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Abstract: Weighted distributions have great practical importance in mathematics, probability and statistics. In this study a new discrete

distribution which is a weighted version of Discretized Fréchet-Weibull distribution (DFWD), known as Weighted Discretized Fréchet-

Weibull distribution (WDFWD), is proposed. It has been shown that the distribution is unimodal, positively skewed and suitable for

modelling with overdispersed count data sets. This distribution has bathtub shape and decreasing hazard rate function. Various statistical

properties and simulation of the proposed distribution are obtained. The estimation of parameters have been handled by the method of

maximum likelihood estimation. Finally, the proposed model has been fitted to three real life data sets to test its goodness of fit. And to

show its efficacy it is being compared with Discretized Fréchet-Weibull distribution, discrete generalized Weibull, discrete generalized

inverse Weibull, discrete Burr and discrete Rayleigh distribution. It is established that the weighted version of DFWD gives better fit

than the parent model DFWD, which indicates the importance of weighted distribution.
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1 Introduction

In various studies it is observed that the sampling frames
for plant, human, insect, wildlife and fish populations are
not well defined, which leads the researchers to be unable
to select the sampling units with equal probability. As a
result, unless every observation is given an equal
probability of being recorded, the observations on
individuals in these populations are biased. As such
biased data arise in all disciplines of science, the
statisticians and researchers have found out solutions for
correcting the biases in the recorded observations. In this
regard, a standard approach for modeling biased data is
given by the weighted distribution theory. The theory of
weighted distributions is applied in various research areas
related to biomedicine, reliability, ecology and branching
processes.

The work of Fisher [1] is accountable for introducing
the concept of weighted distributions. In his study a brief
discussion on how methods of ascertainment can affect
the form of distribution of recorded observations are
discussed. Later, it was introduced and formulated in a
more general way by Rao [2] with respect to the usual
practice of using standard distributions for the purpose of

modelling statistical data was found to be inappropriate.
He explained when the recorded observations cannot be
considered as a random sample from the original
distribution then the weighted distributions can be
applied. Such situations may occur due to
non-observability of some events or a damage caused to
original observations resulting in a reduced value or
adoption of a sampling procedure which gives unequal
chances to the units in original. It is obvious that when
there are unequally likely observations in a population,
then different events will have unequal probability of
getting recorded. To deal with such a population a
function is searched for expressing the proportionality in
which the events are observed and here comes the role of
weight function for this purpose.

Several authors have studied the various weighted
probability models considering different forms of weight
functions and illustrated their applicability in different
fields. Patil and Rao [3] provided a comprehensive survey
of examples of weighted distribution and explained how
they come into existence in the domain of science. Patil
and Rao [4] examined some general models leading to
weighted distributions with weight functions not
necessarily bounded by unity and studied length biased
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(size biased) sampling with applications to wildlife
populations and human families. A detailed account of
weight functions is discussed by Patil et al. [5], providing
a list of weight functions that can be used to construct
various forms of weighted distributions. Khatree [6]
discussed the characteristics of many length biased
distributions along with the results on preservation of
stability and comparisons for weighted and length biased
distributions. Gove [7] reviewed some of the results on
size-biased distributions in connection to parameter
estimation in forestry, with special emphasis on two- and
three-parameter Weibull distribution. Saghir et al. [8]
discussed a brief review work on weighted distributions
available in the literature and presented a characterization
criterion using a simple relationship between two
truncated moments.

According to Patil and Rao [3], “although the
situations that involve weighted distributions seem to
occur frequently in various fields, but the underlying
concept of weighted distributions as a major stochastic
concept does not seem to have been widely recognized”.
Though many researchers have developed several
weighted distributions to model such biased data in both
continuous and discrete forms, but unfortunately a
handful of work is seen on this topic.

Recently, the development of new weighted
distributions has received much attention from the
researchers. The weighted version of Generalized Inverse
Weibull Distribution was proposed by Mudasir and
Ahmad [9]. Bakouch [10] introduced a new discrete
distribution called weighted negative binomial Lindley
distribution, which is actually the weighted version of two
parameter Lindley distribution. Para and Jan [11]
proposed the Weighted Pareto type II distribution suitable
for handling data from medical science background. Bhati
and Joshi [12] introduced weighted geometric distribution
for which the Negative Binomial is a limiting distribution.
Also this distribution can be viewed as a discrete analog
of weighted exponential distribution as discussed by
Gupta and Kundu [13]. The Length-Biased weighted
Exponentiated Lomax distribution was proposed by
Moniem and Diab [14], of which the Length-Biased
weighted Lomax distribution as derived by Ahmad et al.
[15] is a sub-model. Rather and Subramanian [16]
discussed the weighted Sushila distribution with various
statistical properties and its applications.

Most recently, Dar et al. [17] proposed the Weighted
Gamma-Pareto distribution, by considering the
cumulative distribution function of Pareto distribution as
a weight function. This distribution is a generalization of
some of the well-known probability distribution viz.,
gamma-Pareto distribution, weighted exponential-Pareto
distribution, Pareto distribution, weighted gamma
distribution, gamma distribution, weighted exponential
distribution, generalized exponential distribution and
exponential distribution. Rather and Ozel [18] proposed
the Weighted Power Lindley distribution with various
statistical properties and its applications. A size-biased

discrete Akash distribution with its properties and
application to four real life data sets was discussed by
Shanker and Sium [19]. Ganaie et al. [20] derived the
weighted two parameter quasi Shanker distribution and
established the efficiency of the proposed model than the
parent model in application to two real life data sets.
Ganaie and Rajagopalan [21] developed the Length
biased Weighted New Quasi Lindley Distribution and
using two applications the supremacy of the length-biased
version than the parent distribution and three other
competitive distributions are established.

In real application, weighted distributions can arise
either because of observations from a sample are recorded
with unequal probability by the sampling design or
because of unequal probability of detection. When the
observations fall either in the non-experimental or
non-replicated or non-random categories, then the
weighted distributions provide a unified approach for
handling such problems. The weighted distributions occur
frequently in every field of study including environmental
science, reliability, econometrics, social science,
biomedical science, human demography, family data,
ecology, geology, forestry etc. In this article an attempt
has been made to put a light in the theory of weighted
distributions that enables us to obtain a solution for the
problems of model specification whenever we deal with
such kind of biased data.

