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Abstract: The main idea of this study is to reduce the number of susceptible to infections so that ill patients can receive prompt

hospitalization. Fractional SEITR was introduced for this purpose. Both endemic and disease-free equilibrium’s’ durability was

examined. The fundamental reproduction number of the fractional SEITR model was determined using the next-generation matrix

method. Our analytical results were supported by numerical models. Here, a graphical representation of the fractional order model is

presented to validate the conclusion through numerical simulation. We have come to the conclusion that the fractional order model is

more precise and provides more information about the true data of disease dynamics.
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1 Introduction

At the beginning of the 20th century, Kermack and
McKendrick [1]. A quantitative model, SIR, was
presented for the first time. To describe how an outbreak
spreads, the SEIR model was constructed by adding
Exposed (E) as the fourth compartment to the SIR model
[2]. Rafiqul Islam et al. [3] to analyze influenza in
Bangladesh. ZhilanFeng (2007) [4] created an SEIR
model for assessing various management approaches [5].
The SITR model, first proposed by Vinod kumar bais and
Deepak kumar [6], emphasizes the classic importance of
the dynamical condition in the spread of the H1N1 virus.
Adding treatment T as a fifth compartment, Kumar and
Venkatesh, A. (2023) [7] created a novel SEITR model.
Seasonal influenza is a contagious respiratory virus that
rapidly spreads from person to person through the nasal
passages and oral cavities. Dengue, influenza, rabies,
tuberculosis, and the COVID-19 pandemic all have
latency and recovery phases, and the SEIR model has
been applied to each [8,9,10,11,12,13,14]. Predicting
influenza outbreaks in the United States, Long Zhou et al.
[15] relied on the tried and true SEIR model. During the

2009 Italian influenza pandemic [16]. Various prevention
and control measures were simulated using the SEIR
model by Misse, closure of schools, and vaccinations are
some of the measures taken to prevent disease. Influenza
is a global health threat [17]. Religious mass meetings in
Makkah and Al-Madinah, Saudi Arabia, often spread lung
diseases, a global public health issue [18]. This could
bring new, highly dangerous, and hardy viruses into Saudi
Arabia, especially during the flu season. The Saudi
Thoracic Society released influenza vaccination guidance
for Hajj and Umrah [19]. These standards will require the
Saudi Ministry of Hajj, its international counterparts, and
public health bodies globally to implement. Evidence
shows that visitors can bring the influenza back from Hajj
[20]. Importantly, strain mismatch may explain why
protected people get influenza [17,18]. Pilgrims from
nations with year-round influenza or influenza seasons
ahead of Saudi Arabia’s September–March season could
further exacerbate the situation. Therefore, Saudi Arabia
should start and execute an active human influenza
monitoring program, focusing on Hajj and Umrah
seasons. To manage the disease, epidemic models must be
studied, simulated, and compared with real data.
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Our primary focus is to reduce the number of
susceptible contacts with infections to speed up
hospitalization for critically ill patients. The graphics
depicted the impact of environmental and social variables
on epidemic populations. The five-partite framework of
the Fractional SEITR epidemiological model and talks
about its basic characteristics. Positivity and boundedness
checks were carried out. For tiny values of R0 < 1, it was
shown that there is a disease-free equilibrium point, and
that this point is both locally and universally
asymptotically stable. Similarly, for big values of R0 > 1,
there must be a point where the endemic equilibrium is
stable locally. The R0 reproduction figure indicates that
the epidemic has spread throughout the entire population.
Therefore, increasing the rate of treatment is the only way
to slow the spread of the epidemic.

2 Model Formation

To gain a better understanding of the dynamics of the
influenza epidemic, we propose a fractional SEITR model
that incorporates the treatment compartment (T) as the
fifth component in the standard SEIR model. The
population at time t, denoted as N(t), is divided into five
sub-populations: susceptible (S(t)), exposed (E(t)),
infected (I(t)), treated (T(t)), and recovering (R(t)). The
susceptible population represents individuals who are at
risk of contracting the virus, while the exposed population
comprises individuals who are infected but not yet
contagious. The infected population can transmit the
disease to others, while the treated population consists of
individuals receiving medical therapy in hospitals. The
recovering population includes individuals who have
shown improvement as a result of treatment.

Fractional differential equations have made significant
advancements in recent decades. In related studies,
Jagdev et al. [21] proposed a fractional fish farm model
using Atangana-Baleanu derivatives to analyze the
dynamic behavior of fish farms, and Jagdev Singh [22]
presented a model for the fractional guava fruit memory
effect. In this paper, we provide a concise overview of the
formulation and analysis of the Fractional SEITR model.
We investigate the model’s stability on a global scale and
examine the existence of endemic equilibrium. Through
analytical and numerical approaches, we draw conclusive
insights. Notably, we observe that as the treatment rate
increases, the susceptible population increases while the
infected, exposed, and treated populations decline.

Fig. 1: SEITR Model Graphic Figure.

Figure 1 visually represents the SEITR model,
providing a graphical illustration of the different
compartments and their interconnections. It helps in
comprehending the flow of individuals between the
susceptible, exposed, infected, treated, and recovering
populations, offering a visual representation of the
model’s structure and dynamics.

Table 1: The relative parameters are described.

Par. Description Val. Sour.

