆) = 	 argmin
��Â1(Z)

𝑐�𝑛, 𝐷N, 𝑥� + 𝑉F£A∗ (𝑆z) + 𝛾 × 𝐸𝑇𝐶(𝑛, 𝐷N)	 

End of the stage k 

After applying this algorithm, the next minimal cost node to visit is picked, and the decision to move to it is taken. Upon 
reaching the specified node, un-updated information is retrieved about the network. Thus, the algorithm is repeated to 
update the optimal path until the destination node is reached. 

The input to the optimal routing policy is the complete network disruption state information which contains the travel-
time-dependent transition probabilities.  

The State is represented by using the Nave routing policy. 𝑆P(𝑛P, 𝐷N(𝑘) = (0,0, … . ,0)), In addition, the Bellman 
optimality equation will be transformed as shown in Equation (12). 

 𝑉P�𝑛P, 𝐷NP� = min
�`�𝒳`

𝑐(𝑆P, 𝑥P) + 𝑉P~A(𝑆P~A)   (12) 

Along with Eq.(9b). The route is found as shown in Equation (13): 

𝑉F(𝑆) = min
�`�𝒳`

𝑐(𝑆, 𝑥P) + 𝑉F£A(𝑆)																			                      (13) 

A Robust routing policy represents the State 𝑆P(𝑛P, 𝐷N(𝑘) = (1,1, … . ,1)). It assumes that all disruption will certainly 
occur, and the Bellman optimality equation will be the same as in Equation (12) and Equation (13), considering the change 
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in the direct cost.  

The quantity of real-time information that is accessible determines the online routing topology. Indeed, each node has 
access to the most recent online information regarding the disruption implementations of the susceptible links. 𝑚 ≤ 𝒱. 
Certain connections cannot be found online for whatever reason; hence the estimated values should depend on steady-
state Probability. When 𝑚 same	𝒱. Online routing strategies are the greatest choice for considering disruption change on 
weak links. 

The steady-state Probability is used for any vulnerable link where its relevant disruption status is not available.  

The chance of being in a state at Steady State 𝐷N= For any link, 𝑣 the probability transition matrix's related row serves as 
the basis for the definition. 	𝑃�𝐷N=�, 𝐷N=𝜖𝐿1. The predicted value of the link v for traveling from node to node 𝑛P to node 
𝑥P is denoted by equation (14). 

𝑡Z̅`,�` = ∑ 𝑃�𝐷N=�𝑡Z`,�`�𝐷N
=�ÓNÔ 															                     (14) 

At every node 𝑛P, Because online information is unavailable for all disrupted links, the state value function can be 
determined by employing Algorithm 1 and changing the Bellman optimality Equations (15). 

𝑉P∗�𝑛P, 𝐷NP
Z`	� 		=

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑚𝑖𝑛
�`�𝒳

𝑐�𝑛P, 𝐷NP
Z`, 𝑥P)�

+𝑉P~A∗ �𝑥P, 𝐷NP
Z`�

+𝛾 × 𝐸𝑇𝐶�𝐷N�	

𝑖𝑓	𝑆P𝜖𝕊𝔾	𝑎𝑛𝑑	
𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑚𝑖𝑛
�`�𝒳

𝑡Z̅`,�` + 𝑉P~A
∗ �𝑥P, 𝐷NP

Z`� 𝑖𝑓	𝑆P𝜖𝕊𝔾	𝑎𝑛𝑑	𝑛𝑜
	𝑢𝑝𝑑𝑎𝑡𝑒𝑑	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

0 𝑖𝑓	𝑆P𝜖𝔾

                   (15) 

 The trajectory is established via Equation (16). 