As already discussed, though the concept of
“weighted distribution” has a vast scope and the
development of many more such distributions are awaited
in the future. But focusing on the variable support on Z+

(set of positive integers), a handful of works are available
in the literature based on weighted distributions. The most
popular discrete weighted distribution is the weighted
Poisson distribution. Several weighted Poisson
distributions have already been studied in the literature
(see [22],[3],[4],[5]). Chakraborty and Das [23] discussed
some properties of a class of weighted quasi-binomial
distribution. Shanker and Mishra [24] discussed
size-biased quasi Poisson-Lindley distribution and
established its efficiency in comparison to size-biased
Poisson-Lindley distribution. Recently, Balakrishnan et
al. [25] introduced another weighted Poisson distribution
with its application to cure rate models. Weighted
Negative Binomial Lindley [10], weighted Geometric
[12] and size-biased discrete Akash [19] distributions are
some of the researches on the weighted versions of their
corresponding discrete distributions.

As it is known that manipulating the data sets leads to
loss of information and there are abundance of such
discrete data sets which can be fitted better with the newly
developed weighted models. In practical situations, we
may come across such biased data that would give better
results when we treat them with some extreme value
distribution rather than the weighted forms of Binomial,
Poisson, Negative binomial, Geometric distribution.
Moreover, it is also known that the generalised versions
of a distribution are always superior than the parent

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 5, 791-806 (2023) / www.naturalspublishing.com/Journals.asp 793

model. Additionally, the lack of weighted distribution for
count data also reassures the need of new developments
of weighted model corresponding to a discretized
distributions for biased extreme value datasets. The
Weibull and Fréchet distributions are both applicable to
extreme value theory and the generalized form of these
distributions, named as Fréchet-Weibull distribution is
more efficient than the original models. Since our main
intention is to develop a new weighted distribution for
count data so here, we shall concentrate on the discrete
counterpart of the Fréchet-Weibull distribution. The
selection of this distribution is entrenched on its flexible
properties.

In reference to the above discussion the main
motivation of this article is to make one realize how the
weighted distributions enables us to express some random
processes even though when we have already a number of
existing distributions. The objective of this study is to
introduce a new discrete weighted distribution based on
the Discretized Fréchet-Weibull distribution. The
proposed weighted distribution, named as Weighted
Discretized Fréchet-Weibull distribution (WDFWD), is
constructed by considering the cumulative distribution
function of discrete Weibull distribution as the weight
function. One interesting fact of the proposed distribution
is that the weight function is so chosen that the total
number of parameters is same as the parent distribution.
The capability of exhibiting the increasing, decreasing
and bathtub shaped hazard rate functions, which are
sparingly noticed in count distributions, along with its
variable support in the set of positive integers, serves as
bounty for this proposed distribution. Besides this
distribution is suitable to model with positively skewed
data sets and can be used as an alternative for fitting
overdispersed count data sets.

The rest of the paper is organized as follows: In
Section 2 the development of Discretized Fréchet-Weibull
distribution (DFWD) is discussed. The derivation of
Weighted Discretized Fréchet-Weibull distribution
(WDFWD) is illustrated in Section 3 and the various
statistical properties of WDFWD are also derived.
Maximum likelihood method for parameters estimation is
discussed in Section 4. Simulation of WDFWD is carried
out in Section 5. Applicability of this distribution to three
real life data sets are illustrated in Section 6. Goodness of
fit is carried out as a measure to establish the supremacy
of the proposed model in comparison to the parent
distribution and four other competitive distributions.
Along with the Chi-square statistic, here we have also
used the discrepancy coefficient as a measure of goodness
of fit. Finally, it is seen that, in all the applications,
WDFWD is more efficient than the parent distribution
DFWD and the other four competitive distributions.
Finally, a conclusive summary of the study has been
presented in Section 7.

2 Discretized Fréchet-Weibull distribution

(DFWD)

In real-life practice, we may encounter such situations
where the continuous life time models are often recorded
as discrete random variables rather than measuring on a
continuous scale. These situations may happen either
because of its inbuilt character or because of the
restriction of measuring tools. This leads to the necessity
of development of discrete analogue of the extant
continuous distributions. Discretization of statistical
models provides the researcher a basic field of study to
operate with count data from diverse disciplines such as
biological, medical and physical sciences, engineering,
agriculture and many others.

A number of methods are present in the literature to
construct the discretized version of continuous
distributions. An encyclopedic survey of the different
methods of discretization used to derive the discrete
analogues of the continuous one has been presented by
Chakraborty [26]. In his study a detailed account of
discretized distributions are discussed under the various
techniques of discretization available in the relevant
works. The discretization technique that uses the survival
function of the continuous model is the most used method
for constructing the discrete analogues. This method is
called the survival function approach of discretization and
is defined as follows:

Definition 1. If SX(x) be the survival function of the
considered continuous random variable X, then the
random variable Y = ⌊X⌋ = largest integer less than or
equal to X will have the pmf

P(Y = k) = P(k ≤ X < k+ 1)

= P(X ≥ k)−P(X ≥ k+ 1)

= SX(k)− SX(k+ 1) (1)

Nakagawa and Osaki [27] was the first to introduce this
method to develop the discrete Weibull (DW) distribution.
The main advantage of this method is that the form of the
survival function is conserved on its integer part, that is
SY (k) = SX(k), where k is an integer. So using the form in
Eq.(1) it is possible to develop the discrete version of a
distribution corresponding to any given continuous
distribution.

Teamah et al. [28] introduced a relatively new
distribution called Fréchet-Weibull (FW) distribution and
studied its statistical properties along with its application
to earthquake data sets. Deka et al. [29] also studied this
distribution with its application to two data sets related to
mechanical engineering. The applications of this
distribution showed its efficiency in comparison to the
other extensions of Weibull distribution.

The probability density function (pdf) of the Fréchet-
Weibull distribution (FWD) is given by

fX (x) = αkβ α mαkx−1−αkexp

{
−β α

(m

x

)αk
}

(2)
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and the corresponding survival function (sf) is given by

SX(x) = 1− exp

{
−β α

(m

x

)αk
}

(3)

where x > 0 and the parameters (α,β ,m,k) > 0 . Also, α
and k are shape parameters and β and m are scale
parameters.

Using the survival function approach of discretization,
a new discrete distribution called Discretized
Fréchet-Weibull distribution (DFWD) is developed by
Das and Das [30]. This distribution is suitable to be
modelled with both positively and negatively skewed
data. Also its hazard rate function can be increasing,
decreasing and up-side down bathtub shaped, which are
not much observed for count distributions. The pmf of the
random variable Y having Discretized Fréchet-Weibull
distribution, with the shape parameters α and k and the
scale parameters β and m, is given by

P[Y = y] = exp

{
−β α

(
m

y+ 1

)αk}
(4)

−exp

{
−β α

(
m

y

)αk}

where y ∈ Z+ and the parameters (α,β ,m,k) > 0. Let ξ
be the parameter vector of DFWD, defined as
ξ = (α,β ,m,k), such that ξ ∈ (R+×R+×R+×R+).

