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Abstract: In this study, we propose a novel combination method between the ARA integral transform and the homotopy perturbation

approach to solve systems of nonlinear partial differential equations. The difficulty arising in solving nonlinear partial differential

equations could simply be overcome by using He’s polynomials during the application of the new method. The proposed technique can

provide the solutions of the target problems without pre-assumptions or restrictive constrains in addition to avoiding the round-off errors.

The efficiency of the new method is illustrated by applying it to solve different examples of systems of nonlinear partial differential

equations. We discuss three interesting applications and solve them by the new approach, called ARA-homotopy perturbation method

and get exact solutions, also the results are illustrated in figures.

Keywords: ARA transform; Homotopy analysis technique; Nonlinear partial differential equations; System of partial differential
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1 Introduction

Nonlinear problems are equations in which the changes in
the outputs are not proportional to the changes in the
inputs. Nonlinear problems have reached much attention
and interest by mathematicians, physicists, engineers,
biologists and many other scientists, because most
systems are originally nonlinear in their nature. In the last
years, there have been increasing interests of researchers
and scientists in dealing with nonlinear issues, such as
solid-state physics, plasma physics, fluid mechanics and
other dynamical systems. In many different areas of
science and engineering, the purpose of analyzing
nonlinear systems is to get precise or numerical solution
of nonlinear partial differential equations (PDEs). Most of
the solutions of the new nonlinear PDEs cannot be
obtained in a closed form. Therefore, numerical
techniques have been used extensively to deal with these
equations. Several approximate methods have been
proposed such as Adomian’s decomposition method [1,
2], differential transformation method [3,4,5,6,7,8] and
homotopy perturbation method [9,10,11,12,13,14].

The homotopy analysis technique was proposed in
1992 by Liao [15]. It is a semi-analytical process that is
used to solve nonlinear differential equations. The
homotopy analysis technique utilizes the topological
concept of the homotopy to generate a convergent series
solution for nonlinear systems. This is enabled by using a
homotopy-Maclaurin series to handle the nonlinearities in
the system. In the recent past, the homotopy analysis
method has been used to solve a large wide of nonlinear
differential equations in physics, engineering and finance.
For example, nonlinear heat transfer [16], the solution of
limit cycle of nonlinear dynamical equations [17], the
Poisson–Boltzmann equation for semiconductor devices
[18] and the option pricing under stochastic volatility
[19].

The homotopy perturbation method was developed in
1998 by He [20,21,22,23]. The method was suggested
for solving both linear and nonlinear differential
equations, with initial and boundary value problems. It is
based on merging two techniques, the concept of
homotopy and the perturbation technique. The homotopy
perturbation method was formulated by using the
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capability of the homotopy to overcome the difficulties
arising in calculations in addition to the simplicity and
easy execution of the perturbation techniques.

Inspiration and motivation from the ongoing research
are developing a new method for solving system of
nonlinear PDEs.

The new technique is based on combining the newly
proposed ARA transform [24] with the homotopy
perturbation method. The proposed algorithm can express
the solution in a form of a fast convergent series which
may lead to solve PDE in a closed form to the exact
solution. The advantages of the new method are obvious
in the ability of merging two powerful methods for
obtaining exact solutions of nonlinear PDEs with simple
steps and less computations in comparisons to other
numerical methods. The simplicity of applying ARA
transform and its merits in handling the singularities and
easy computations makes the new method more powerful
and applicable.

The rest of the paper is organized as follows. The
ARA transform and some main properties are presented
in Section 2. A brief description of the homotopy
perturbation method is given in Section 3. In Section 4,
we apply the proposed technique on several nonlinear
PDEs.

2 ARA transform

In 2020, Saadeh and others presented a new integral
transform called ARA transform [24], this transform has
many properties that makes it a very powerful transform,
that could be applied to solve various kinds of problems,
by introducing double transform including it, or by
merging it to other numerical methods such as residual
power series method [25,26,27,28,29,30]. In this section,
we present the definition and the basic properties of ARA
transform that will be implemented in this study.

Definition 1.The ARA integral transform of order n of a

continuous function f (t) on the interval (0,∞) is defined

as

Gn [ f (t)] (s) = F (n,s) = s

∫ ∞

0
tn−1e−st f (t)dt, s > 0.

In this research, we consider G1 [ f (t)], ARA transform of

order one defined as

G1 [ f (t)] (s) = F (s) = s

∫ ∞

0
e− st f (t)dt, s > 0.