𝑉F(𝑛P, 𝐷Z`	) =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑚𝑖𝑛
�`�𝒳

𝑐�𝑛P, 𝐷NP
Z`, 𝑥P)�

+𝑉F£A�𝑥P, 𝐷NP
Z`�

+𝛾 × 𝐸𝑇𝐶�𝐷N�	

𝑖𝑓	𝑆P𝜖𝕊𝔾	𝑎𝑛𝑑	
𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝑢𝑝𝑑𝑎𝑡𝑒𝑑

𝑚𝑖𝑛
�`�𝒳

𝑡Z̅`,�` + 𝑉F£A�𝑥P, 𝐷NP
Z`�	 𝑖𝑓	𝑆P𝜖𝕊𝔾	𝑎𝑛𝑑	𝑛𝑜	

𝑢𝑝𝑑𝑎𝑡𝑒𝑑	𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
0 𝑖𝑓	𝑆P𝜖𝔾

  (16)	

Hybrid routing policy uses online information if available otherwise, it uses time-independent distribution probability to 
infer the shortest path of stochastic networks. Our main objective is to design. 

6 Result and analysis 

First, an illustrative example of proposed routing policies is demonstrated to explain the applicability of the work and its 
effectiveness. Then, a statistical performance experiment is conveyed, and the consequent Wilcoxon rank test is also 
delivered for this experiment.  

6.1 illustrative example 

Considering the network shown in Fig. 1 with 15 nodes and travel times depending on disrupted levels on each link. 
Travel time and travel probabilities of links are generated randomly. 

The network has six disrupted links; 3 of them with two disruption levels,1 with three disruption levels, and 2 with 4. The 
disruption levels probability matrix for links generated randomly (In a real test, this should be pre-defined) is shown in 
Table 1. 
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Fig. 1: Graph representation of stochastic networks. 

Table 1: Probability factors for each disrubtion levels. 
Disrupted link No disruption Levels Probability matrix 

𝑒A,B 2 0.5141,0.4859 
0.5679,0.4321 

𝑒Ú,Û 4 

0.220,0.4900,0.1396,0.1497 
0.0372,0.7988,0.1126,0.0514 
0.2249,0.4832,0.2206,0.0712 
0.1683,0.1661,0.5638,0.1018 

𝑒Ü,AB 2 0.5519,0.4481 
0.8050,0.1950 

𝑒A¾,AÝ 2 0.6952,0.3048 
0.8370,0.1630 

𝑒AA,AÚ 3 
0.2403,0.5348, 0.2249 
0.1462,0.8148 ,0.0390 
0.2716,0.6464,0.0821 

𝑒AÚ,AÞ 4 

0.0990,0.6078,0.1288,0.1644 
0.2377,0.4543,0.1000,0.2080 
0.0336,0.0151,0.9103,0.0410 
0.0811,0.0754,0.7085,0.1350 

The travel time for each disruption level is illustrated on links in Fig. 1 ascending as it has assumed the travel time 
increases with the disruption level. It is also assumed that the travel time for links in naïve and robust construction 
corresponds to the first and last disruption levels. The source node is Node 1, and the target node is Node 15. 

The shortest path resulted from the naïve routing policy evaluated by Equation (13) and Equation (9b) as: 

1     2     6     8    11    14    15 

The total cost of this path is 43, where the minimum link cost is considered in Equation (12) for each link. As shown, no 
disruption levels transition is applied. 

The shortest path is evaluated in Equation (13) and Equation (9b) for robust routing policy is: 

1     2     3     4    10    13    15 

The total cost of the robust path is 69, where the maximum link cost is considered in Equation (12) for each link. As 
shown, no disruption levels transition is applied.  

Using Online and hybrid algorithms, the route should be updated after each stage from the current node at this stage to 
the target node.  
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The optimal shortest path for the online algorithm is obtained using Equation (9a) and Equation (9b). 

In the first stage, using the Online algorithm at the first stage yields the optimal route as 1 2 6 8 11 14 15 considering the 
disruption levels are selected randomly and discount factor	𝛾 = 0.7. While for the next stage, starting from node two after 
the network has been updated, the optimal shortest path yielded from the online algorithm is 2 3 4 10 13 15. 