3 Weighted Discretized Fréchet-Weibull

distribution (WDFWD)

Let Y be a count random variable with pmf P[Y = y], where
y ∈ Z+ = {0,1,2, ...}. Let w(y) be a non-negative weight
function on Z+ having a finite expectation

E[w(y)] = ∑
y

w(y)×P[Y = y]< ∞

Then to derive a new weighted distribution, the weight
function w(y) can be used to adjust the probability when
Y = y occur. Thus, the pmf of the weighted version of the
random variable Y , which is the realization of count
random variable Yw is given by

Pw[Yw = y] =
w(y)×P[Y = y]

∑y w(y)×P[Y = y]

=
w(y)×P[Y = y]

E[w(y)]
(5)

It is to be noted that similar definition can be stated for
the continuous random variables. It is important to note
that for a particular distribution, corresponding to
different alternatives of the weight function w(y) gives
different forms of the weighted distribution.
As it is mentioned in Section 1, we shall consider the
cumulative distribution function of discrete Weibull (DW)

distribution, as developed by Nakagawa and Osaki [27] as
our weight function. Thus the weight function is given by

w(y) = 1− exp

{
−

(
y+ 1

m

)k}
; y ∈ Z+ (6)

which is the cdf of discrete Weibull (DW) distribution
with the parameters (m,k) > 0. The reason for
considering this cdf as the weight function is that it is
non-negative and as k → ∞,w(y) → 1. One more
interesting fact behind the consideration of this weight
function is that it doesn’t increase the total number of
parameters of the proposed weighted distribution. Thus
the parameter vector of Weighted Discretized
Fréchet-Weibull distribution (WDFWD) is
ξ = (α,β ,m,k), which is same as that of the parent
distribution.
Considering the weight function w(y) as in Eq.(6), the
denominator in Eq.(5) can be written as

E[w(y)] =
∞

∑
s=0

w(s)×P[Y = s]

=
∞

∑
s=0

[
1− exp

{
−

(
s+ 1

m

)k}]
×P[Y = s]

=
∞

∑
s=0

q(s;α,β ,m,k) = Q(s;ξ ) (say) (7)

where s ∈ Z+ and the parameter vector ξ = (α,β ,m,k).
Also,

q(s;ξ ) =

[
1− exp

{
−

(
s+ 1

m

)k}]
×

[
exp

{
−β α

(
m

s+ 1

)αk}
−

exp

{
−β α

(m

s

)αk
} ]

(8)

and the summation of the term q(s;ξ ) over the entire range
of Z+ is infinite and cannot be written in closed form and
is termed as Q(s;ξ ).

Using the cdf of the Discrete Weibull distribution with
parameters (m,k) > 0 given in Eq.(6) as the weight
function to construct the Weighted Discretized
Fréchet-Weibull distribution (WDFWD), then its pmf can
be written as

Pw[Yw = s] =
q(s;ξ )

∑∞
s=0 q(s;ξ )

=
q(s;ξ )

Q(s;ξ )
= P(s;ξ ) (say) (9)

where s ∈ Z+ and the parameter vector ξ = (α,β ,m,k).
And the terms q(s;ξ ) and Q(s;ξ ) is as defined in Eq.(8)
and Eq.(7) respectively. For WDFWD also, α and k are the
shape parameters and β and m are the scale parameters.
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3.1 Cumulative distribution function

The cdf of the Weighted Discretized Fréchet-Weibull
distribution (WDFWD) is given by

Fw
Y (s) = Pw[Yw ≤ s] =

y

∑
s=0

Pw[Yw = s]

=
y

∑
s=0

q(s;ξ )

Q(s;ξ )

=
∑

y
s=0 q(s;ξ )

Q(s;ξ )
=

V (s;ξ )

Q(s;ξ )
= C(s;ξ ) (10)

where s ∈ Z+ and the parameter vector ξ = (α,β ,m,k).
Also the term Q(s;ξ ) is as defined in Eq.(7).

3.2 Survival function

The survival function (sf) of Weighted Discretized
Fréchet-Weibull distribution (WDFWD) is given by

Sw
Y (s) = Pw[Yw ≥ s] = 1−Fw(s)+Pw[Yw = s]

= 1−C(s;ξ )+P(s;ξ )

= 1−
V (s;ξ )

Q(s;ξ )
+

q(s;ξ )

Q(s;ξ )
= S(s;ξ ) (say) (11)

where s ∈ Z+ and the parameter vector ξ = (α,β ,m,k).
Also the terms Q(s;ξ ), q(s;ξ ) and V (s;ξ ) are as defined
in Eq.(7) , Eq.(8) and Eq.(10) respectively .

3.3 Hazard rate function

The hazard rate function (hrf) of Weighted Discretized
Fréchet-Weibull distribution (WDFWD) is given by

Hw
Y (s) =

Pw[Yw = s]

Sw
Y (s)

=
P(s;ξ )

S(s;ξ )
= H(s;ξ ) (say) (12)

where s ∈ Z+ and the parameter vector ξ = (α,β ,m,k).
Also the terms P(s;ξ ) and S(s;ξ ) are as defined in Eq.(9)
and Eq.(11) respectively .

3.4 Graphical representation of WDFWD

The possible shapes of the pmf and hrf of Weighted
Discretized Fréchet-Weibull distribution (WDFWD) for
different values of the parameter (α,β ,m,k) are
presented in Figure 1 and Figure 3 respectively. Also in
Figure 2 we have graphically presented the impact in the
pmf plot of WDFWD by increasing the shape parameters
(α,k) and the scale parameters (β ,k).

Fig. 1: PMF plot of WDFWD for different values the
parameter (α,β ,m,k).

Fig. 2: Impact of shape and scale parameters in the pmf
plot of WDFWD.
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Fig. 3: HRF plot of WDFWD for different values the
parameter (α,β ,m,k).

We observe from Figure 1 that the pmf of the WDFWD
for different values of the parameter (α,β ,m,k) possess
right long-tail. So, the proposed distribution is positive-
skewed distribution. Also, it can be observed that the shape
of the pmf of this distribution can be increasing, decreasing
and unimodal.

In Figure 2 we have presented the effect changing of
the shape and scale parameters over the pmf of the
proposed distribution. In the Figure 2(a) the value of the
shape parameters α and k increases and the rest
parameters are kept fixed. Again in Figure 2(b) the the
value of the scale parameters β and m are varying while
the remaining parameters are kept fixed. From Figure 2(a)
it can be clearly seen that the peak of the pmf of
WDFWD sharpens gradually as the shape parameters α
and k increases. Similarly, from Figure 2(b) it is clearly
seen that as the scale parameters β and m increases the
pmf of WDFWD flattens and stretches out more.
Figure 3 depicts the possible shapes of hazard rate
function of WDFWD for different values of the parameter
(α,β ,m,k) are presented. In Figure 3 (a), (b), (c) and (d)
the parameter values of α , β , m and k are varying
respectively, while the remaining parameters are kept
fixed. It can be seen that the hrf function of WDFWD can
be increasing, decreasing or bathtub shaped depending
upon the choice of parameter values. Also, it is to be
noted that, in all cases it is less than 1. One obvious
motivational fact of the proposed distribution is that it
possess bathtub shaped hazard function along with the
quality of exhibiting increasing and decreasing hazard
rate shapes which are not often observed in count
distributions.

