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Abstract: This paper introduces a new type of space called partial cone-interval metric space, and explores some of its topological

properties. Using a novel fixed-point technique, we investigate the existence and uniqueness of near-coupled coincidence points in this

setting. We provide numerical examples to demonstrate the effectiveness of our approach.
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1 Introduction

From the last two decades, fixed-point theory has been a
flourishing area of research work for many
mathematicians and researchers since it has many
important numerical applications like establishing
Picard’s Existence Theorem regarding existence and
uniqueness of solutions of first order differential
equations, integral equations, system of linear equations,
initial and boundary value problems involving ordinary,
partial and fractional differential equations, functional
equations, and variational inequalities.

Over the years, there have been many efforts to
generalize the theorems in fixed-point theory for different
classes of topological spaces and Banach spaces. We
mention the recent results of Sahar [1] that gave more
generalizations of many previous results in the field of
fixed-point theory for single-valued mappings.

There is a multitude of metric fixed-point theorems
for mappings satisfying certain contraction type
conditions. There are numerous variations using cone
metric spaces and b-cone metric spaces instead, see the
results involved in [2,3,4]. On the other side a novel class
of generalized α-admissible contraction types of
mappings introduced by Nashat Faried et al. [5], they
worked in the framework of θ−complete partial
satisfactory cone metric spaces and proved the existence
and uniqueness of coincidence points for such mappings
with some applications.

Guo et al. [6] and Bhaskar et al. [7] were the first
researchers who studied the existence of coupled
fixed-points for a mixed monotone mapping in metric
space satisfying some contractive type conditions. They
applied their results to prove the existence and uniqueness
of solutions for a periodic boundary value problem. Since
then, mathematicians and researchers have been
considerably showing high interest in coupled fixed-point
theory regarding their applications to a wide variety of
problems, for instance, see [8], and references therein.

In 1966, interval analysis was introduced as a general
mathematical tool to deal with interval uncertainty that
appears in many mathematical areas and computer
models of real-world phenomena. The first monographs
dealing with interval analysis were due to Moore [9]. He
published his first book named Interval Analysis, which
still an important reference to this day. The interval
analysis provide an essential tool to tackle uncertainty
when the problems in engineering, economics and social
sciences are formulated as interval-valued problems. The
techniques of functional analysis and non-linear analysis
are used to study those interval-valued problems. For
more details of interval spaces, we refer the reader to [9,
10].

In 2018, Wu [11] proposed metric interval spaces and
normed interval spaces exploiting the null set to study
many types of near fixed-point theorems.

In 2020, Ullah et al. [12] studied the near-coincidence
point theorems in complete metric interval space and
hyperspace via a simulation function.
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In 2021, Sarwar et al. [13] introduced the concept of
cone interval b-metric space over Banach algebras and
proved some near-fixed-point and near-common
fixed-point for self-mappings in such spaces.

In 2022, Joshi and Tomar [14] equipped the b-metric
space to the set of closed and bounded real intervals and
studied the topological properties of the resulting distance
structure, b-interval metric space. Besides, the authors
proved that a conventional Banach Contraction Principle
may not be demonstrated in a b-interval metric space.
Further, they introduced some novel notions such as
interval circle, fixed interval circle and its equivalence
class. They also established the existence of a near-fixed
interval circle and its equivalence interval C-class.

Following up these developments, in this article, using
the concept of coupled coincidence point, introduced by
Lakshmikantham et al. [15], we first familiarize some of
key concepts of the so-called near-coupled fixed-point
and near-coupled coincidence point by defining their
equivalence interval classes that are based on a novel null
set. Further, we build up a new topological structure on
distances between closed bounded intervals to elements
of the cone in a normed space, namely; partial
cone-interval metric spaces. We also very carefully cover
the topological aspects under these settings. Among other
things, our topological space is fully consistent with two
types of convergence, we provide detailed analysis,
completely explicit explanations and provide examples of
these concepts. All of the concepts introduced in the
paper have found interesting examples. Our new results
unified some of the early findings in fixed-point theory.

2 Prelude and Relevant Pre-requisite

Throughout this study, we have denoted the
one-dimensional Euclidean space by R, the set of
non-negative reals by R

+
0 , the set of cardinal numbers by

N.
We review some notations, working hypotheses and

necessary background materials for a better
understanding of an interval circumference. The key
references for this section are [9,10,16].

Let I (R) := {[a,b] : a,b ∈ R and a ≤ b} be the set
of all real intervals. Identifying a ∈ R with the degenerate
interval [a,a] ∈ I (R) , we consider R as a subset of
I (R) .

Interval arithmetic is a natural extension of real
arithmetic. The basic interval operations in I (R) are
denoted by ⊕,⊖,⊗, and are formulated in terms of the
interval’s endpoints. The corresponding interval addition
in I (R) is formulated as:

[a,b]⊕ [c,d] := [a+ c,b+ d]∈ I (R) .

The scalar multiplication in I (R) is calculated as:

k [a,b] :=

{

[ka,kb] , if k ≥ 0,

[kb,ka] , if k < 0.

The interval negation in I (R) is defined by

− [a,b] = [−b,−a] ,

where − [a,b] means (−1) [a,b] .
In accordance with the above definitions, the

subtraction in I (R) for any two real interval [a,b] and
[c,d] is defined as follows:
[a,b]⊖ [c,d] := [a,b]⊕ (− [c,d]) = [a,b]⊕ [−d,−c] = [a− d,b− c]∈ I (R) .

It is evident that I (R) is not a real vector space in
the conventional sense (under the aforementioned addition
and scalar multiplication). The main reason for this is due
to the lack of inverse elements for non-degenerated closed
intervals (there will be no additive inverse element for each
interval).

It is clear that [0,0] ∈ I (R) is a zero element.
However, for any [a,b] ∈ I (R) , the substraction

[a,b]⊖ [a,b] = [a− b,b− a] = [a− b,−(a− b)] 6= [0,0]

for any non-degenerate interval [a,b] . In other words, the
inverse element does not exist for each interval in general.

Instead of considering the zero element [0,0] , we
define the null set Ω of I (R) as follows:

Ω = {[a,b]⊖ [a,b] : [a,b] ∈ I (R)} .

It is noteworthy that

Ω = {[−k,k] : k ≥ 0} .

It may also be determined that [−1,1] generates Ω via
non-negative scalar multiplication, as demonstrated
below:

Ω = {k [−1,1] : k ≥ 0} .
The interval [−1,1] is called a generator of the null set

Ω .

We write [a,b]
Ω
= [c,d] if, and only if, there exist

w1,w2 ∈ Ω such that [a,b]⊕w1 = [c,d]⊕w2.

Remark.[10] The binary relation
Ω
= is an equivalence

relation.

According to the binary relation
Ω
=, for any [a,b]∈I (R) ,

we define the class

〈[a,b]〉 :=
{

[c,d] ∈ I (R) : [a,b]
Ω
= [c,d]

}

. (1)

The family of all classes 〈[a,b]〉 for [a,b] ∈ I (R) is
denoted by 〈I (R)〉 .

Remark 2 says that the classes defined in (1) form the
equivalence interval classes. In this case, the family
〈I (R)〉 is called the quotient set of I (R) . We also have
that [c,d] ∈ 〈[a,b]〉 implies 〈[a,b]〉 = 〈[c,d]〉 . In other
words, the family of all equivalence classes form a
partition of the whole set I (R) . This is an important
fact, which we discuss in the following lines:

〈I (R)〉 := {〈[a,b]〉 : a,b ∈ R and a ≤ b}
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= I (R)/Ω

= {[a,b]+Ω : a,b ∈ R and a ≤ b} .

It is mildly interesting that

[a,b]+Ω := {[a,b]⊕ [−k,k] : k ≥ 0}

= {[a− k,b+ k] : k ≥ 0}
= 〈[a,b]〉 .

It seems evident that 〈[a,b]〉 can be rewritten as:

〈[a,b]〉 := {[a− k,b+ k] : k ≥ 0} .