Table 2: final cost of Online algorithm and transtion betwen the disruption levels. 
Stage No 1 2 3 4 5 
Start node 1 2 3 4 10 
Updated 
information 
about 
disruptions 𝐷N1b,\ = 2	

𝐷N1à,á = 3	
𝐷N1ã,b\ = 1	
𝐷N1bä,b^ = 2	
𝐷N1bb,bà = 1	
𝐷N1bà,bå = 1 

 

𝐷N1b,\ = 1	
𝐷N1à,á = 4	
𝐷N1ã,b\ = 2	
𝐷N1bä,b^ = 1	
𝐷N1bb,bà = 2	
𝐷N1bà,bå = 3 

 

𝐷N1b,\ = 1	
𝐷N1à,á = 4	
𝐷N1ã,b\ = 2	
𝐷N1bä,b^ = 1	
𝐷N1bb,bà = 1	
𝐷N1bà,bå = 4 

 

𝐷N1b,\
= 2	
𝐷N1à,á
= 3	
𝐷N1ã,b\
= 1	
𝐷N1bä,b^
= 2	
𝐷N1bb,bà
= 1	
𝐷N1bà,bå
= 3 

 

𝐷N1b,\ = 2	
𝐷N1à,á = 2	
𝐷N1ã,b\ = 1	
𝐷N1bä,b^
= 2	
𝐷N1bb,bà
= 1	
𝐷N1bà,bå
= 2 
 

Optimal Path 1,2, 
6,8,11,14,15 

2,3,4,10,13 
15 

3,4,10,13,15 4,10, 
13,15 

10,13,15 

Cost 50.83 40 23 16.72 7.72 

It's clear from Table 2 that the path to the destination resulting at stage 1 is different from the one at stage 2 for this 
example as a result of different disruption level realization at each stage, while the path did not change after stage 2 until 
the destination was reached. 

The application of a hybrid algorithm is similar to the online one, but it can deal with absent information about some or 
even all disrupted links. It's assumed that half of a disrupted link's updated information has not been obtained. Table 3 
introduces the results of a hybrid algorithm besides updated and missed information. Letter (a) refers to an absence of 
information about the correspondent link. The shortest path resulting from the Hybrid policy is  

1     2     3     4    10    13    15 

It has no changes through stages for the given network under given conditions.  

The path from source to destination using a hybrid algorithm is performed using Equation (16), and the total cost of the 
path using Equation (15) is 62.04 for the first stage. As seen from Table 3, no change to the path occurred during stages 
for this example. 

Table 3: final cost of hybrid algorithm and transtion betwen the disruption levels . 
Stage No 1 2 3 4 5 
Start node 1 2 3 4 10 
Updated 
information 
about 
disruptions 

DN�b,\ = 2	
DN�à,á = a	
DN�ã,b\ = 1	
DN�bä,b^ = a	
DN�bb,bà = 3	
DN�bà,bå = a 

 

DN�b,\ = 1	
DN�à,á = a	
DN�ã,b\ = 2	
DN�bä,b^ = a	
DN�bb,bà = 2	
DN�bà,bå = a 

 

DN�b,\ = 1	
DN�à,á = a	
DN�ã,b\ = 2	
DN�bä,b^ = a	
DN�bb,bà = 1	
DN�bà,bå = a 

 

DN�b,\ = 1	
DN�à,á = a	
DN�ã,b\ = 2	
DN�bä,b^ = a	
DN�bb,bà = 1	
DN�bà,bå = a 
 

DN�b,\ = 2	
DN�à,á = a	
DN�ã,b\ = 1	
DN�bä,b^ = a	
DN�bb,bà = 3	
DN�bà,bå = a 
 

Optimal Path 1,2,3,4,10,13,15 2,3,4, 10,13,15 3,4,10 ,13,15 4,10, 13,15 10,13, 15 
Cost 62.04 47.21 30.21 20.21 11.21 

6.2 Statistical experiment 

This experiment aims to show the performance of the different proposed policies on different network sizes with various 
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disruption rates and vulnerabilities. The conditions of the experiment are set as follows: 

Network size: small network 16 nodes, large network 36 nodes. 