3.5 Monotonic property

To understand the log-convexity or log-concavity behavior
of WDFWD for the parameter set ξ = (α,β ,m,k), it is
sufficient if we can show that the ratio

Pw(y+ 1;ξ )

Pw(y;ξ )
=

q(y+ 1;ξ )

q(y;ξ )

for y ∈ Z+ and ξ = (α,β ,m,k), is a non-decreasing
function of y, then it implies that

{Pw(y;ξ )}2 ≤ Pw(y+ 1;ξ ) . Pw(y− 1;ξ )

for y ∈ Z+ and ξ = (α,β ,m,k), then the distribution is
log-convex, otherwise it is log-concave. But for the
proposed distribution, depending upon the choice of the
parameter values the ratio can be both increasing or
decreasing function of y and consequently the WDFWD
can act as both log-convex and log-concave.

Also it is known that, if a discrete distribution is
log-convex (log-concave), then the hazard rate function is
decreasing (increasing). Hence, WDFWD has both the
decreasing failure rate (DFR) and increasing failure rate
(IFR) distribution.

3.6 Infinite divisibility

The infinite divisibility is one of the valuable structural
property of a distribution. According to Steutel and Van
[31], the determination of infinite divisibility property of
a distribution can be accomplished based on the Lemma
1, stated as

Lemma 1. A necessary condition for infinite divisibility
of a discrete distribution py is that p0 > 0.

From the pmf plot of WDFWD as shown in Figure 1,
it is clearly seen that, there can be many such
combinations of the parameter values, that satisfy the
condition in Lemma 1. Hence WDFWD is infinite
divisible.

Also as reported by Nekoukhou et al. [32], the
property of self-decomposable and stable are direct
consequences of infinitely divisibility of a distribution.
Hence we conclude that WDFWD is self-decomposable
and stable. Further, it is also known that if a count
distribution is infinite divisible then it is over-dispersed.
Thus, WDFWD is an over-dispersed distribution.

3.7 Moment generating function

To make the simplification easier let us rewrite the term
q(s;ξ ) as mentioned in Eq.(8) by considering the
following substitutions

D(y) = 1− exp

{
−

(
y+ 1

m

)k}
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and

E(y) = 1− exp

{
−β α

(
m

y

)αk}

Then the Eq.(5) can be rewritten as

q(s;ξ ) = D(y).
[
E(y)−E(y+ 1)

]
(13)

The moment generating function (mgf) of WDFWD is
obtained using the Eq.(13) in the pmf as defined in Eq.(9)
and is given by

Mw
Y (t) = E[ety] =

∞

∑
y=0

ety Pw[Yw = y]

=
1

Q(s;ξ )

∞

∑
y=0

ety q(y;ξ )

=
1

Q(s;ξ )

∞

∑
y=0

ety D(y).
[
E(y)−E(y+ 1)

]

=
1

Q(s;ξ )

[
D(0)+

∞

∑
y=1

E(y)×

{
ety D(y) − et(y−1) D(y− 1)

}]
(14)

where y ∈ Z+ , D(0) = 1 − exp{−m−k} and the term
Q(s;ξ ) is as defined in Eq.(7).

Now, differentiating the mgf of WDFWD as in Eq.(14),
for ‘r′ times w.r.t ‘t ′, we get

M
w(r)
Y (t) =

dr

dtr
Mw

Y (t)

=
1

Q(s;ξ )

∞

∑
y=1

E(y)×

[
yreyt D(y)− (y− 1)re(y−1)t D(y− 1)

]
(15)

Thus the rth moment of WDFWD is given by

E(Y r
w) = M

w(r)
Y (t)

∣∣
t=0

=
1

Q(s;ξ )

∞

∑
y=1

E(y)×

[
yr D(y)− (y− 1)r D(y− 1)

]
(16)

where y ∈ Z+ and the term Q(s;ξ ) is as defined in Eq.(7).

3.8 Characteristic function

The characteristic function (cf) of WDFWD can be easily
obtained by replacing ‘t ′ by ‘it ′ in the (14), as follows

φw
Y (t) = E[eity] =

∞

∑
y=0

eity Pw[Yw = y]

=
1

Q(s;ξ )

∞

∑
y=0

eity q(y;ξ )

=
1

Q(s;ξ )

[
D(0)+

∞

∑
y=1

E(y)×

{
eity D(y) − eit(y−1) D(y− 1)

}]
(17)

where y ∈ Z+ , D(0) = 1 − exp{−m−k} and the term
Q(s;ξ ) is as defined in Eq.(7).

3.9 Probability generating function

The probability generating function (pgf) of WDFWD is
derived by using the Eq.(13) in the pmf as defined in Eq.(9)
and is given by

Gw
Y (t) = E[ty] =

∞

∑
y=0

ty Pw[Yw = y]

=
1

Q(s;ξ )

∞

∑
y=0

ty q(y;ξ )

=
1

Q(s;ξ )

∞

∑
y=0

ty D(y).
[
E(y)−E(y+ 1)

]

=
1

Q(s;ξ )

[
D(0)+

∞

∑
y=1

E(y)×

{
ty D(y) − t(y−1) D(y− 1)

}]

=
1

Q(s;ξ )

[
D(0)+

∞

∑
y=1

t(y−1)E(y)×

{
t D(y) − D(y− 1)

}]
(18)

where y ∈ Z+ , D(0) = 1 − exp{−m−k} and the term
Q(s;ξ ) is as defined in Eq.(7).

Now, differentiating the pgf of WDFWD as in Eq.(18),
for ‘r′ times w.r.t ‘t ′, we get

G
w(r)
Y (t) =

dr

dtr
Gw

Y (t)

=
1

Q(s;ξ )

∞

∑
y=1

(y− 1)(r−2) t(y−r−1) E(y)×

[
yt D(y)− (y− r) D(y− 1)

]
(19)
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where (y−1)(r−2) =(y−1)(y−2)...(y−r)(y−r−1) such

that (y− 1)0 = (y− 1).
Thus the rth factorial moment of WDFWD is given by

E(Y
(r)
w ) = G

w(r)
Y (t)

∣∣
t=1

=
1

Q(s;ξ )

∞

∑
y=1

(y− 1)(r−2) E(y)×

[
y D(y)− (y− r) D(y− 1)

]
(20)

where y ∈ Z+ and the term Q(s;ξ ) is as defined in Eq.(7).
Also (y− 1)(r−2) = (y− 1)(y− 2)...(y− r)(y− r− 1).