Remark.We have that [c,d] ∈ 〈[a,b]〉 implies
〈[a,b]〉= 〈[c,d]〉 .

Remark.[17] In an interval space I (R) with the null set

Ω , [a,b]
Ω
= [c,d] if, and only if, c− a = b− d. Thus, we

obtain that

〈[a,b]〉 := {[c,d] ∈ I (R) : a+ b = c+ d} .

Interval multiplication of [a,b] and [c,d] , denoted by
[a,b]⊗ [c,d] , is defined by the formula
[a,b]⊗ [c,d] := [min{ac,ad,bc,bd} ,max{ac,ad,bc,bd}] ∈ I (R) ,

where max and min are the ≤-maximal and ≤-minimal,
respectively. In order to preserve standard notation, the
multiplication sign ⊗ is usually dropped and we write
[a,b] [c,d] for [a,b]⊗ [c,d] .

Interval multiplication is commutative, associative and
[1,1] is the identity element. Multiplicative inverses do not
exist in general.

In the case of division 0 /∈ [c,d] is assumed, we can

define 1
[a,b] by the rule

1

[a,b]
:=

[

1

b
,

1

a

]

∈ I (R) (if a > 0) .

We can define an interval division
[a,b]
[c,d] = [a,b]⊗ 1

[c,d] ,

where 0 /∈ [c,d] , as follows:
[a,b]
[c,d] = [a,b]⊗

[

1
d
, 1

c

]

:=
[

min
{

a
d
, a

c
, b

d
, b

c

}

,max
{

a
d
, a

c
, b

d
, b

c

}]

∈ I (R) .

An interval real vector or an axis-aligned box-valued
is a vector which has n components, each of which is an
interval in I (R) .
Let I n (R) = {(I1, I2, · · · , In) : Ii = [ai,bi] ,1 ≤ i ≤ n} be
the n-dimensional real interval vector space. An interval
vector (I1, I2, · · · , In) has n interval components and can
be interpreted geometrically as an n-dimensional
rectangular convex polytope or box. In the present work,
we will stick to the two-component interval vector
([a,b] , [c,d]) ∈ I 2 (R) . It can be represented
geometrically as a closed rectangular region in the
xy-plane, whose sides are parallel to the coordinates. The
arithmetical operations between interval vectors are direct
extensions of the same operations for punctual vectors.

We define the null set Ω ×Ω in I 2 (R) by
Ω ×Ω =

{

([a,b] , [c,d])− ([a,b] , [c,d]) : ([a,b] , [c,d]) ∈ I 2 (R)
}

= {([−k1,k1] , [−k2,k2]) : k1,k2 ≥ 0}

= {(k1 [−1,1] ,k2 [−1,1]) : k1,k2 ≥ 0} .

Proposition 1In an interval vector space I 2 (R) with the

null set Ω × Ω , ([a,b] , [c,d])
Ω×Ω
= ([e, f ] , [g,h]) if, and

only if,

a+ b = e+ f and c+ d = g+ h.

Proof.The result can be readily attained by doing the
followings:

([a,b] , [c,d])
Ω×Ω
= ([e, f ] , [g,h]) if, and only if,

([−k1,k1] , [−k2,k2]) ,([−l1, l1] , [−l2, l2]) ∈ Ω ×Ω such that
([a,b] , [c,d])+ ([−k1,k1] , [−k2,k2]) = ([e, f ] , [g,h])+ ([−l1, l1] , [−l2, l2])

if, and only if,
([a− k1,b+ k1] , [c− k2,d + k2]) = ([e− l1, f + l1] , [g− l2,h+ l2])

if, and only if, [a− k1,b+ k1] = [e− l1, f + l1] and
[c− k2,d + k2] = [g− l2,h+ l2] if, and only if,
a − k1 = e − l1, b + k1 = f + l1, c − k2 = g − l2, and
d + k2 = h + l2 if, and only if, a − e = k1 − l1,
b − f = −k1 + l1 = −(k1 − l1) , c − g = k2 − l2, and
d − h = −k2 + l2 = −(k2 − l2) if, and only if,
a− e = −(b− f ) and c − g = −(d− h) if, and only if,
a+ b = e+ f and c+ d = h+ g.

Remark.The binary relation
Ω×Ω
= is an equivalence

relation.

Corollary 2Let I 2 (R) be an interval vector space over

R
2. We give equivalent characterizations of the

equivalence relation
Ω×Ω
= as follows:

(i)([a,b] , [c,d])
Ω×Ω
= ([e, f ] , [g,h]) ;

(ii)There exist w1
′,w2

′ ∈ Ω ×Ω such that

([a,b] , [c,d])+w1
′ = ([e, f ] , [g,h])+w2

′;

(iii)There exists w′ ∈ Ω ×Ω such that

([a,b] , [c,d]) = ([e, f ] , [c,d])+w′ or ([a,b] , [c,d])+w′ = ([e, f ] , [c,d]) ;

(iv)[a,b]
Ω
= [e, f ] and [c,d]

Ω
= [g,h] .

Remark.According to the equivalence relation
Ω×Ω
= , the

equivalence class 〈([a,b] , [c,d])〉Ω×Ω for any interval

vector ([a,b] , [c,d]) in I 2 (R) is stated in the form
〈([a,b] , [c,d])〉Ω×Ω =

{

([e, f ] , [g,h]) ∈ I 2 (R) : ([a,b] , [c,d])
Ω×Ω
= ([e, f ] , [g,h])

}

.

Remark.We can redefine the class 〈([a,b] , [c,d])〉Ω×Ω by
〈([a,b] , [c,d])〉Ω×Ω := {([a− k1,b+ k1] , [c− k2,d + k2]) : k1,k2 ≥ 0} .

The family of all equivalence classes
〈([a,b] , [c,d])〉Ω×Ω for ([a,b] , [c,d]) ∈ I 2 (R) will be
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denoted by
〈

I 2 (R)
〉

Ω×Ω
.

In the following, we give a brief account of some
needed terminologies from fixed-point theory.

A set C is a cone in a real Banach space E := (E,‖.‖)
if, C is closed, non-empty, the sum of two elements of C is
an element of C, non-negative scalar multiples of elements
of C are elements of C, and C∩ (−C) = {θ} .

Any cone C⊂ E defines the following partial ordered
relations:

x � y if, and only if, y− x ∈ C;

x ≺ y if, and only if, y− x ∈ C−{θ} ,
where θ is the zero element in E;
x ≪ y if, and only if, y − x ∈ Int(C) , where Int(C)
denotes the topological interior of C—if there are any.

Definition 3[18] A cone C of a real Banach space

(E,‖.‖) is solid if, and only if, Int(C) 6= /0, and it is

normal if, and only if, there exists a real number K > 0
such that ‖x‖ ≤ K‖y‖ for every x,y ∈ E with θ � x � y.

The smallest positive constant K for which the above

inequality holds is called the normal constant of C.

Definition 4[19] Let C be a solid cone of the normed space

E. A sequence {un}n∈N is said to be a c−sequence, if for

each c ≫ θ , there exists a natural number n0 such that

un ≪ c for all n ≥ n0.

Lemma 5[20] Let C be a solid cone of the normed space

(E,‖.‖) and {un}n∈N be a sequence in E. Then, un
‖.‖→ θ

implies that {un}n∈N is a c−sequence.

Proposition 6[20] Let C be a solid cone in a real Banach

space E. If θ � u≪ c holds for any c∈ Int(C) , then u= θ .

Lemma 7[21] If E is a real Banach space with a cone C

and if a � λ a with a ∈ C and 0 ≤ λ < 1, then a = θ .

Next, we are going to define the partial cone metric for
vector intervals in I

2 (R) .