Network vulnerability: the vulnerability of the network reflects the number of disrupted links. The low percentage is 50 
%, and the high percentage is 70%, with different disruption levels. 

The travel times range is kept between 1–10-unit time. 

Disruption rates have a low Probability of having disruptions [0-0.3], medium [0.4-0.6], and high [0.7-1]. 

Suggested Network Without losing generosity, the suggested network is shown in Fig. 2, where at least each node has 
two neighbor links to choose between them. Such construction prevents the evaluation of unnecessary nodes far from the 
shortest path.  The origin node is at the top left corner, and the destination node is at the bottom left corner. 

The evaluation criteria utilized in Equation 17. 

Δ(%) = |é(êëì)£é(êíì)|
é(êíì)

× 100					                       (17) 

𝐶𝑜𝑠𝑡	𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑖𝑣𝑒	𝑝𝑜𝑙𝑖𝑐𝑦: 𝑪𝑨𝑷, 𝐶𝑜𝑠𝑡	𝑜𝑝𝑡𝑖𝑚𝑎𝑙	𝑝𝑜𝑙𝑖𝑐𝑦: 𝑪𝑶𝑷 

Twelve experiments with different conditions are set in Table 4. Ten replications are generated (120) instances to extract 
the following results (Table 5), where the	𝑚𝑒𝑎𝑛	 𝑐𝑜𝑠𝑡	represents the average cost of the routing Policy under concern. 
𝑚𝑒𝑎𝑛𝛥(%)	 ,maxΔ% represent the average and maximum value of the absolute difference between routing policy cost 
and optimal routing policy cost, respectively. 

 
Fig. 2: suggested a network. 

The experiments were carried out using just two disruption levels, and disrupted links were selected randomly, and 
transitions probability kept the disruption rate maintained through random generation. 

𝑃F,F~A= = ô
𝑃�b,�b
= 1 − 𝑃�b,�b

=

1 − 𝑃�\,�\
= 𝑃�\,�\

= õ , ∀𝑡 = 0,1,2, …∀	𝑣𝜖𝐸=									                    (18) 

The number of links with unavailable online information is chosen to be 0.25 of disrupted links. In the case of small 
networks, this will be two links, while in the case of large networks, it will be 4 or 6 links if the low and high vulnerability 
condition is implemented, respectively. 

Tables 5 and 6 show that the Nave routing policy yields the lowest cost, and the Robust routing policy yields the highest 
cost, as expected in suggested policies because each does not consider disruption changes and the naive routing algorithm, 
robust routing algorithm counts the minimum and maximum cost of disrupted arcs, respectively, as both acts offline. 

Table 4: All cases of simulations that have been tested. 
Experiment Network size Network Vulnerability Disruption rate 
1 Low Low Low 
2 Low Low Medium 
3 Low Low High 
4 Low High Low 
5 Low High Medium 
6 Low High High 
7 High Low Low 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Network origin

Destination
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8 High Low Medium 
9 High Low High 
10 High High Low 
11 High High Medium 
12 High High High 

The optimal routing algorithm measures the exact cost of disrupted links	(𝛾 = 0), which means it removes the transition 
cost function (ETC) from consideration. In contrast, the online routing algorithm maintains this transition probability 
using (𝛾 = 0.7) to consider the disruption level change. It is noticeable that the mean cost of the online routing algorithm 
gets closer to the optimal one when the disruption rate increases, which reflects the explicit design goal when using	𝛾.  

It's also apparent that minimizing 𝛾 eliminates the effect of the ETC function, and the results will get closer to the optimal 
routing policy in any disruption rates. That can be seen from Table 6, where Δ(%) registered the most minimum difference 
for the online routing policy. For the hybrid routing policy, the same 𝛾 The principle can be used. The results reveal that 
when the disruption rate is low, the hybrid routing algorithm is closer to the optimal result and begins to overcount when 
the disruption rate grows. It is pretty clear from the algorithm and noticing that it takes the cost of travel times of disruption 
levels, which maximizes cost when having a higher vulnerability network and a relatively high disruption rate. This higher 
cost at such conditions reflects the robustness of the result when some online information is missed, which is clear from 
Table 5. 