3.10 Numerical computation

In this section we have carried out some numerical results
of mean (µ), variance (σ2), skewness (Sk), kurtosis (Kr)
and index of dispersion (ID) of the WDFWD using R
software, as presented in tables 1, 2, 3 and 4.

Table 1: Some descriptive statistics using WDFWD model
as “α” increases

α β m k µ σ2 Sk Kr ID

2.1 4.68 46.4 4.44 28.5 9.9

2.8 3.01 6.74 2.01 7.59 2.2

3.9 1.5 2.1 0.9 2.73 3.55 1.59 5.71 1.3

4.5 2.40 2.47 1.48 5.75 1.0

5.5 2.20 2.11 1.39 6.04 0.9

Table 2: Some descriptive statistics using WDFWD model
as “β ” increases

α β m k µ σ2 Sk Kr ID

3.0 4.88 6.76 2.38 9.92 1.4

4.0 5.70 9.91 1.44 4.96 1.7

2.5 5.0 2.5 1.5 7.46 10.6 1.88 7.17 1.4

7.0 9.14 12.7 0.73 2.66 1.4

9.8 11.7 13.5 1.55 5.01 1.2

Table 3: Some descriptive statistics using WDFWD model
as “m” increases

α β m k µ σ2 Sk Kr ID

1.2 0.58 0.83 2.05 7.48 1.4

1.8 1.67 1.48 1.89 8.01 0.9

3.0 1.8 2.2 1.5 2.54 6.09 4.03 20.7 2.4

3.5 4.49 6.23 2.18 9.00 1.4

4.5 6.54 7.06 1.92 0.94 1.1

Table 4: Some descriptive statistics using WDFWD model
as “k” increases

α β m k µ σ2 Sk Kr ID

1.2 6.54 32.7 3.83 23.3 5.0

1.5 5.67 30.8 3.11 14.7 5.4

1.8 2.2 2.8 1.9 3.76 5.54 1.60 4.93 1.5

2.2 3.66 5.15 2.81 13.4 1.4

2.8 3.15 4.37 3.75 20.6 1.4

From the above Tables 1, 2, 3, and 4, the following
observations can be noted:

–The proposed model is suitable of modelling positively
skewed data sets.

–The proposed model is suitable for modelling with
both the platykurtic (kurtosis< 3) and leptokurtic
(kurtosis> 3) data sets.

–The mean and variance decrease with the increase in
the shape parameters α and k.

–The mean and variance increase with the increase in
the scale parameters β and m.

–The proposed model is suitable for modelling with
overdispersed (ID ≥ 1) data sets.

4 Maximum likelihood estimation

In this section we use the maximum likelihood estimation
method to obtain the estimates of the parameters
(α,β ,m,k) of WDFWD. Let Y = (Y1,Y2, ...,Yn) be a
random sample of size ‘n’ from WDFWD with the pmf as
defined in Eq.(9) and the corresponding observed values
of Y as y1,y2, ...,yn respectively.
Then the log-likelihood function is given by

log L(y) = log
n

∏
i=1

Pw[Yw = yi]

=
n

∑
i=1

log q(yi;ξ )− n log Q(yi;ξ )

=
n

∑
i=1

log w(yi) +
n

∑
i=1

log P[Y = yi]

−n log Q(yi;ξ ) (21)

where P[Y = yi], w(yi), and Q(yi;ξ ) are as defined in
Eq.(2), Eq.(6) and Eq.(7) respectively.
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Now differentiating Eq.(19) wrt α,β ,m and k, we get

∂ log L(y)

∂α
=

n

∑
i=1

E(yi + 1) F(yi + 1)−E(yi) F(yi)

J(yi)
(22)

∂ log L(y)

∂β
=

n

∑
i=1

E(yi + 1) G(yi + 1)−E(yi) G(yi)

J(yi)
(23)

∂ log L(y)

∂m
= m−1

{
n

∑
i=1

A(yi) B(yi)

D(yi)

}
+

n

∑
i=1

E(yi + 1) H(yi + 1)−E(yi) H(yi)

J(yi)
(24)

∂ log L(y)

∂k
=

{
n

∑
i=1

A(yi) B(yi) C(yi)

D(yi)

}
+

n

∑
i=1

E(yi + 1) I(yi + 1)−E(yi) I(yi)

J(yi)
(25)

where

A(yi) = exp

{
−
(yi + 1

m

)k

}
,

B(yi) =
(yi + 1

m

)k
,

C(yi) = loge

(yi + 1

m

)
,

D(yi) = 1− exp

{
−

(
yi + 1

m

)k}
= w(yi),

E(yi) = exp

{
−β α

(
m

yi

)αk}

F(yi) =

{
−αβ

(
m

yi

)k} α−1

,

G(yi) = −αβ α−1

(
m

yi

)αk

,

H(yi) = −αkβ αmαk−1y−αk
,

I(yi) = −α2β α k

(
m

yi

)αk−1

and

J(yi) = P[Y = yi]

By setting the non-linear Eq.(22), (23), (24) and (25)
equal to zero and solving them iteratively, we obtain the

MLEs ξ̂ = (α̂ , β̂ , m̂, k̂) for the parameter vector
ξ = (α,β ,m,k). These equations do not have explicit
solutions and they have to be obtained numerically by
using statistical software like optim package in R
programming.

The Fisher’s information matrix I (ξ ) is very useful
and we require this for interval estimation on the

parameters and is given by

I (ξ ) =−




E
(

∂ 2L
∂α2

)
E
(

∂ 2L
∂α∂β

)
E
(

∂ 2L
∂α∂m

)
E
(

∂ 2L
∂α∂k

)

E
(

∂ 2L
∂β ∂α

)
E
(

∂ 2L
∂β 2

)
E
(

∂ 2L
∂β ∂m

)
E
(

∂ 2L
∂β ∂k

)

E
(

∂ 2L
∂m∂α

)
E
(

∂ 2L
∂m∂β

)
E
(

∂ 2L
∂m2

)
E
(

∂ 2L
∂m∂k

)

E
(

∂ 2L
∂k∂α

)
E
(

∂ 2L
∂k∂β

)
E
(

∂ 2L
∂k∂m

)
E
(

∂ 2L
∂k2

)




Since the exact evaluation of I (ξ ) may be cumbersome
and can be computed using the approximation

I (ξ̂ ) =




− ∂ 2L
∂α2 − ∂ 2L

∂α∂β − ∂ 2L
∂α∂m

− ∂ 2L
∂α∂k

− ∂ 2L
∂β ∂α − ∂ 2L

∂β 2 − ∂ 2L
∂β ∂m

− ∂ 2L
∂β ∂k

− ∂ 2L
∂m∂α − ∂ 2L

∂m∂β − ∂ 2L
∂m2 − ∂ 2L

∂m∂k

− ∂ 2L
∂k∂α − ∂ 2L

∂k∂β − ∂ 2L
∂k∂m

− ∂ 2L
∂k2



∣∣∣(α̂,β̂ ,m̂,k̂)

where α̂, β̂ , m̂ and k̂ are the MLEs of the parameters

α,β ,m and k respectively. Computation of I (ξ̂ ) enables
us to obtain the approximate confidence intervals of the
parameters. For example, the 100(1 − η)% asymptotic
confidence interval for the jth parameter ξ j is given by

(ξ̂ j − z η
2

√
I j, j , ξ̂ j + z η

2

√
I j, j)

where I j, j is the jth diagonal element of I −1(ξ̂ ), for j =
1,2,3,4 and z η

2
is the upper

η
2

point of standard normal

distribution.