Definition 8Let E be a real Banach space ordered by the

cone C. The interval space I (R) with the null set Ω and

the correspondence ℘ : I 2 (R) → C is called a partial

cone-interval metric on I 2 (R) , if the following

conditions hold:

(PCIM1) :θ � ℘([a,b] , [a,b]) � ℘([a,b] , [c,d]) for all

[a,b] , [c,d] ∈ I (R) ;

(PCIM2) :℘([a,b] , [a,b]) =℘([c,d] , [c,d]) =℘([a,b] , [c,d])

if, and only if, [a,b]
Ω
= [c,d] ;

(PCIM3) :℘([a,b] , [c,d]) = ℘([c,d] , [a,b]) for all

[a,b] , [c,d] ∈ I (R) ;

(PCIM4) :
℘([a,b] , [c,d])�℘([a,b] , [e, f ])+℘([e, f ] , [c,d])−℘([e, f ] , [e, f ])

for any three given intervals [a,b] , [c,d] , [e, f ] ∈ I (R)

such that [e, f ]
Ω
6= [a,b] and [e, f ]

Ω
6= [c,d] .

Then, the quadruple (I (R) ,E,C,℘) is known as a

partial cone-interval metric space.

Different partial cone-interval metrics could be defined on
I (R) giving rise to different partial cone-interval metric
spaces.

Now, we make some useful observations.

Remark.For any w1,w2 ∈ Ω and for any
[a,b] , [c,d] ∈ I (R) , we have

℘([a,b]⊕w1, [c,d]⊕w2) =℘([a,b] , [c,d]) .

Remark. (i)If ℘([a,b] , [c,d]) = θ , then [a,b]
Ω
= [c,d] .

(ii)θ ≺ ℘([a,b] , [c,d]) for all [a,b] , [c,d] ∈ I (R) with

[a,b]
Ω
6= [c,d] .

For convenience of writing, the points of the set of the
intervals of real numbers will be denoted by capital letters
I, J, and K.

Example 9Let E := M2×2 (R) be the set of all real

two-rowed square matrices with the norm

‖A‖ := max
{
∣

∣ai j

∣

∣

}

, where ai j’s are the inputs of

A ∈ M2×2 (R) for 1 ≤ i, j ≤ 2. The null matrix

θ2×2 =

[

0 0
0 0

]

represents the neutral element in M2×2 (R) .

Moreover, C := M2×2

(

R
+
0

)

is a non-empty solid normal

cone with a normal constant K = 1. Define an order � on

M2×2 (R) as follows:

[ai j]2×2
� [bi j]2×2

if, and only if, ai j ≤ bi j for 1≤ i, j ≤ 2.

We demonstrate ℘ : I 2 (R)→ C as

℘(I,J) =

[

|a− c| 0
0 |b− d|

]

∈ C,

where I = [a,b] ,J = [c,d] ∈ I (R) .
We attest that

(

I (R) ,M2×2 (R) ,M2×2

(

R
+
0

)

,℘
)

is a

partial cone-interval metric space.

(PCIM1)

℘(I,J) � ℘(I, I) ⇔
[

|a− c| 0
0 |b− d|

]

�
[

0 0
0 0

]

⇔
[

|a− c| 0
0 |b− d|

]

∈ C⇔ |a− c| ≥ 0 and |b− d| ≥ 0.

(PCIM2) For any I,J ∈ I (R) , we have

℘(I, I) =℘(J,J) =℘(I,J)⇔
[

0 0
0 0

]

=

[

|a− c| 0
0 |b− d|

]

⇔

|a− c|= 0 and |b− d| ⇔ a = c and b = d ⇔ I
Ω
= J.
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The validity of (PCIM3) can easily be proved.

(PCIM4) Clearly, |a− e| + |e− c| ≥ |a− c| and

|b− f | + | f − d| ≥ |b− d| for any real numbers

a,b,c,d,e, and f . Therefore, we attain that

℘(I,K)+℘(K,J)−℘(K,K)−℘(I,J)

=

[

|a− e| 0
0 |b− f |

]

+

[

|e− c| 0
0 | f − d|

]

−
[

|a− c| 0
0 |b− d|

]

=

[

|a− e|+ |e− c|− |a− c| 0
0 |b− f |+ | f − d|− |b− d|

]

∈ C

for any I = [a,b] ,J = [c,d] ,K = [e, f ] ∈ I (R) .

From all of this, it is easy to see that ℘ meets all the

axiom schemes of Definition 8. Henceforth, ℘ is partial

cone-interval metric over the given Banach space

M2×2 (R) and
(

I (R) ,M2×2 (R) ,M2×2

(

R
+
0

)

,℘
)

is

partial cone-interval metric space.

In the sequel, we always suppose that C is cone with
non-empty interior in E. Now, we express some essential
topological properties of partial cone-interval metric
space, as declared follows.

Definition 10Let (I (R) ,E,C,℘) be a partial

cone-interval metric space. The set

B℘([a0,b0] ;c) := {[a,b] ∈ I (R) : ℘([a0,b0] , [a,b])≪ c+℘([a0,b0] , [a0,b0])}
is the interval disc centred at [a0,b0] and radius

c ∈ Int(C).

Definition 11Let (I (R) ,E,C,℘) be a partial

cone-interval metric space, [a,b] ∈ I (R) and

{[an,bn]}n∈N be a sequence of intervals in I (R) . Then,

(i){[an,bn]}n∈N is convergent to the interval [a,b], briefly

denoted by [an,bn]
τ℘→ [a,b], whenever for every c ∈ E

with θ ≪ c, there is n0 ∈ N such that

℘([an,bn] , [a,b])≪℘([a,b] , [a,b])+c for all n≥ n0.

To put it in another way, the sequence {[an,bn]}n∈N is

convergent to the interval [a,b] if, and only if,

{℘([an,bn] , [a,b])−℘([a,b] , [a,b])}n∈N is a c−sequence

in C.

(ii){[an,bn]}n∈N is strongly convergent to [a,b], briefly

denoted by [an,bn]
s−τ℘→ [a,b], if, and only if,

limn→∞℘([an,bn] , [a,b]) = limn→∞℘([an,bn] , [an,bn]) =℘([a,b] , [a,b]) .

Equivalently; {[an,bn]}n∈N is strongly convergent to

[a,b] if, and only if, {℘([an,bn] , [a,b])−℘([a,b] , [a,b])}n∈N is

convergent to θ with respect to the norm topology of

E. That is; limn→∞ ‖℘([an,bn] , [a,b])−℘([a,b] , [a,b])‖= 0.

(iii){[an,bn]}n∈N is a θ−Cauchy if, given c ∈ E with

θ ≪ c, there is n0 ∈ N such that

℘([an,bn] , [am,bm])≪ c whenever m > n ≥ n0.

(iv)The partial cone-interval metric space

(I (R) ,E,C,℘) is said to be θ−complete, in case

each θ−Cauchy interval sequence {[an,bn]}n∈N of

I (R) converges to the interval [a,b] such that

℘([a,b] , [a,b]) = θ .

(v){[an,bn]}n∈N is a Cauchy sequence if, there is an

element u ∈ C such that limn,m→∞℘([an,bn] , [am,bm]) = u.

(vi)The partial cone-interval metric space

(I (R) ,E,C,℘) is complete if, each Cauchy interval

sequence {[an,bn]}n∈N in I (R) is strongly

convergent towards [a,b] ∈ I (R) such that

℘([a,b] , [a,b]) = u.

Remark.In the case when the underlying cone C is solid, it
is easy to prove that every strongly convergent sequence of
intervals in (I (R) ,E,C,℘) is convergent. The converse
does not hold in general. If cone C is solid and normal,
then the two types of convergence are equivalent.

The example below covers all single steps to prove the
convergence of an interval sequence in the framework of
partial cone-interval metric space (I (R) ,E,C,℘) .