For simplicity, let us denote G1 [ f (t)] by G [ f (t)]. The

inverse ARA transform is given by

G
−1 [F (s)] =

1

2π i

∫ c+i∞

c−i∞
estF (s)ds = f (t) .

Theorem 1. (Existence conditions). Let f (t) be a

piecewise continuous in a finite interval 0 ≤ t ≤ α and

satisfies
∣

∣tn−1 f (t)
∣

∣≤ Meαt
,

where M is positive constant, then the ARA transform of

order n of the function f (t) exists for all s > α .

Proof of Theorem 1. The definition of ARA transform,
yields

|F (n,s)|=

∣

∣

∣

∣

s

∫ ∞

0
tn−1e− st f (t)dt

∣

∣

∣

∣

.

Using the property of improper integral, we get

|F(n,s)|

=

∣

∣

∣

∣

s

∫ ∞

0
tn−1e− st f (t)dt

∣

∣

∣

∣

≤ s

∣

∣

∣

∣

∫ ∞

0
tn−1e− st f (t)dt

∣

∣

∣

∣

≤ s

∫ ∞

0
e− st

∣

∣tn−1 f (t)
∣

∣dt ≤ s

∫ ∞

0
e− stMeαtdt

= sM

∫ ∞

0
e−(s−α)tdt =

sM

s−α
.

The integral is convergent for all s > α . Thus, Gn+1 [ f (t)]
is also exists.

Now, some main properties and characteristics of
ARA transform of order one are stated. Assume that
F(s) = G [ f (t)] and G(s) = G [g(t)] and a,b ∈ R. Then,
we have

• G [a f (t)+ bg(t)] = aG [ f (t)]+ bG [g(t)].
• G −1 [aF (s)+ bG(s)] = aG−1 [F (s)]+ bG−1 [G(s)].

• G [tα ] = Γ(α+1)
sα , α > 0.

• G [eat ] = s
s−a

, a ∈R.

• G [sinat] = as
s2+a2 , a ∈R.

• G [cosat] = s2

s2+a2 , a ∈ R.

• G [sinhat] = as
s2−a2 , a ∈ R.

• G [coshat] = s2

p2−a2 , a ∈ R.

• G [ f ′(t)] = s F(s)− s f (0).

• G

[

f (n) (t)
]

= snF(s)−∑n−1
k=0 pn−k f (k) (0).

For more details about the previous results, the reader can
see [24].

Remark.Let u(x, t) be a piece wise continuous function of
the variables x and t, in which ARA transform exists. Then

i.The ARA transform with respect to t for the functions
of several variables, can be expressed as follows:
• Gt [u(x, t)] =U (x,s) = s

∫ ∞
0 e−tsu(x, t)dt.

• Gt [u(x,y, t)] =U (x,y,s) = s
∫ ∞

0 e−tsu(x,y, t)dt.
ii.The ARA transform Gt , of the partial derivatives can

be expressed as:
• Gt [ut (x, t)] = sU (x,s)− su(x,0).
• Gt [utt(x, t)] = s2U(x,s)− s2u(x,0)− sut(x,0).

• Gt [ux (x, t)] =
∂
∂x

U(x,s).

• Gt [uxx (x, t)] =
∂ 2

∂x2 U(x,s).
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• Gt [ut (x,y, t)] = sU (x,y,s)− su(x,y,0).

• Gt [utt(x,y, t)] = s2U (x,y,s)− s2u(x,y,0)

− sut(x,y,0).

3 Homotopy Perturbation Method

Let f and g : X → Y be two continuous mappings of the
topological space X into the topological space Y , we call
f to be homotopic to g, if we can define a continuous
mapping φ : X × [0,1] → Y such that φ(x,0) = f (x) and
φ(x,1) = g(x), for each x ∈ X . Hence, the mapping is
called a homotopy between f and g.

To illustrate the main idea of the homotopy
perturbation method, let us consider the following
differential type equations

L(u) = 0, (1)

where L is a differential operator and u is the unknown
function. Now, we define a convex homotopy H(u, p) by

H (u, p) = (1− p)φ (u)+ pL(u) , (2)

where φ(u) is a functional operator with initial guess v0,
and p is a parameter between 0 and 1.