5 Simulation

In order to assess the performance of the MLEs, a
simulation study is performed utilizing the statistical
software R. Then 1000 replications of samples of size
n = 50,100,150 and 200 from WDFWD with known
values of the parameters α,β ,m,k have been generated
for the following two cases:

(i)α = 1.8,β = 5.5,m = 2.0,k = 0.4
(ii)α = 1.5,β = 2.5,m = 1.5,k = 0.5.

For each sample size the evaluation of the estimates was
performed based on the empirical biases and the mean
squared errors (MSEs), which are calculated utilizing the
R package and are defined as

Bias(θ ) =
1

1000

1000

∑
s=1

(θ̂s −θ )
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and

MSE(θ ) =
1

1000

1000

∑
s=1

(θ̂s −θ )2

Table 5: The Avg Est, biases and MSEs for case I

Case I: α = 1.8 , β = 5.5 , m = 2.0 , k = 0.4

Avg Est

n α̂ β̂ m̂ k̂

50 2.144 5.0285 2.515 0.219

100 1.999 5.419 2.353 0.294

150 1.942 5.385 2.173 0.309

200 1.810 5.494 2.002 0.429

Bias

50 0.344 -0.472 0.515 -0.180

100 0.199 -0.081 0.353 -0.106

150 0.142 -0.115 0.173 -0.091

200 0.010 -0.006 0.002 0.029

MSE

50 0.523 1.632 0.962 0.145

100 0.183 0.174 0.318 0.152

150 0.236 0.019 0.186 0.153

200 0.088 0.026 0.093 0.004

Table 6: The Avg Est, biases and MSEs for case II

Case II: α = 1.5 , β = 2.5 , m = 1.5 , k = 0.5

Avg Est

n α̂ β̂ m̂ k̂

50 2.041 3.321 1.828 0.266

100 1.651 2.454 1.850 0.261

150 1.644 2.688 1.632 0.512

200 1.529 2.453 1.572 0.505

Bias

50 0.541 0.821 0 .328 -0.234

100 0.151 -0.046 0.350 -0.239

150 0.144 0.188 0.132 0.012

200 0.029 -0.047 0.072 0.004

MSE

50 0.496 1.259 0.792 0.120

100 0.115 0.009 0.235 0.121

150 0.036 0.089 0.019 0.003

200 0.002 0.006 0.008 0.0002

The average estimates, biases and MSEs for the above
two cases are presented in Table 5 and 6 respectively. From
the table values it is observed that as the sample size n

increases the biases decreases to zero and also the MSEs
diminishes to zero with increase in the sample size n. This
shows consistency and unbiasedness of the MLEs.

6 Application

Finally, the proposed model has been fitted to three real
life datasets to test its goodness of fit. And to show its
efficacy it is being compared with Discretized
Fréchet-Weibull distribution (DFWD) [30], discrete Burr
(DBurr) [33], discrete generalised Weibull (DGW) [34],

discrete generalised Inverse Weibull (DGIW) [35] and
discrete Rayleigh [36] distribution. It is shown that the
weighted version of DFWD gives better fit than the parent
model DFWD, which indicates the importance of
weighted distribution.

Although the Pearson Chi-square (χ2) test-statistic
with its corresponding p-value is a measure to check the
goodness of fit of the fitted models. But the value of the
Pearson χ2 statistics increases gradually with the increase
in the sample size N (which may often be hundreds of
thousands or even more). Under such circumstances
making conclusion over Pearson χ2 statistics is not much
encouraged. Makcutek [37] used the discrepancy

coefficient C = χ2

N
as the goodness of fit criterion in his

study, as the values of Pearson χ2 statistics and N were
very large.

In general the greater the value of p-value, the better is
the fit. But in case of discrepancy coefficient, the value of
C more nearer to zero, provides the better fit of the data set
(see Grzybek [38], Nekoukhou et al. [32]).

6.1 Application 1

For the first application, we have considered an
experimental data as reported by Bliss and Fisher [39].
This dataset represents the total number of borers per hill
in each plot for a control group. Four treatments (viz.
1,2,3,4) were arranged in 15 randomized blocks, to carry
out the field experiment of insect pests on the corn borer.
At the end of the season, from each plot eight hills of corn
were selected at random and the count of borers were
recorded from each hill. Here we have used the data
corresponding to the Treatment 2 and this data is
extracted from Beall [40] (table II).

Dataset I:

X 0 1 2 3 4 5

Frequency 24 16 16 18 15 9

X 6 7 8 9 ≥ 10 Total

Frequency 6 5 3 4 4 120

For this dataset its mean = 3.15000 < variance
= 7.50672, therefore its is overdisperssed. Also this is
right skewed (as skewness = 0.81468) and platykurtic (as
kurtosis = 2.93118) in nature. Thus this dataset is suitable
to model with the WDFWD distribution.
In Table 7, the maximum likelihood estimates with their
corresponding standard Errors (SEs) and 95% confidence
intervals of the parameters for all fitted models in
application to dataset I are shown. And in Table 8, the
summary of goodness of fit criteria: p-value of χ2 and C,
for all the fitted models are shown.