Example 12On E := R
2, we define a norm

‖(x,y)‖1 := |x| + |y| for all (x,y) ∈ R
2. Take a cone

C :=
{

(x,y) ∈R
2 : x,y ≥ 0

}

in R
2. Clearly, C is a

non-empty normal solid cone on R
2, wherein the partial

ordering on E induced by C is defined by:

(x,y)� (u,v) if, and only if, x ≤ u and y ≤ v,

where ≤ is the usual order on the elements of R. Define

℘ : I 2 (R) → C such as for every I = [a,b] ,J = [c,d] ∈
I (R) , we have

℘(I,J) = (|a+ b− c− d|,k |a+ b− c− d|) ∈ C,

where k ≥ 1. Therefore,
(

I (R) ,R2,C,℘
)

is regarded as

a partial cone-interval metric space. Consider the

interval sequence {[an,bn]}n∈N :=
{[

1
n
,1+ 1

n

]}

n∈N . We

claim that
[

1
n
,1+ 1

n

] τ℘→
[−1

2
, 3

2

]

. To see this, let

c = (c1,c2) ∈ E with c ≫ θ be given arbitrary.

Then, it should be c1,c2 > 0. It is an easy task to find

some natural number n0 such that

℘
([

1
n
,1+ 1

n

]

,
[−1

2
, 3

2

])

−℘
([−1

2
, 3

2

]

,
[−1

2
, 3

2

])

≪ c for all n ≥ n0.
With c = (c1,c2) being given provided that c1,c2 > 0,
observe the following considerations:

℘
([

1
n
,1+ 1

n

]

,
[−1

2
, 3

2

])

−℘
([−1

2
, 3

2

]

,
[−1

2
, 3

2

])

≪ c

if, and only if, (c1,c2)−℘
([

1
n
,1+ 1

n

]

,
[−1

2
, 3

2

])

∈ Int(C)

if, and only if, (c1,c2)−
(

2
n
, 2k

n

)

∈ Int(C)

if, and only if,
(

c1 − 2
n
,c2 − 2k

n

)

∈ Int(C)

implies that c1 >
2
n

and c2 >
2k
n
.
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In the sense of real sequences, we have 2
n

→
n→∞

0. Thus, for

c1 > 0 considered above, there exists n1 = n1 (c1) ∈ N

such that for all n ≥ n1, we have 2
n
< c1. For n ≥ n1,

choose n1 :=
[

2
c1

]

+ 1 provided that 2
n
≤ 2

n1
< c1. In the

same manner, we have 2k
n

→
n→∞

0. Thus, for the above

c2 > 0, there exists n2 = n2 (c2) ∈ N such that 2k
n
< c2 for

all n ≥ n2. Since n ≥ n2, we can choose n2 :=
[

2k
c2

]

+ 1

such that 2k
n
≤ 2k

n2
< c2. We denote by n0 := max{n1,n2} ,

then for any arbitrary c = (c1,c2) ≫ θ , there exists

n0 ∈ N that depends on c1 or c2, such that for all n ≥ n0,
we have that c1 > 2

n
and c2 > 2k

n
. This shows that

{

℘
([

1
n
,1+ 1

n

]

,
[−1

2
, 3

2

])

−℘
([−1

2
, 3

2

]

,
[−1

2
, 3

2

])}

n∈N is a c−sequence. In

this sense, we conclude that
[

1
n
,1+ 1

n

] τ℘→
[−1

2
, 3

2

]

. In an

obvious way, it is easy to prove that
[

1
n
,1+ 1

n

] τ℘→ [a,b] for

any a,b ∈ R with a ≤ b and a + b = 1. Explicitly,
〈[−1

2
, 3

2

]〉

is the class limit of
{[

1
n
,1+ 1

n

]}

n∈N .

The point made in the above example demonstrates that
the given interval sequence is convergent to infinitely
many points (more precisely, the sequence is convergent
to all elements in the equivalence class of the limit point).
However, this is not always true. To back up this fact, it
suffices to give the following counterexample.

Example 13Consider E := R
2 normed by

‖(x,y)‖2 :=
(

x2 + y2
)

1
2 for all ordered pairs (x,y) ∈ R

2.

Let C :=
{

(x,y) ∈R
2 : x,y ≥ 0

}

. Thus, C ⊂ E is the

underlying cone in E. It appears to have a non-empty

interior and it is a normal cone. Let a partial ordering on

C be defined as in Example 12. We define ℘ : I 2 (R)→ C

by

℘(I,J) = (|a− c|+ |b− d| , |a− c|+ |b− d|+β ) ∈ C,
where I = [a,b] ,J = [c,d] ∈ I (R) and β > 0 is any

constant. Therefore,
(

I (R) ,R2,C,℘
)

is a partial

cone-interval metric space.

Choosing {[an,bn]}n∈N :=
{[

1
n
,1+ 1

n

]}

n∈N . Obviously,

℘
([

1
n
,1+ 1

n

]

, [0,1]
)

−℘([0,1] , [0,1]) =
(

2
n
, 2

n

)

. It is easily

verifiable that
∥

∥℘
([

1
n
,1+ 1

n

]

, [0,1]
)

−℘([0,1] , [0,1])
∥

∥

2
=
∥

∥

(

2
n
, 2

n

)
∥

∥

2
= 2

√
2

n
→

n→∞
0.

Accordingly,
{

℘
([

1
n
,1+ 1

n

]

, [0,1]
)

−℘([0,1] , [0,1])
}

n∈N is a

c−sequence. In this manner, we obtain that
[

1
n
,1+ 1

n

] τ℘→ [0,1] . By using a contradiction argument,

we will now prove that
[

1
n
,1+ 1

n

] τ℘
9 [−1,2] . As we know,

if
[

1
n
,1+ 1

n

] τ℘→ [−1,2] , then for any arbitrary c ∈ E with

c ≫ θ , there exists n0 ∈ N provided that for every n ≥ n0,
for which we have ℘

([

1
n
,1+ 1

n

]

, [−1,2]
)

−℘([−1,2] , [−1,2])≪ c. To

consider it through explanation, let c = (c1,c2) with

c1,c2 > 0 be given. We observe that

℘
([

1
n
,1+ 1

n

]

, [−1,2]
)

−℘([−1,2] , [−1,2])≪ c

if, and only if, (2,2+β )− (0,β )≪ (c1,c2)

if, and only if, (c1 − 2,c2 − 2) ∈ Int(C)

implies that c1 > 2 and c2 > 2.
Thus, ℘

([

1
n
,1+ 1

n

]

, [−1,2]
)

−℘([−1,2] , [−1,2])≪ c can occur

with appropriate c1 > 2 and c2 > 2, while

c = (c1,c2) ≫ θ was arbitrary. Thus, this conclusion

causes a contradiction. Therefore, the interval sequence
{[

1
n
,1+ 1

n

]}

n∈N is not convergent to the fix-interval

[−1,2] . From this point, one can readily see that

[0,1]
Ω
= [−1,2] and

[

1
n
,1+ 1

n

] τ℘→ [0,1] , but
[

1
n
,1+ 1

n

] τ℘
9 [−1,2] .

Certainly, the interval sequence
{[

1
n
,1+ 1

n

]}

n∈N is not

convergent to any point [a,b] ∈ 〈[0,1]〉 and [0,1] is the

only interval limit of
{[

1
n
,1+ 1

n

]}

n∈N .

Continued from the previous two examples, if [a,b] is a
limit interval of {[an,bn]}n∈N, then it is not necessarily

that [an,bn]
τ℘→ 〈[a,b]〉 . As a matter of fact, the statement

is satisfied under a certain condition will be declared in
details below.

Proposition 14Consider the partial cone-interval metric

space (I (R) ,E,C,℘) with ℘(I, I) = θ for any point I ∈
I (R) . For any interval sequence {[an,bn]}n∈N in I (R) ,

if [an,bn]
τ℘→ [a,b] , then [an,bn]

τ℘→ 〈[a,b]〉 .

Proof.For any [c,d] ∈ 〈[a,b]〉 , we can write
[c,d] := [a− k,b+ k] for any k ≥ 0. Need to show that

[an,bn]
τ℘→ [c,d] . Due to (PCIM4), we have

℘([an,bn] , [c,d])�℘([an,bn] , [a,b])+℘([a,b] , [c,d]) .