Hence, we have

H (u, p) = 0. (3)

Thus, the HPM uses the embedding parameter p as a
small parameter and write the solution as a power series
as follows

u = u0 + pu1 + p2u2 + p3u3 + . . . . (4)

If p → 1, then we can express the solution as

u =
∞

∑
i=0

ui. (5)

We suppose Eq.(5) has a unique solution and by
comparisons of the similar powers of p, we get the
desired solutions of various orders [31,32,33,34].

The method assumes that the nonlinear term N(u) can
be expressed as

N (u) =
∞

∑
i=0

piH i = H0 + p H1 + p2H2 + p3H3 + . . . .

Where Hn are He’s polynomials [31,32], which can be
calculated by using the formula

Hn(u0 + u1 + u2 + . . .+ un)

=
1

n!

∂ n

∂xn

(

N

(

∞

∑
i=0

piui

))

p=0

,

n = 0,1,2, · · · .

4 Algorithm of ARA-Homotopy Perturbation

Approach

To illustrate the ARA- Homotopy Perturbation Method, let
us consider the nonlinear PDE of the form

L (u(x, t))+N (u(x, t)) = g(x, t) , (6)

with suitable initial conditions, where L is a differential
linear operator and N is a nonlinear operator. The first
step is to apply ARA transform on Eq. (6), to get

Gt [L (u(x, t))]+Gt [N (u(x, t))] = Gt [g(x, t)] ,

which implies

Gt [L (u(x, t))]+Gt [N (u(x, t))− g(x, t)] = 0, (7)

with simple calculations and using the given conditions we
can obtain an equation of the form

U (x,s) = h(x,s)+ k(s)Gt [N (u(x, t))− g(x, t)] , (8)

where h(x,s) and k(s) are functions to be determined
depending on the linear operator L .
Now, operating the inverse ARA-transform Gt , Eq. (8)
becomes

u(x, t) = G
−1
t [h(x,s)]

+G
−1
t [k (s)Gt [N (u(x, t))− g(x, t)]] .

(9)

Then, apply the homotopy perturbation method and define
the He’s polynomials as presented in the previous section
to get our result.

5 Numerical Applications

PDEs play an important role in modeling physical
phenomena and describing some engineering’s issues. So
that many mathematicians have investigated the solutions
of such problems. In this section, we introduce three
interesting examples of systems of nonlinear PDEs and
solve them by the proposed method.

Application 1 Let us consider the following system of

nonlinear PDEs
{

ut(x, t)+ v(x, t)ux(x, t)+ u(x, t) = 1,
vt(x, t)+ u(x, t)vx(x, t)− v(x, t) =−1.

(10)

With the initial conditions (ICs)

u(x,0) = ex
, v(x,0) = e−x

.

Applying ARA transform on both sides of Eq. (10) subject
to the ICs, we have

{

Gt [ut(x, t)] =−Gt [v(x, t)ux (x, t)+ u(x, t)− 1] ,
Gt [vt(x, t)] =−Gt [u(x, t)vx (x, t)− v(x, t)+ 1] .
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Using the differential property of the ARA transform, we
have:
{

sU (x,s)− su(x,0) =−Gt [v(x, t)ux (x, t)+ u(x, t)− 1] ,
sV (x,s)− sv(x,0) =−Gt [u(x, t)vx (x, t)− v(x, t)+ 1] .

Rearranging the terms, we have
{

U (x,s) = ex − 1
s
Gt [v(x, t)ux (x, t)+ u(x, t)− 1] ,

V (x,s) = ex − 1
s
Gt [u(x, t)vx (x, t)− v(x, t)+ 1] .

(11)

Applying the inverse ARA transform to Eq. (11), we have
{

u(x, t) = ex −G
−1
t

[

1
s
Gt [v(x, t)ux (x, t)+ u(x, t)− 1]

]

,

v(x, t) = e−x −G
−1
t

[

1
s
Gt [u(x, t)vx (x, t)− v(x, t)+ 1]

]

.

(12)
Now, we apply the homotopy perturbation technique, to
get
{

∑∞
n=0 pnun(x, t) = ex − p

(

G
−1

t

[

1
s
G [∑∞

n=0 pnHn(u)]
])

,

∑∞
n=0 pnvn (x, t) = e−x − p

(

G
−1

t

[

1
s
G [∑∞

n=0 pnHn (v)]
])

.