From the Table 8, it can be seen that for the dataset I
the p-value is the largest and the value of C is least for
WDFWD distribution. Hence, WDFWD provides a better
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Table 7: MLE’s and standard errors for dataset I

Distribution Estimates SE 95% CI

DR θ̂ = 0.953 θ̂ = 0.004 (0.952, 0.954)

DBurr
α̂ = 2.384 α̂ = 0.397 (2.313, 2.454)

θ̂ = 0.685 θ̂ = 0.046 (0.677, 0.694)

DGIW

α̂ = 1.178 α̂ = 0.098 (1.160, 1.195)

β̂ = 1.258 β̂ = 8.920 (-0.329, 2.846)

θ̂ = 0.234 θ̂ = 12.138 (-1.927, 2.394)

DGW

α̂ = 1.276 α̂ = 0.104 (1.258, 1.294)

β̂ = 1.017 β̂ = 6.656 (-0.168, 2.201)

θ̂ = 0.836 θ̂ = 1.493 (0.571, 1.102)

DFWD

α̂ = 1.101 α̂ = 6.452 (-0.047, 2.250)

β̂ = 1.077 β̂ = 5.676 (0.066, 2.087)

m̂ = 1.614 m̂ = 8.322 (0.133, 3.095)

k̂ = 1.069 k̂ = 6.266 (-0.046, 2.185)

WDFWD

α̂ = 2.110 α̂ = 1.097 (1.915, 2.306)

β̂ = 4.132 β̂ = 3.568 (3.497, 4.767)

m̂ = 3.177 m̂ = 26.217 (-1.490, 7.843)

k̂ = 0.024 k̂ = 0.028 (0.019, 0.029)

Fig. 4: Observed and Estimated frequency graph of
different models for dataset I.

fit for the dataset I as compared to the remaining five
distributions. In Figure 4, the observed and estimated
frequency graphs of the WDFWD, DFWD, DGIW, DGW,
DBurr and DR distribution are presented.

6.2 Application 2

The second dataset is extracted from Altun et al. [41]
representing the numbers of fires in Greece for the time
period of 1 July 1998 to 31 August 1998.

Dataset II:

X 0 1 2 3 4

Frequency 16 13 14 9 11

X 5 6 7 8 9

Frequency 13 8 4 9 6

X 10 11 12 15 16

Frequency 3 4 6 4 1

X ≥ 20 Total

Frequency 2 123

The skewness and kurtosis for the dataset II are
2.9916 and 19.4989 respectively. Clearly the given
dataset is highly right skewed and leptokurtic in nature.
Also, it is over-dispersed (as mean = 5.39980 < variance
= 30.0449 ), hence suitable to model with the WDFWD
distribution.

Table 9: MLE’s and standard errors for dataset II

Distribution Estimates SE 95% CI

DR θ̂ = 0.985 θ̂ = 0.001 (0.984, 0.985)

DGIW

α̂ = 1.035 α̂ = 0.079 (1.021, 1.049)

β̂ = 0.893 β̂ = 7.323 (-0.394, 2.181)

θ̂ = 0.058 θ̂ = 24.17 (-4.191, 4.307)

DBurr
α̂ = 2.503 α̂ = 0.487 (2.418, 2.589)

θ̂ = 0.762 θ̂ = 0.043 (0.754, 0.769)

DFWD

α̂ = 0.811 α̂ = 4.573 (0.007, 1.615)

β̂ = 1.576 β̂ = 2.409 (1.152, 1.999)

m̂ = 1.719 m̂ = 4.735 (0.886, 2.551)

k̂ = 1.276 k̂ = 7.192 (0.0114, 2.541)

DGW

α̂ = 1.131 α̂ = 0.082 (1.116, 1.145)

β̂ = 1.903 β̂ = 18.78 (-1.399,5.205)

θ̂ = 0.767 θ̂ = 2.954 (0.248, 1.287)

WDFWD

α̂ = 2.232 α̂ = 0.970 (2.061, 2.403)

β̂ = 4.248 β̂ = 3.165 (3.692, 4.805)

m̂ = 3.031 m̂ = 24.77 (-1.323, 7.386)

k̂ = 0.018 k̂ = 0.017 (0.015, 0.021)

In Table 9, the maximum likelihood estimates with
their corresponding standard Errors (SEs) and 95%
confidence intervals of the parameters for all fitted models
in application to dataset II are shown. And in Table 10,
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Table 8: Summary of goodness of fit criteria for dataset I

X
OBSERVED EXPECTED FREQUENCY

FREQUENCY DR DBURR DGIW DGW DFWD WDFWD

0 24 5.69554 28.89545 18.99977 16.53446 30.00631 26.31246

1 16 15.46959 33.44313 34.99378 25.45639 22.99415 17.10072

2 16 21.27022 17.97208 22.64835 20.87194 21.64661 15.29123

3 18 22.32989 10.73755 12.70072 14.20254 12.69936 14.25879

4 15 19.56471 7.28814 8.60158 12.59455 8.60063 12.52945

5 9 14.80981 5.42271 6.29648 11.47304 6.29542 10.49733

6 6 9.85367 4.30761 4.89308 8.95499 4.89253 10.03157

7 5 5.82206 3.58931 3.98291 3.01615 3.98247 5.90906

8 3 3.07779 3.09967 2.36235 2.57396 3.36202 3.79468

9 4 1.46727 2.75086 2.92197 2.53019 2.92167 2.68762

≥ 10 4 0.63945 2.49349 1.59901 1.79179 2.59883 1.58709

N 120 120 120 120 120 120 120

χ2 87.99271 28.2759 26.39326 15.95434 14.64121 8.22509

Df 7 5 5 6 5 7

p-value ≤ 0.00001 0.00003 0.00007 0.01400 0.01201 0.31317

C 0.73327 0.23563 0.21994 0.13295 0.12201 0.06854

Fig. 5: Observed and Estimated frequency graph of
different models for dataset II.

the summary of goodness of fit criteria: p-value of χ2 and
C, for all the fitted models are shown. Also,from the Table
10, it can be seen that the proposed model WDFWD
provides a better fit for the dataset II (with largest p-value
= 0.46447 and smallest value of C = 0.07911). In Figure
5, the observed and estimated frequency graphs of the
WDFWD, DFWD, DGIW, DGW and DR distribution are
presented.

6.3 Application 3

The third data set contains the observations on the
establishment of Pyrausta nubilalis Hubn. (for the year
1983). This data is also extracted from Beall [40] (table
VII). This dataset is right skewed (as skewness
= 0.45763) and platykurtic in nature (as kurtosis
= 1.804009). Also, the mean = 3.11300 and variance
= 7.56386, hence it is over-dispersed and thus suitable to
model with the WDFWD distribution.

Dataset III:

X 0 1 2 3 4

Frequency 12 8 7 6 3

X 5 6 7 ≥ 8 Total

Frequency 3 4 6 4 53

In Table 11, the maximum likelihood estimates with
their corresponding standard Errors (SEs) and 95%
confidence intervals of the parameters for all fitted models
in application to dataset III are shown. And in Table 12,
the summary of goodness of fit criteria: p-value of χ2 and
C, for all the fitted models are shown.