Since [an,bn]
τ℘→ [a,b] , then for every c ∈ E with θ ≪ c,

there is a natural number n0 such that
℘([an,bn] , [a,b])≪ c for all n ≥ n0. With arbitrary c ≫ θ
and for sufficiently large n, we have

℘([an,bn] , [c,d])≪ c+℘([a,b] , [c,d])

= c+℘([a,b] , [a− k,b+ k])

= c+℘([a,b]⊕ [0,0] , [a,b]⊕ [−k,k])

= c+℘([a,b] , [a,b])

= c.

For strongly-type convergence, it is worth pointing
that the limit interval of an interval sequence need not be
unique. The following example makes this clear.

Example 15Consider that E := R
2 dealing with the norm

‖(x,y)‖∞ := max{|x| , |y|} in the order of the cone

C :=
{

(x,y) ∈ R
2 : x,y ≥ 0

}

. Let a partial ordering on C

be defined as in Example 13. Choose a mapping

℘ : I 2 (R)→ C defined as

℘(I,J) = (|a+ b− c− d|,0) ∈ C

for any two real intervals I and J in I (R) , write

I = [a,b] and J = [c,d] . It could be easily seen that
(

I (R) ,R2,C,℘
)

forms a partial cone-interval metric
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space. Construct the sequence of intervals

{[an,bn]}n∈N :=
{[

1− 1
n+1

,2+ 1
n

]}

n∈N . The computations

yield

‖℘([an,bn] , [0,3])−℘([0,3] , [0,3])‖∞ =
∥

∥℘
([

1− 1
n+1

,2+ 1
n

]

, [0,3]
)

−℘([0,3] , [0,3])
∥

∥

∞

=
∥

∥

(∣

∣1− 1
n+1

+ 2+ 1
n
− 0− 3

∣

∣,0
)∥

∥

∞

=
∥

∥

∥

(

1
n(n+1) ,0

)
∥

∥

∥

∞

= 1
n(n+1)

→
n→∞

0.

Hence, we obtain that
[

1− 1
n+1

,2+ 1
n

] s−τ℘→ [0,3] .
In a fairly direct manner, we find that
[

1− 1
n+1

,2+ 1
n

] s−τ℘→
[

1
2
, 5

2

]

. Somewhat more generally,
[

1− 1
n+1

,2+ 1
n

] s−τ℘→ [a,b] for any a,b ∈ R with a ≤ b

and a + b = 3. Therefore, the real-valued interval

sequence
{[

1− 1
n+1

,2+ 1
n

]}

n∈N have infinitely many

limit intervals. Therefore, the generated topology τ℘ is

not Hausdorff.

We proceed as follows:

Proposition 16Let (I (R) ,E,C,℘) be a partial

cone-interval metric space and {[an,bn]}n∈N be a

sequence of intervals in I (R) . If there exist

[a,b] , [c,d] ∈ I (R) such that [an,bn]
s−τ℘→ [a,b] and

[an,bn]
s−τ℘→ [c,d] , then we must have [a,b]

Ω
= [c,d] .

Proof.Applying the criteria (PCIM4), we have
℘([a,b] , [c,d])�℘([a,b] , [an,bn])+℘([an,bn] , [c,d])−℘([an,bn] , [an,bn]) .

Taking the limit as n → ∞, we get
℘([a,b] , [c,d])�℘([a,b] , [a,b])+℘([c,d] , [c,d])−℘([a,b] , [a,b]) =℘([c,d] , [c,d]) .

From (PCIM1), we know that ℘([c,d] , [c,d])�℘([a,b] , [c,d]) .

Thus, ℘([c,d] , [c,d]) =℘([a,b] , [c,d]) . Running through the above
arguments with limn→∞℘([an,bn] , [an,bn]) =℘([c,d] , [c,d]) , so that
we get ℘([a,b] , [a,b]) =℘([a,b] , [c,d]) . Accordingly, we find
that ℘([a,b] , [a,b]) =℘([c,d] , [c,d]) =℘([a,b] , [c,d]) , which implies

[a,b]
Ω
= [c,d] .

The sequence {[an,bn]}n∈N :=
{[

1− 1
n+1

,2+ 1
n

]}

n∈N of

Example 15 is in agreement with Proposition 16.

Lemma 17The class limit in the partial cone-interval

metric space is unique.

The concept of near-coupled fixed-point is defined
below.

Definition 18Let T : I 2 (R) → I (R) be a well-defined

mapping. A constant interval vector

([a,b] , [c,d]) ∈ I 2 (R) is called a near-coupled

fixed-point of T if, and only if,

T ([a,b] , [c,d])
Ω
= [a,b] and T ([c,d] , [a,b])

Ω
= [c,d] .

To provide a simple illustration of this concept, we invoke
the following example.

Example 19Let T : I 2 (R)→ I (R) be defined as

T ([a,b] , [c,d])=











[a,b]
[1,1]⊖[c,d] , if c ≤ d < 1 or 1 < c ≤ d,

[a,b] , if c ≤ 1 ≤ d.

Note that the mapping T above is well-defined. By using

interval arithmetic operations, we find that there are

many infinitely near-coupled fixed-points of the mapping

T. For instance, the pairs
([−1

2
, 1

2

]

, [0,0]
)

and

([2,3] , [0,0]) are near-coupled fixed-points of the

mapping T in I 2 (R) . Nevertheless, we see that

([2,3] , [0,0]) /∈
〈([−1

2
, 1

2

]

, [0,0]
)〉

Ω×Ω
.

In this paper, we are systematically interested in
solving the following system of interval equations:











S ([a,b])
Ω
= T ([a,b] , [c,d])

S ([c,d])
Ω
= T ([c,d] , [a,b]) ,

(2)

where T : I
2 (R)→ I (R) and S : I (R)→ I (R) .

The solution ([a,b] , [c,d]) ∈ I 2 (R) of the above system,
if it exists, is called a near-coupled coincidence point of
the mappings T and S, and (S [a,b] ,S [c,d]) is called
near-coupled point of coincidence.

The following example illustrates the
above-mentioned concept.

Example 20Let the interval-vector mapping T be

represented in the form






T : I 2 (R)→ I (R)

([a,b] , [c,d]) 7→
[

a+ c− 1
2
, |b+ d|+ 1

2

]

.

Let S be an interval-valued mapping of the interval

variable [a,b] such that






S : I (R)→ I (R)

[a,b] 7→ [a, |b|] .

By simple substitution, resulting in

T
([−1

2
, 1

2

]

, [−2,2]
)

= [−3,3] , S
([−1

2
, 1

2

])

=
[−1

2
, 1

2

]

,

T
(

[−2,2] ,
[−1

2
, 1

2

])

= [−3,3] and S ([−2,2]) = [−2,2] .

We simply try to show that [−3,3]
Ω
=

[

− 1
2
, 1

2

]

and

[−3,3]
Ω
= [−2,2] . For justifying, choose w1,w2 ∈ Ω such

that w1 =
[−5

2
, 5

2

]

and w2 = [−1,1] . It is easy to evaluate

the following resulting interval expressions:

[−3,3] =
[−1

2
, 1

2

]

⊕ w1 and [−3,3] = [−2,2] ⊕ w2.

Therefore, the point
([−1

2
, 1

2

]

, [−2,2]
)

defines a

near-coupled coincidence point of the mappings T and S.
Patently, for this example, the interval equations (2) have

infinitely many solutions. More precisely, points on the

form ([−k1,k1] , [−k2,k2]) ∈ Ω ×Ω , where k1,k2 ≥ 0, are

near-coupled coincidence points of the mappings T and

S.
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3 Main Results: On The Existence and

Uniqueness of Equivalence Class of

Near-Coupled Coincidence Points

In the present section, we are mainly concerned with the
existence of near-coupled coincidence points and the
uniqueness of their equivalence class.

The following proposition prepares the way for the
main result of this section, namely; Theorem 22.