(13)
Where Hn(u) and H(v) are He’s polynomials that express
the nonlinear terms as follows. Thus,

Hn (u) : p [v(x, t)ux (x, t)+ u(x, t)− 1] = 0,
Hn (v) : p [u(x, t)vx (x, t)− v(x, t)+ 1] = 0,

where
u = u0 + pu1 + p2u2 + p3u3 + · · · ,
v = v0 + pv1 + p2v2 + p3v3 + · · · .

Now, we can express some components of He’s
polynomials, as follows

H0 (u) = v0u0x + u0 − 1,

H0 (v) = u0v0x−v0 + 1,

H1 (u) = v0u1x + v1u0x + u1,

H1 (v) = u0v1x + u1v0x − v1.

...

By making comparisons between the coefficients of p with
same power to obtain

p0 : u0 (x, t) = ex
, v0 (x, t) = e−x

,

thus

H0 (u) = v0u0x + u0 − 1 = e−x (ex)+ ex − 1 = ex
,

H0 (v) = u0v0x−v0 + 1 = ex
(

−e−x
)

− e−x + 1 = e−x
.

p1 : u1 (x, t) =−G
−1

[

1

s
G [H0 (u)]

]

=−G
−1

[

1

s
G [ex]

]

=−tex
,

v1 (x, t) =−G
−1

[

1

s
G [H0 (v)]

]

=−G
−1

[

1

s
G
[

−e−x
]

]

= te−x
,

thus,

H1 (u) = v0u1x + u0xv1 + u1 = e−x (−tex)+ ex
(

te−x
)

− tex =−tex
,

H1 (v) = u0v1x + v0xu1−v1 = ex
(

−te−x
)

− ex
(

−te−x
)

− te−x =−tex
.

p2 : u2 (x, t) =−G
−1

[

1

s
G [H1 (u)]

]

=−G
−1

[

1

s
G [−tex]

]

=
t2

2
ex
,

v2 (x, t) =− G
−1

[

1

s
G [H1 (v)]

]

=−G
−1

[

1

s
G [−tex]

]

=
t2

2
e−x

.

Similarly, we can find

p3 : u3 (x, t) =−G
−1

[

1

s
G [H2 (u)]

]

=−
t3

3!
ex
,

v3 (x, t) =−G
−1

[

1

s
G [H2 (v)]

]

=
t3

3!
e−x

.

...

Therefore, the solutions u(x, t), v(x, t) of Application 1,
are given by

u(x, t) = ex

(

1− t+
t2

2
ex −

t3

3!
+ . . .

)

= ex−t
,

v(x, t) = e−x

(

1+ t +
t2

2
ex +

t3

3!
+

)

= et−x
.

The graphics and the contour solutions u(x, t) and v(x, t)
at t and x ∈ [1,2] of Application 1 are presented in Figure
1 and Figure 2 below. u(x,t) v(x,t)

Fig. 1: The 3D graph of the solutions u(x, t) and v(x, t) of

Application 1.
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Fig. 2: The contour graph of the solutions u(x, t)
and v(x, t) of Application 1.

Application 2 Consider the following Coupled Burger’s

system











ut(x, t)− uxx(x, t)− 2u(x, t)ux(x, t)
+(u(x, t)v(x, t))x = 0,

vt(x, t)− vxx(x, t)− 2v(x, t)vx(x, t)
+(u(x, t)v(x, t))x = 0.

(14)

With the ICs

u(x,0) = sinx, v(x,0) = sinx.

Applying ARA transform on both sides of Eq. (14) subject
to the ICs, we have























































U (x, t) = sinx+G
−1

[

1

s
G
[

uxx (x, t)

+ 2u(x, t)ux (x, t)− (u(x, t)v(x, t))x

]

]

,

V (x, t) = sinx+G
−1

[

1

s
G
[

vxx (x, t)

+ 2v(x, t)vx (x, t)− (u(x, t)v(x, t))x

]

]

.

(15)

Now, we apply the homotopy perturbation method, to
obtain































































∞

∑
n=0

pnun(x, t) = sin x

+ p

(

G
−1

[

1

s
G

[

∞

∑
n=0

pnHn(u)

]])

,

∞

∑
n=0

pnvn (x, t) = sin x

+ p

(

G
−1

[

1

s
G

[

∞

∑
n=0

pnHn(v)

]])

.

(16)
Where Hn(u) and Hn(v) are He’s polynomials that express
the nonlinear terms as follows Thus,

Hn (u) : p [uxx + 2u ux − uvx− uxv] = 0,
Hn (v) : p [vxx + 2v vx − uvx − uxv] = 0,

where
u = u0 + pu1 + p2u2 + p3u3 + · · · ,
v = v0 + pv1 + p2v2 + p3v3 + · · · .