In conclusion, 𝛾 can be considered a trust factor of acquired disruption data for online routing policy. The more trust 
online data, the less 𝛾 can be assigned. As well as low values of 𝛾 reflect the slow disruption level changes in the network. 
Finally, the hybrid routing algorithm gives the best result with a small value of	𝛾 . The robustness of results depends on 
the reality of the balance in the average cost. 

The results of the proposed algorithms are logical. They have the property of suppleness in justifications and a low degree 
of complexity even with multiple disruption levels, which was not included in the results, but this can be inferred from 
the results. 

The time consumed for our calculation has been estimated using the MATLAB environment. It's the same complexity as 
offline and online algorithms, proving the efficiency of using the ETC function to estimate disruption levels transition 
cost. 

Table 5: results for All cases of simulations that have been tested. 
Exp No  Naïve Robust Online  𝛾 = 0.7 Hybrid  𝛾 = 0.7 Optimal (online 𝜸 = 𝟎) 
1 mean cost 19.11 32.10 22.66 24.40 24.48 

𝑚𝑒𝑎𝑛	Δ% 20.24 34.47 6.638 9.41 0 
maxΔ 58.06 126.3 34.96 44.39 0 

2 mean cost 18.80 31.38 23.41 25.57 24.10 
𝑚𝑒𝑎𝑛	Δ% 18.60 32.42 2.39 9.04 0 
maxΔ 55.17 113.3 19.36 46.44 0 

3 mean cost 19.40 31.39 24.01 26.65 24.2 
𝑚𝑒𝑎𝑛	Δ% 17.64 32.28 0.69 12.77 0 
maxΔ% 60.71 207.7 6.96 255.7 0 

4 mean cost 19.95 36.45 24.09 26.53 26.34 
𝑚𝑒𝑎𝑛	Δ% 22.48 43.03 7.5 11.36 0 
maxΔ% 59.25 169.2 36.11 50.00 0 

5 mean cost 18.45 35.73 24.28 27.50 25.16 
𝑚𝑒𝑎𝑛	Δ% 24.74 46.93 3.14 14.00 0 
maxΔ% 69.69 291.7 16.88 125.3 0 

6 mean cost 18.88 35.57 24.90 28.47 25.16 
𝑚𝑒𝑎𝑛	Δ% 22.94 46.37 0.59 15.29 0 
maxΔ% 62.5 158.3 10.83 126.7 0 

7 mean cost 30.75 51.53 36.40 38.56 38.99 
𝑚𝑒𝑎𝑛	Δ% 19.9 33.75 5.94 7.35 0 
maxΔ% 49.02 82.86 21.79 23.48 0 

  8 mean cost 31.05 52.37 38.2 41.82 39.28 
𝑚𝑒𝑎𝑛	Δ% 19.65 35.99 2.49 9.13 0 
maxΔ% 52.46 131.7 15.65 53.41 0 
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9 mean cost 30.45 50.63 37.80 41.65 38.01 
𝑚𝑒𝑎𝑛	Δ% 18.64 35.30 0.49 11.24 0 
maxΔ% 48.93 144.4 5.38 93.00 0 

10 mean cost 29.31 57.31 35.67 39.45 38.31 
𝑚𝑒𝑎𝑛	Δ% 22.21 53.03 6.31 11.05 0 
maxΔ% 58.97 165.4 23.46 45.63 0 

11 mean cost 29.13 57.92 37.69 42.02 39.03 
𝑚𝑒𝑎𝑛	Δ% 24.03 51.37 3.11 12.50 0 
maxΔ% 55.14 185.7 16.19 77.10 0 