Proposition 21Let (I (R) ,E,C,℘) be a partial

cone-interval metric space. Define the mappings

T : I 2 (R) → I (R) and S : I (R) → I (R) . Assume

that the following assertions are satisfied:

(i)T
(

I 2 (R)
)

⊆ S (I (R)) ;

(ii)There exists a constant 0 < λ < 1 such that

℘(T ([a,b] , [c,d]) ,T ([e, f ] , [g,h]))� λ
2
(℘(S ([a,b]) ,S ([e, f ]))+℘(S ([c,d]) ,S ([g,h])))

satisfies for all intervals [a,b] , [c,d] , [e, f ] , [g,h] ∈ I (R) ;

(iii)There exist sequences {S ([an,bn])}n∈N and {S ([cn,dn])}n∈N of

successive approximations of T starting from

S ([a0,b0]) and S ([c0,d0]) , respectively.

Then, for all n ∈ N and for some 0 < λ < 1, the following

estimations hold simultaneously:







℘(S ([an,bn]) ,S ([an+1,bn+1]))� λ n

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) ,

℘(S ([cn,dn]) ,S ([cn+1,dn+1]))� λ n

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) .

(3)

Proof.In view of the given assumption
T
(

I 2 (R)
)

⊆ S (I (R)) , we can choose the points

[a1,b1] , [c1,d1] ∈ I (R) such that S ([a1,b1])
Ω
= T ([a0,b0] , [c0,d0])

and S ([c1,d1])
Ω
= T ([c0,d0] , [a0,b0]) . If we carry over this way, we

constitute the sequences [an+1,bn+1] and [cn+1,dn+1] in
I (R) by

{

S ([an+1,bn+1])
Ω
= T ([an,bn] , [cn,dn]) ,

S ([cn+1,dn+1])
Ω
= T ([cn,dn] , [an,bn])

(4)

for all n ∈ N∪ {0} . Toward proving (3), we will use the
mathematical induction. We argue as follows:
For the value n = 1, we have
℘(S ([a1,b1]) ,S ([a2,b2])) =℘(T ([a0,b0] , [c0,d0]) ,T ([a1,b1] , [c1,d1]))

� λ
2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))).

Exactly in the similar manner as above, we have
℘(S ([c1,d1]) ,S ([c2,d2]))� λ

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) .

Thus, the statement is true for n = 1. If it is true for n = k,
then we have
℘(S ([ak,bk]) ,S ([ak+1,bk+1]))� λ k

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) ,

℘(S ([ck,dk]) ,S ([ck+1,dk+1]))� λ k

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) .

Now, at step n = k+ 1, we come by
℘(S ([ak+1,bk+1]) ,S ([ak+2,bk+2])) =℘(T ([ak,bk] , [ck,dk]) ,T ([ak+1,bk+1] , [ck,dk]))

� λ
2
(℘(S ([ak,bk]) ,S ([ak+1,bk+1]))+℘(S ([ck,dk]) ,S ([ck+1,dk+1])))

� λ
2

(

λ k

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))+

λ k

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1])))

)

= λ
2

(

λ k (℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))
)

= λ k+1

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) . In a

similar manner, it is seen that
℘(S ([ck+1,dk+1]) ,S ([ck+2,dk+2]))� λ k+1

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) ,

which is true for n = k+ 1. This completes the induction
argument on n.

Theorem 22.Consider a θ−complete partial

cone-interval metric space (I (R) ,E,C,℘) relative to a

solid cone C. If there exist two mappings

T : I
2 (R)→ I (R) and S : I (R)→ I (R) so that

(i)

℘(T ([a,b] , [c,d]) ,T ([e, f ] , [g,h]))� λ
2
(℘(S ([a,b]) ,S ([e, f ]))+℘(S ([c,d]) ,S ([g,h])))

satisfies for all intervals [a,b] , [c,d] , [e, f ] , [g,h] ∈ I (R) with

0 < λ < 1;

(ii)T
(

I 2 (R)
)

⊆ S (I (R)) ;

(iii)S (I (R)) is closed subset of I (R) ,

then T and S have precisely a unique equivalence class of

near-coupled coincidence points in I 2 (R) .

Proof.Let us start from two generic points
S ([a0,b0]) ,S ([c0,d0]) in S (I (R)) and consider the
coupled Picard pair iterative scheme

{

S ([an+1,bn+1])
Ω
= T ([an,bn] , [cn,dn]) ,

S ([cn+1,dn+1])
Ω
= T ([cn,dn] , [an,bn])

(5)

for all n ∈ N ∪ {0} . For the purpose at hand, we
distinguish two cases:
Case (i) : If we choose ℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])) = θ ,

then we have S ([a0,b0])
Ω
= T ([a0,b0] , [c0,d0]) and

S ([c0,d0])
Ω
= T ([c0,d0] , [a0,b0]) . This means that

([a0,b0] , [c0,d0]) is a near-coupled coincidence point of T

and S, and so there is nothing to prove.
Hence, we may suppose that ℘(S ([a0,b0]) ,S ([a1,b1]))≻ θ and
℘(S ([c0,d0]) ,S ([c1,d1]))≻ θ .

Case (ii) : If S ([a0,b0])
Ω
= S ([an,bn]) and S ([c0,d0])

Ω
= S ([cn,dn]) for

any n ≥ 2, then S ([a0,b0])⊕w1 = S ([an,bn])⊕w2 and
S ([c0,d0])⊕w3 = S ([cn,dn])⊕w4 for some w1,w2,w3 and w4 in Ω .
For sufficiently large n, we observe the following:
℘(S ([a0,b0]) ,S ([a1,b1])) =℘(S ([an,bn]) ,S ([a1,b1]))

=℘(T ([an−1,bn−1] , [cn−1,dn−1]) ,T ([a0,b0] , [c0,d0]))

� λ
2
(℘(S ([an−1,bn−1]) ,S ([a0,b0]))+℘(S ([cn−1,dn−1]) ,S ([c0,d0])))

= λ
2
(℘(S ([an−1,bn−1]) ,S ([a0,b0])⊕w1)+℘(S ([cn−1,dn−1]) ,S ([c0,d0])⊕w3))

= λ
2
(℘(S ([an−1,bn−1]) ,S ([an,bn])⊕w2)+℘(S ([cn−1,dn−1]) ,S ([cn,dn])⊕w4))

= λ
2
(℘(S ([an−1,bn−1]) ,S ([an,bn]))+℘(S ([cn−1,dn−1]) ,S ([cn,dn])))

� λ
2

(

λ n−1 (℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))
)

� λ n

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) .

Proceeding along the same lines as above, we attain
℘(S ([c0,d0]) ,S ([c1,d1]))� λ n

2
(℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) .

Adding up, we get
℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))� λ n (℘(S ([c0,d0]) ,S ([c1,d1]))+℘(S ([a0,b0]) ,S ([a1,b1]))) .

From this inequality and by taking advantage of Lemma
7, we have ℘(S ([a0,b0]) ,S ([a1,b1])) = θ and℘(S ([c0,d0]) ,S ([c1,d1])) = θ .
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Thereby, it must be the case that
S ([a0,b0])

Ω
= S ([a1,b1])

Ω
= T ([a0,b0] , [c0,d0]) and S ([c0,d0])

Ω
= S ([c1,d1])

Ω
= T ([c0,d0] , [a0,b0]) .

So that ([a0,b0] , [c0,d0]) is near-coupled coincidence
point of T and S. Keeping generality in mind, we presume
that {(S ([an,bn]) ,S ([cn,dn]))}n∈N ∈ S (I (R))× S (I (R)) contains no
near-coupled point of coincidence; that is,

(S ([an,bn]) ,S ([cn,dn]))
Ω×Ω
6= (S ([an+1,bn+1]) ,S ([cn+1,dn+1]))

for n ∈ N ∪ {0} . Thus, we suppose that
℘(S ([an,bn]) ,S ([an+1,bn+1]))≻ θ and℘(S ([cn,dn]) ,S ([cn+1,dn+1]))≻ θ .

Otherwise, ([an,bn] , [cn,dn]) is a near-coupled
coincidence point of T and S.