Now, we can express some components of He’s
polynomials, as follows

H0 (u) = u0xx + 2u0u0x − u0v0x − u0xv0,

H0 (v) = v0xx + 2v0v0x − u0v0x − u0xv0,

H1 (u) = u1xx + 2u0u1x + 2u1u0x − u0v1x − u1v0x

− u0xv1 − u1xv0,

H1 (v) = v1xx + 2v0v1x + 2v1v0x − u0v1x − u1v0x

− u0xv1 − u1xv0.

...

By making comparisons between the coefficients of p with
same power to obtain

p0 : u0 (x, t) = sinx, v0 (x, t) = sinx,

thus

H0 (u) = u0xx + 2u0u0x − u0v0x − u0xv0 =−sinx,

H0 (v) = v0xx + 2v0v0x − u0v0x − u0xv0 =−sinx.

p1 : u1 (x, t) =−G
−1

[

1

s
G [H0 (u)]

]

=−t sinx,

v1 (x, t) =−G
−1

[

1

s
G [H0 (v)]

]

=−t sinx,

thus,

H1 (u) = u1xx + 2u0u1x + 2u1u0x − u0v1x − u1v0x − u0xv1

− u1xv0 = t sinx,

H1 (v) = v1xx + 2v0v1x + 2v1v0x − u0v1x − u1v0x − u0xv1

− u1xv0 = t sinx.
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p2 : u2 (x, t) =−G
−1

[

1

s
G [H1 (u)]

]

=
t2

2
sinx,

v2 (x, t) =−G
−1

[

1

s
G [H1 (v)]

]

=
t2

2
sinx.

Similarly, we can find

p3 : u3 (x, t) =−G
−1

[

1

s
G [H2 (u)]

]

=−
t3

3!
sinx,

v3 (x, t) =− G
−1

[

1

s
G [H2 (v)]

]

=−
t3

3!
sinx.

...

Therefore, the solutions u(x, t), v(x, t) of Application 2,
are given by

u(x, t) = u0 (x, t)+ u1 (x, t)+ u2 (x, t)+ . . .= e−t sinx,

v(x, t) = v0 (x, t)+ v1 (x, t)+ v2 (x, t)+ . . .= e−t sinx.

The graphics and the contour solutions u(x, t) and v(x, t)
at t and x ∈ [1,2] of Application 2 are presented in Figure
3 and Figure 4 below.

u(x,t)

Fig. 3: The 3D graph of the solution u(x, t) Application 2.

1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0
u (x , t )

0.05

0.15

0.25

0.35

Fig. 4: The contour graph of the solution u(x, t) of Application

2.

Application 3 Consider the following system of nonlinear

PDEs



























ut (x,y, t)+ vx (x,y, t)wy (x,y, t)
−vy (x,y, t)wx (x,y, t) =−u(x,y, t) ,

vt (x,y, t)+wx (x,y, t)uy (x,y, t)
+wy (x,y, t)ux (x,y, t) = v(x,y, t) ,

wt (x,y, t)+ ux (x,y, t)vy (x,y, t)
+uy(x,y, t)vx (x,y, t) = w(x,y, t) .

(17)

With the ICs

u(x,y,0) = ex+y
, v(x,y,0) = ex−y

, w(x,y,0) = e−x+y
.

Applying ARA transform on both sides of Eq. (17) subject
to the ICs, we have



























































G [u(x,y, t)] = ex+y +
1

s
G
[

vy (x,y, t)wx (x,y, t)

− vx(x,y, t)wy(x,y, t)− u(x,y, t)
]

,

G [v(x,y, t)] = ex−y +
1

s
G
[

v(x,y, t)

−wx (x,y, t)uy (x,y, t)−wy(x,y, t)ux(x,y, t)
]

,

G [w(x,y, t)] = e−x+y +
1

s
G
[

w(x,y, t)

− ux (x,y, t)vy (x,y, t)− uy(x,y, t)vx(x,y, t)
]

.