From the Table 12, we see that the largest p-value and
the least value of C belongs to the proposed model
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Table 10: Summary of goodness of fit criteria for dataset II

X
OBSERVED EXPECTED FREQUENCY

FREQUENCY DR DGIW DBURR DFWD DGW WDFWD

0 16 2.27411 19.76927 22.31093 10.78624 15.28633 17.09294

1 13 5.88999 28.97079 29.63127 26.98343 15.79917 12.60858

2 14 9.01211 21.16475 17.30548 19.87027 14.49479 12.61829

3 9 11.39299 13.70417 10.90672 13.72199 12.88692 10.57896

4 11 12.89005 9.91402 7.66795 9.93264 11.26907 9.52725

5 13 13.4769 6.54017 5.83406 7.55914 9.75187 8.47276

6 8 13.23373 4.98178 4.69541 6.00089 8.37921 7.41875

7 4 12.32092 3.91181 3.93781 4.93095 7.16439 7.36639

8 9 10.94347 3.14845 3.40656 4.16761 6.10543 7.31614

9 6 9.31455 2.58612 3.01851 3.60525 5.19261 6.26806

10 3 7.62519 2.16055 2.72567 3.17967 4.41259 6.22213

11 4 6.02441 1.83108 2.49873 2.85017 3.75077 4.17823

12 6 4.61095 1.57099 2.31896 2.59005 3.19254 4.13624

15 4 1.80867 1.05177 1.95606 2.07077 2.00681 3.02043

16 1 1.30647 0.93467 1.87291 1.95364 1.73657 2.98482

≥ 20 2 0.87549 0.75961 2.91297 2.79729 1.57093 3.19003

N 123 123 123 123 123 123 123

χ2 112.3571 66.35459 46.41465 32.68862 11.40105 9.73027

Df 11 5 5 6 9 10

p-value ≤ 0.00001 ≤ 0.00001 ≤ 0.00001 0.00001 0.24922 0.46447

C 0.91347 0.53947 0.37735 0.26576 0.09269 0.07911

Table 11: MLE’s and standard errors for dataset III

Distribution Estimates SE 95% CI

DR θ̂ = 0.952 θ̂ = 0.006 (0.951, 0.954)

DBurr
α̂ = 2.169 α̂ = 0.534 (2.027, 2.313)

θ̂ = 0.657 θ̂ = 0.071 (0.638 ,0.676)

DGIW

α̂ = 1.123 α̂ = 0.145 (1.084, 1.162)

β̂ = 1.151 β̂ = 8.085 (-1.015, 3.316)

θ̂ = 0.234 θ̂ = 11.469 (-2.838, 3.306)

DFWD

α̂ = 1.148 α̂ = 35.657 (-8.403, 10.70)

β̂ = 1.001 β̂ = 13.500 (-2.615, 4.616)

m̂ = 1.604 m̂ = 22.159 (-4.331, 7.539)

k̂ = 0.979 k̂ = 30.41 (-7.166, 9.123)

DGW

α̂ = 1.204 α̂ = 0.153 (1.163, 1.245)

β̂ = 0.938 β̂ = 14.226 (-2.873, 4.748)

θ̂ = 0.832 θ̂ = 3.367 (-0.071, 1.733)

WDFWD

α̂ = 2.239 α̂ = 1.989 (1.707, 2.772)

β̂ = 3.808 β̂ = 5.347 (2.376, 5.240)

m̂ = 1.850 m̂ = 25.83 (-5.068, 8.767)

k̂ = 0.023 k̂ = 0.041 (0.012, 0.034)

WDFWD. Hence, it is clear that the WDFWD
distribution provides a better fit as compared to the parent
distribution DFWD and the remaining four competitive
distributions. In Figure 6, the observed and estimated
frequency graphs of the WDFWD, DFWD, DGIW, DGW
and DR distribution are presented.

7 Conclusion

In this article, the weighted version of Discretized
Fréchet-Weibull distribution is studied, named as
Weighted Discretized Fréchet-Weibull distribution
(WDFWD). For the construction of this new model, a
new weight function is considered here which is the cdf
of discrete Weibull distribution. We have derived some
distributional properties of this model and it is seen from
numerical computations that this model possesses both
the platykurtic and leptokurtic nature. The shapes of the
hazard rate function of this distribution can be increasing,
decreasing and bathtub shaped depending upon the choice
of parameters, which are rarely noticed in discrete
probability distributions. Also the proposed model is
suitable for modeling with overdispersed data sets. It is
known that by increasing the parameters the distribution
becomes more flexible and gives more better fit. But in
this study we have considered the weight function such
that the total number of parameters in the proposed
weighted model is same as that of the parent distribution.
And thus it has been shown that with the same number of
parameters, the weighted version gives better fit than the
parent distribution. It is also illustrated with the help of
three count datasets, that the proposed weighted
distribution is efficient to give better results of fitting.
Thus it can be asserted that WDFWD is capable to exhibit
its supremacy over the parent distribution DFWD and the
other four competitive distributions viz. discrete
generalised Weibull (DGW), discrete generalised Inverse
Weibull (DGIW), discrete Burr (DBurr) and discrete
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Table 12: Summary of goodness of fit criteria for dataset III

X
OBSERVED EXPECTED FREQUENCY

FREQUENCY DR DBurr DGIW DFWD DGW WDFWD

0 12 2.64705 14.16725 10.46178 10.45558 9.92442 10.77052

1 8 7.01406 14.49738 15.3920 15.3913 10.28837 9.14844

2 7 9.58223 7.92885 8.81706 8.81849 8.75871 6.09689

3 6 10.01493 4.87819 5.52389 5.52526 7.03619 6.01777

4 3 8.74039 3.40499 3.85417 3.85529 5.47722 5.93716

5 3 6.59604 2.60174 2.91693 2.91787 4.18306 4.86041

6 4 4.38661 2.11926 2.34482 2.34561 3.16014 3.78852

7 6 2.60807 1.80758 1.97223 1.97292 2.37784 3.72145

≥ 8 4 1.41062 1.59476 1.71703 1.71764 1.79405 2.65884

N 53 53 53 53 53 53 53

χ2 50.42054 18.73986 16.81294 16.80514 11.35708 4.66689

Df 5 2 3 3 4 4

p-value ≤ 0.0001 0.00008 0.00077 0.00078 0.02283 0.32321

C 0.95133 0.35358 0.31723 0.31708 0.21428 0.08805

Fig. 6: Observed and Estimated frequency graph of
different models for dataset III.

Rayleigh (DR) distribution in reference to the above
discussed application cases.

Further as a continuation of this study one can
develop the bivariate and multivariate extensions of the

proposed distribution. Along with that, some work on
statistical inference can also be applied. As we know
variation in the choice of weight functions leads to
different forms of weighted distributions, which will later
give different characteristic for the newly developed one.
Thus, for this distribution a study with various weight
alternatives is also appreciated. Moreover, the weighted
distributions have a vast field of practical situations where
it is applicable. So this model can also be further applied
to such real-life datasets which can preferably be claimed
to give better fit than the existing distributions.
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