One way to think about the previous two cases is that
if {(S ([an,bn]) ,S ([cn,dn]))}n∈N contains no near-coupled point
of coincidence, then {(S ([an,bn]) ,S ([cn,dn]))}n∈N approaches to
the desired near-coupled point of coincidence.

The key step in proving the existence of a
near-coupled point of coincidence is just to show that the
sequences {S ([an,bn])}n∈N and {S ([cn,dn])}n∈N represent
θ−Cauchy (and then imposing the θ−completeness). To
each indicates n, p ∈N, we investigate that
℘(S ([an,bn]) ,S ([an+p,bn+p]))

(PCIM4)

� ∑
n+p−1
i=n ℘(S ([ai,bi]) ,S ([ai+1,bi+1]))−∑

n+p−1
i=n+1 ℘(S ([ai,bi]) ,S ([ai,bi]))

� ∑
n+p−1
i=n ℘(S ([ai,bi]) ,S ([ai+1,bi+1]))

� λ n

2
+ λ n+1

2
+ ...+ λ n+p−1

2
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))

= λ n−λ n+p−1

2(1−λ ) (℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])))

≺ λ n

2(1−λ )
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) .

Henceforth, we come to the conclusion that
℘(S ([an,bn]) ,S ([an+p,bn+p]))� λ n

2(1−λ ) (℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) ,

for certain 0 < λ < 1. For all n, passage to the limit yields
λ n

2(1−λ )
(℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1]))) →

n→∞
θ . This

is immediate since 0 < λ < 1 and
℘(S ([a0,b0]) ,S ([a1,b1]))+℘(S ([c0,d0]) ,S ([c1,d1])) is fixed.
The above proof concludes that
limn→∞℘(S ([an,bn]) ,S ([an+p,bn+p])) = θ . In this sense,
{

℘(S ([an,bn]) ,S ([an+p,bn+p]))
}

n,p∈N is a c−sequence for

any c ≫ θ . This displays that {S ([an,bn])}n∈N is
θ−Cauchy. Performing the same process one can show
that {S ([cn,dn])}n∈N is θ−Cauchy. From this and the
θ−completeness of (I (R) ,E,C,℘) , it holds that there
corresponds some elements

[

ā, b̄
]

,
[

c̄, d̄
]

∈ I (R) in such

a way that S ([an,bn])
τ℘→

[

ā, b̄
]

and S ([cn,dn])
τ℘→

[

c̄, d̄
]

with ℘
([

ā, b̄
]

,
[

ā, b̄
])

= θ and ℘
([

c̄, d̄
]

,
[

c̄, d̄
])

= θ .
Since {S ([an,bn])}n∈N ⊆ S (I (R)) and S (I (R)) is

closed, it follows that
[

ā, b̄
]

belongs surely to S (I (R)) .
Thus, it should be some element [a′,b′] ∈ I (R) such that
S ([a′,b′]) =

[

ā, b̄
]

. In a fairly direct manner, we have

S ([c′,d′]) =
[

c̄, d̄
]

for some [c′,d′] ∈ I (R) . It insures

that S [an,bn]
τ℘→ S ([a′,b′]) and S [cn,dn]

τ℘→ S ([c′,d′]) with
℘(S ([a′,b′]) ,S ([a′,b′])) = θ and ℘(S ([c′,d′]) ,S ([c′,d′])) = θ .
Corresponding to any c ∈ E with c ≫ θ , we can
successively find n1,n2 ∈ N such that























λ
2
℘(S ([a′,b′]) ,S ([an,bn]))≪ c

3
for all n ≥ n1;

℘(S ([a′,b′]) ,S ([an+1,bn+1]))≪ c
3

for all n ≥ n1;

λ
2
℘(S ([c′,d′]) ,S ([cn,dn]))≪ c

3
for all n ≥ n2.

Denoting n0 := max{n1,n2} , hence with any
arbitrary c ≫ θ whenever n ≥ n0, we get























λ
2
℘(S ([a′,b′]) ,S ([an,bn]))≪ c

3
;

℘(S ([a′,b′]) ,S ([an+1,bn+1]))≪ c
3
;

λ
2
℘(S ([c′,d′]) ,S ([cn,dn]))≪ c

3
.

Following that, we claim that any
(

S
([

ã, b̃
])

,S
([

c̃, d̃
]))

∈ 〈(S ([a′,b′]) ,S ([c′,d′]))〉Ω×Ω defines a
near-coupled point of coincidence. Thus, there exist
w1,w2,w3,w4 ∈ Ω such that
S
([

ã, b̃
])

⊕w1 = S ([a′,b′])⊕w2 and S
([

c̃, d̃
])

⊕w3 = S ([c′,d′])⊕w4.

It is quite easy to prove the following:
℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

=℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
])

⊕w1

)

(PCIM4)

� ℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

an0+1,bn0+1

]))

+℘
(

S
([

an0+1,bn0+1

])

,S
([

ã, b̃
])

⊕w1

)

=℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,T
([

an0
,bn0

]

,
[

cn0
,dn0

]))

+℘
(

S
([

an0+1,bn0+1

])

,S
([

ã, b̃
])

⊕w1

)

� λ
2

(

℘
(

S
([

ã, b̃
])

,S
([

an0
,bn0

]))

+℘
(

S
([

c̃, d̃
])

,S
([

cn0
,dn0

])))

+℘
(

S
([

an0+1,bn0+1

])

,S
([

ã, b̃
])

⊕w1

)

= λ
2

(

℘
(

S
([

ã, b̃
])

⊕w1,S
([

an0
,bn0

]))

+℘
(

S
([

c̃, d̃
])

⊕w3,S
([

cn0
,dn0

])))

+℘
(

S
([

an0+1,bn0+1

])

,S
([

ã, b̃
])

⊕w1

)

= λ
2

(

℘
(

S ([a′,b′])⊕w2,S
([

an0
,bn0

]))

+℘
(

S ([c′,d′])⊕w4,S
([

cn0
,dn0

])))

+℘
(

S
([

an0+1,bn0+1

])

,S ([a′,b′])⊕w2

)

= λ
2

(

℘
(

S ([a′,b′]) ,S
([

an0
,bn0

]))

+℘
(

S ([c′,d′]) ,S
([

cn0
,dn0

])))

+℘
(

S
([

an0+1,bn0+1

])

,S ([a′,b′])
)

≪ c
3
+ c

3
+ c

3

= c.
Hence, with any c ≫ θ , we get ℘

(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

≪ c.

From the arbitrary choice of c, we procure
℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

≪ c
m

for any c
m
≫ θ and for

any m ∈ N. According to this, we bear
that

{

c
m
−℘

(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))}

m∈N ⊆ C.
Since C is a closed subset in E, then we have
−℘

(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

∈ C. We also know that
℘
(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

∈ C.
Thus, ℘

(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

∈ C∩ (−C) = {θ} . From which it
follows that ℘

(

T
([

ã, b̃
]

,
[

c̃, d̃
])

,S
([

ã, b̃
]))

= θ , and thus

T
([

ã, b̃
]

,
[

c̃, d̃
]) Ω

= S
([

ã, b̃
])

for every
(

S
([

ã, b̃
])

,S
([

c̃, d̃
]))

in
〈(S ([a′,b′]) ,S ([a′,b′]))〉Ω×Ω .

In a similar way, we can show that T
([

c̃, d̃
]

,
[

ã, b̃
]) Ω

= S
([

c̃, d̃
])

for any
(

S
([

ã, b̃
])

,S
([

c̃, d̃
]))

in 〈(S ([a′,b′]) ,S ([c′,d′]))〉Ω×Ω .

Lastly, it remains to show that 〈(S ([a′,b′]) ,S ([c′,d′]))〉Ω×Ω

is the unique equivalence class of near-coupled points of
coincidence. Make a counter-hypothesis: assume that
(

S
([

â, b̂
])

,S
([

ĉ, d̂
]))

is one more near-coupled point of
coincidence such that

(

S
([

â, b̂
])

,S
([

ĉ, d̂
]))

/∈ 〈(S ([a′,b′]) ,S ([c′,d′]))〉Ω×Ω .