(18)
Applying inverse ARA transform implies that



















































































































u(x,y, t) = ex+y +G
−1

[

1

s
G
[

vy (x,y, t)wx (x,y, t)

− vx(x,y, t)wy(x,y, t)− u(x,y, t)
]

]

,

v(x,y, t) = ex−y +G
−1

[

1

s
G
[

v(x,y, t)

−wx (x,y, t)uy (x,y, t)−wy(x,y, t)ux(x,y, t)
]

]

,

w(x,y, t) = e−x+y +G
−1

[

1

s
G
[

w(x,y, t)

− ux (x,y, t)vy (x,y, t)− uy(x,y, t)vx(x,y, t)
]

]

.

(19)
Now, we apply the homotopy perturbation method, to
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obtain











































































































∞

∑
n=0

pnun(x,y, t) = ex+y

+ p

(

G
−1

[

1

s
G

[

∞

∑
n=0

pnHn(u)

]])

,

∞

∑
n=0

pnvn(x,y, t) = ex−y

p

(

G
−1

[

1

s
G

[

∞

∑
n=0

pnHn(v)

]])

,

∞

∑
n=0

pnwn(x,y, t) = e−x+y

p

(

G
−1

[

1

s
G

[

∞

∑
n=0

pnHn(w)

]])

.

(20)
Where Hn(u), Hn(v) and Hn(w) present the He’s
polynomials of the nonlinear terms as follows Thus,

Hn (u) : p [vywx − vxwy − u] = 0,
Hn (v) : p [v−wxuy −wyux] = 0,
Hn (w) : p [w− uxvy − uyvx] = 0,

where

u = u0 + pu1 + p2u2 + p3u3 + · · · ,
v = v0 + pv1 + p2v2 + p3v3 + · · · ,

w = w0 + pw1 + p2w2 + p3w3 + · · · .

By making comparisons between the coefficients of p with
same power to obtain

p0 : u0 (x,y, t) = ex+y
,

v0 (x,y, t) = ex−y
,

w0 (x,y, t) = e−x+y
,

thus

H0 (u) =−ex+y
, H0 (v) = ex−y

, H0 (w) = e−x+y
.

p1 : u1 (x,u, t) = G
−1

[

1

s
G
[

−ex+y
]

]

=−tex+y
,

v1 (x,y, t) = G
−1

[

1

s
G
[

ex−y
]

]

= tex−y
,

w1 (x,y, t) = G
−1

[

1

s
G
[

e−x+y
]

]

= te−x+y
,

thus,

H1 (u) = tex+y
,

H1 (v) = tex−y
,

H1 (w) = te−x+y
.

p2 : u2 (x,y, t) = G
−1

[

1

s
G
[

tex+y
]

]

=
t2

2
ex+y

,

v2 (x,y, t) = G
−1

[

1

s
G
[

tex−y
]

]

=
t2

2
ex−y

,

w2 (x,y, t) = G
−1

[

1

s
G
[

te−x+y
]

]

=
t2

2
e−x+y

.

...

Therefore, the solutions u(x,y, t), v(x,y, t) and w(x,y, t) of
Application 3, are given by

u(x,y, t) = u0 (x,y, t)+ u1 (x,y, t)+ u2 (x,y, t)+ . . .

= ex+y−t
,

v(x,y, t) = v0 (x,y, t)+ v1 (x,y, t)+ v2 (x,y, t)+ . . .

= ex−y+t
,

w(x,y, t) = w0 (x,y, t)+w1 (x,y, t)+W2 (x,y, t)+ . . .

= e−x+y+t
,

The graphics and the contour solutions u(x,y, t), v(x,y, t)
and w(x,y, t) at t = 3 and x,y ∈ [1,2] of Application 3 are
presented in Figure 5 and Figure 6 below.

u(x,y,t) v(x,y,t) w(x,y,t)

Fig. 5: The 3D graph of the solutions u(x,y, t), v(x,y, t) and

w(x,y, t) of Application 3.
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Fig. 6: The contour graph of the solutions

the solutions u(x,y, t), v(x,y, t) and w(x,y, t) of

Application 3

6 Conclusion

In this study, we introduced a new approach to solve
nonlinear systems of PDEs, by combining ARA integral

transform with the Adomian’s decomposition method. We
presented some fundamental properties of ARA
transform, and the basic idea of the homotopy
perturbation method. The proposed method is applied to
solve some examples of systems of PDEs and we
obtained the exact solutions and the graph of the solutions
are presented. Our goal in this study is achieved, and we
proved the efficiency of the method. In the future we
intend to solve new fractional differential equations by the
new method. In the future, we intend make comparisons
with other numerical methods [35,36,37,38] and solve
some new fractional models, such as in [39,40,41].
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