12 mean cost 28.81 55.38 38.62 44.87 38.95 
𝑚𝑒𝑎𝑛	Δ% 24.98 44.32 0.83 16.49 0 
maxΔ% 54.17 112.1 7.92 89.30 0 

1-6 Time(sec) 0.18 0.18 0.12 0.12 0.12 
7-12 Time(sec) 0.66 0.66 0.34 0.34 0.34 

6.3 Wilcoxon rank test 

Another way to interpret the algorithm's performance is Wilcoxon ranking, which clarifies how one algorithm performs 
against another by comparing the cost of the resulting path registered by them through experiment instances. Thus, a 
Positive result is obtained when the cost exceeds the other algorithms. The negative result is when it costs less, and the 
tie result is obtained when it registers the exact cost.  It's intuitive upon suggested routing policies of our work that the 
Naïve routing policy will yield the minimum cost. In contrast, the Robust routing policy costs the maximum, and these 
results are clearly shown in Table 6. The introduced Hybrid routing policy tends to be robust compared to Online and 
Optimal routing policies, with a higher average to get more significant than it.   

Table 6: different routing policies with respect to Wilcoxon rank. 
 (%) Robust Online Hybrid Optimal 
Naïve Positive 0 0 0 0 
 Negative 99.17 86.5 94.17 86.5 
 Ties 0.83 13.5 5.83 13.5 
Robust Positive  95.42 90.58 91.42 
 Negative  0 2.83 0 
 Ties  4.58 6.59 8.58 
Online Positive   1.17 0 
 Negative   58.67 48.75 
 Ties   40.16 51.25 
Hybrid Positive    49.67 
 Negative    22.92 
 Ties    27.42 

Comparing the results from Table 5) with [20], the cost for all routing policies, our results are better Table 7) 

Table 7: The comparison table with [Sever, D 2013] 
 Naïve Robust Online   Hybrid   Optimal  
Ours [best] 18.80 31.38 23.41 25.57 24.10 
[Sever, D 2013] 51.79 35.25 28.25 27.13 27.13 

7 List of contributions after challenges.  

1- One of the paramount challenges pertains to the approach for computing the ultimate cost while transitioning across 
disruption levels within the online algorithm, a factor that significantly influences the eventual outcomes. The 
conclusive resolution was achieved by introducing the ETC factor. 

8 Conclusions 

This work depends on the stochastic network, where we find the shortest path between the source and the end. The 
proposed method uses the Markov Decision Process (MDP), which deals with different disruption levels. The transition 
between them is at the normal level. By moving either by increasing by one level or decreasing by one level, here the 
transition process is formed randomly, reducing the complexity level in the calculations, which in turn makes routing 
algorithms work correctly and regularly with more accuracy. Routing algorithms that use the online protocol work well 
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for the accuracy of the data that we deal with, especially with networks that contain large-scale connections. Some 
protocols that do not support disruption levels, which are the naive and robust protocols, are protocols that deviate from 
accurate results due to a lack of taking into account the disruption levels, so the results are inaccurate. They were taken 
to compare the work with them and know the accuracy of their impact. And there are Hybrid protocols in the case of 
unavailability of data due to losses of connection online due to Internet interruption or any emergency circumstance that 
prevents access to the data provided by the service. Extended MDP use of online and hybrid routing algorithms can 
effectively increase or decrease the travel time depending on the time-dependent inactivation level of the broken links, 
which reflects the quality of the proposed method in solving the shortest path and optimization problem in stochastic 
networks. Routing experiments on small and large networks with outage rates and different vulnerabilities support the 
work. The results of experiments on networks showed that a basic factor (ETC) should be added to calculate the exact 
time, which is an added factor to the rational return to predict real-time. It helped to give high accuracy. Getting to the 
desired end work has been meaningfully justified in real-time accounts. Finally, the Wilcoxon rank test was executed on 
the suggested experiment, substantiating the efficacy of incorporating the ETC factor into the equations employed for 
cost computation. 
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