Analogously,
T
([

â, b̂
]

,
[

ĉ, d̂
]) Ω

= S
([

â, b̂
])

and T
([

ĉ, d̂
]

,
[

â, b̂
]) Ω

= S
([

ĉ, d̂
])

.

Thus, there exist wi ∈ Ω for 1 ≤ i ≤ 8 provided that
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T
([

â, b̂
]

,
[

ĉ, d̂
])

⊕w1 = S
([

â, b̂
])

⊕w2,

T
([

ĉ, d̂
]

,
[

â, b̂
])

⊕w3 = S
([

ĉ, d̂
])

⊕w4,

T ([a′,b′] , [c′,d′])⊕w5 = S ([a′,b′])⊕w6,

T ([c′,d′] , [a′,b′])⊕w7 = S ([c′,d′])⊕w8.

For this, we proceed as follows:
℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

=℘
(

S
([

â, b̂
])

⊕w2,S ([a
′,b′])⊕w6

)

=℘
(

T
([

â, b̂
]

,
[

ĉ, d̂
])

⊕w1,T ([a′,b′] , [c′,d′])⊕w5

)

=℘
(

T
([

â, b̂
]

,
[

ĉ, d̂
])

,T ([a′,b′] , [c′,d′])
)

� λ
2

(

℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

+℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
))

.

Hence,
℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

� λ
2

(

℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

+℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
))

.

On the other hand,
℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

=℘
(

S
([

ĉ, d̂
])

⊕w4,S ([c
′,d′])⊕w8

)

=℘
(

T
([

ĉ, d̂
]

,
[

â, b̂
])

⊕w3,T ([c′,d′] , [a′,b′])⊕w7

)

=℘
(

T
([

ĉ, d̂
]

,
[

â, b̂
])

,T ([c′,d′] , [a′,b′])
)

� λ
2

(

℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

+℘
(

S
([

â, b̂
])

,S ([a′,b′])
))

.

Therefore,
℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

� λ
2

(

℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

+℘
(

S
([

â, b̂
])

,S ([a′,b′])
))

.

Adding up, we get
℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

+℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

� λ
(

℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

+℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
))

.

But since 0 < λ < 1, by Lemma 7, it immediately follows
℘
(

S
([

â, b̂
])

,S ([a′,b′])
)

+℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

= θ , which means
that ℘

(

S
([

â, b̂
])

,S ([a′,b′])
)

= θ and℘
(

S
([

ĉ, d̂
])

,S ([c′,d′])
)

= θ .

We accordingly have

S
([

â, b̂
]) Ω

= S ([a′,b′]) and S
([

ĉ, d̂
]) Ω

= S ([c′,d′]) , which
signifies a contradiction. This contradiction proves the
expected uniqueness, which ends the proof of the
theorem.

Corollary 23Consider a θ−complete partial

cone-interval metric space (I (R) ,E,C,℘) relative to a

solid cone C. Define the mapping T : I 2 (R) → I (R)
such that the contractive inequality

℘(T ([a,b] , [c,d]) ,T ([e, f ] , [g,h]))� λ
2
(℘([a,b] , [e, f ])+℘([c,d] , [g,h]))

satisfies for all intervals [a,b] , [c,d] , [e, f ] , [g,h] ∈ I (R) with

0 < λ < 1.
Then, T has precisely a unique equivalence class of

near-coupled fixed-points in I 2 (R) .

Proof.Assume the notation of Theorem 22 with S = II (R),

the identity mapping on I (R) .

In the favor of the above-mentioned theorem, the following
justify example substantiates the result.

Example 24With reference to the partial cone-interval

metric space of Example 15. In practice, this distance

structure is θ−complete. Postulate that the mappings T

and S are defined by







T : I 2 (R)→ I (R)

([a,b] , [c,d]) 7→
[

a+ c− 1
2
,b+ d+ 1

2

]







S : I (R)→ I (R)

[a,b] 7→ [8a,8b] .

Fix λ = 1
2
∈ (0,1) .

For any real intervals [a,b] , [c,d] , [e, f ] , and [g,h] in I (R) ,
we get

℘(T ([a,b] , [c,d]) ,T ([e, f ] , [g,h])) =℘
([

a+ c− 1
2
,b+ d+ 1

2

]

,
[

e+ g− 1
2
, f + h+ 1

2

])

= (|a+ c+ b+ d− e− g− f − h| ,0)
� (|a+ b− e− f |+ |c+ d− g− h|,0)
= (|a+ b− e− f |,0)+ (|c+ d− g− h|,0)
� 1

4
(℘(S ([a,b]) ,S ([e, f ]))+℘(S ([c,d]) ,S ([g,h])))

= 1
4
(℘([8a,8b] , [8e,8 f ])+℘([8c,8d] , [8g,8h]))

= 1
4
[(|8a+ 8b− 8e−8 f |,0)+ (|8c+ 8d− 8g− 8h|,0)]

= 1
4
[(|8a+ 8b− 8e−8 f |+ |8c+ 8d− 8g− 8h|,0)]

= 2 [(|a+ b− e− f |+ |c+ d− g− h|,0)] .
Thus, the contractive inequality condition on T and S is

satisfied. Now, we are going to solve the system (2) by

means of the coupled Picard pair iterative scheme (5) for

arriving at a near-coupled coincidence point for the given

mappings. For this, let [an,bn] =
[

− 1
n
, 1

n

]

and

[cn,dn] = [−(n+ 1),n+ 1] . We can easily see that

T
([

− 1
n
, 1

n

]

, [−(n+ 1),n+ 1]
)

=

[

− (2n2+3n+2)
2n

,
(2n2+3n+2)

2n

]

Ω
= S ([an+1,bn+1]) =

[

− 8
n+1

, 8
n+1

]

.

If we map the sequence
{(

[−(n+ 1),n+ 1] ,
[

− 1
n
, 1

n

])}

n∈N by T, we

have

T
(

[−(n+ 1),n+ 1] ,
[

− 1
n
, 1

n

])

=

[

− (2n2+3n+2)
2n

,
(2n2+3n+2)

2n

]

Ω
= S ([cn+1,dn+1]) = [−8(n+ 2),8(n+ 2)] .

Then, the sequence of the successive approximations, if

convergent, converges to a near-coupled coincidence

point of T and S. To analyze the convergence, consider

the following numerical process:
∥

∥℘
(

S
([

− 1
n
, 1

n

])

,S ([0,0])
)

−℘(S ([0,0]) ,S ([0,0]))
∥

∥

∞
= ‖(0,0)‖∞ →

n→∞
0.

Thus, ℘
(

S
([

− 1
n
, 1

n

])

,S ([0,0])
)

−℘(S ([0,0]) ,S ([0,0]))≪ c for any c ∈ E

with c ≫ θ and for n enough large. Consequently,

S
([

− 1
n
, 1

n

]) τ℘→ 〈[0,0]〉 . In a similar manner, one can show that

S ([−(n+ 1)1,n+ 1])
τ℘→ 〈[0,0]〉 . It insures that all the postulates

on the considered mappings T and S are valid. Therefore,

we can apply Theorem 22 and conclude that

〈([0,0] , [0,0])〉Ω×Ω := {([−k1,k1] , [−k2,k2]) : k1,k2 ≥ 0}
defines the unique equivalence class of near-coupled

coincidence points of the mappings T and S in I 2 (R) .

4 Conclusions

In the two-dimensional interval vector space I 2 (R) ,
which is not a (conventional) vector space because the
concept of an inverse element is not available in general,
we coined the concept of a null set Ω ×Ω to play the
vital role of a zero element in I 2 (R) . Several related
terminologies are discussed. We presented the so-called
near-coupled fixed-point and near-coupled coincidence
point theorem and some interesting convergence results.
The new results are formulated in the framework of
partial cone-interval metric spaces and supported by
relevant examples.
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