∧ Rate of susceptible

people

0.1 Constant

σ1 Death rate 1.2 [23,24]

σ2 Exposed rate of

a susceptible population

0.2 [24]

σ3 Infection rate of

exposed people

0.4 [24]

σ4 PInfected population

therapy rate

0.1 [24]

σ5 Treatment recovery rate 0.01 [25]

Table 1 provides an overview of the relative
parameters utilized in the fractional SEITR model. These
parameters play a crucial role in governing the dynamics
of the model and determining the rates of various
transitions within the compartments. The table presents
the parameter name, its depiction, corresponding values,
and the sources from which these values are derived.

3 Basic definitions and theorems

In this section, we provide an overview of the fundamental
definitions and theorems concerning the Caputo fractional
derivative and its applications. We begin by introducing
the precise definitions of the Caputo fractional derivative
and the Mittag-Leffler function. Additionally, we present
two essential theorems: the local stability theorem and the
global stability theorem. These theorems offer valuable
insights into the stability properties of Caputo fractional
systems. Finally, we illustrate the usage of Caputo
fractional derivatives in computational models by
discussing the SEITR model.[26,27,28,29,30]

Definition 1.[31]

The Caputo fractional derivative, denoted by CDα f (t), is

defined as follows:

CDα f (t) =
1

Γ (n−α)

∫ t

0

(t − τ)n−α−1 f (n) (τ)dτ. (1)

Definition 2.[32] The Mittag-Leffler function, denoted by

Eα (t), is given by the series representation:

Eα (t) =

∞∑
k=0

tk

Γ(αk +1)
. (2)
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Theorem 1.[33] For a Caputo fractional system described

by the equilibrium equation

CDαx (t) = f (t, x), (3)

if all eigenvalues λi, i = 1,2, . . . ,n, of the Jacobian matrix
∂ fi
∂ fj

, j = 1,2, . . . ,n, at the equilibrium xe satisfy the

condition:

| arg (λi)| >
απ

2
, 0 < α < 1. (4)

then the system is locally asymptotically stable.

Theorem 2.[34] Let Ω be a neighborhood containing the

equilibrium solution xe. Suppose V : [0,∞)×Ω→ R is a

continuous fractionally differentiable function that satisfies

the following conditions:

∅1 (x) ≤ V (t, x) ≤ ∅2 (x),

CDαV (t, x) ≤ −∅3,

where ∅1, ∅2 and ∅3 are continuous positive definite

functions defined on Ω. If V is a Lyapunov function, then

xe is globally asymptotically stable.

The SEITR model represents a system of differential
equations that captures the dynamics of susceptible (S),
exposed (E), infected (I), treated (T), and recovered (R)
individuals. It is described by the following equations:

dS

dt
= ∧−σ2SI −σ1S,

dE

dt
= σ2SI − (σ3 +σ1)E,

dI

dt
= σ3E − (σ4+σ1) I,

dT

dt
= σ4I − (σ5 +σ1)T,

dR

dt
= σ5T −σ1R,

(5)

where S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0 and R(0) ≥ 0,
and

N(t) = S(t)+E(t)+ I(t)+T(t)+R(t).

Fractional-order models are often capable of handling
variables within the unit interval, but adjustments can be
made to accommodate data from other intervals. In our
research, we utilize the Caputo fractional-order derivative
operator to extend the canonical integer-order model to a
fractional-order formulation as

C
0 Dα

t S = ∧−σ2SI −σ1S,

C
0 Dα

t E = σ2SI − (σ3+σ1)E,

C
0 Dα

t I = σ3E − (σ4+σ1) I,

C
0 Dα

t T = σ4I − (σ5+σ1)T,

C
0 Dα

t R = σ5T −σ1R.

(6)

4 Analysis of the fractional SEITR model

The section covers fractional SEITR-related topics such
as positivity and boundedness of the solution, the basic
reproduction number, and stability analysis.

4.1 Positivity and Boundedness

Theorem 3. All the solutions (S(t),E(t), I(t),T (t),R(t)) ∈
R5
+

of the system (6) with primary condition S(t) ≥ 0, E(t) ≥
0, I(t) ≥ 0, T (t) ≥ 0, and R(t) ≥ 0 are nonnegative and

uniformly bounded for all t ≥ 0.

Proof. Assume that (S(t),E(t), I(t),T (t),R(t)) ∈ R5
+

is a
solution of (6) for t ∈ [0, t0), where t0 > 0. Through 1st

equation of system (6), we get

C
0 Dα

t S = ∧−σ2
∗S∗I −σ1

∗S

≥ ∧− (σ2
∗I +σ1)

∗S,
(7)

where φ(t) = σ2
∗I +σ1.

After integration, we get

S(t) = S0 exp

(
−

∫ t

0

(σ2
∗I (s)+σ1)ds

)

+∧exp

(
−

∫ t

0

(σ2
∗I (s)+σ1)ds

)
∫ t

0

e
∫ s

0
(σ2

∗I (u)+σ1)duds ≥ 0,

⇒ S(t) ≥ 0.

(8)

From the 2nd equation of system (6), we develop

C
0 Dα

t E = σ2SI − (σ3+σ1)E

≥ −(σ3 +σ1)E .
(9)

These leads

E(t) = E0Eα

(
−

∫ t

0

(σ3 +σ1)ds

)
≥ 0,

⇒ E(t) ≥ 0.

(10)

From the 3rd equation of system (6), we acquire

C
0 Dα

t I = σ3E − (σ4+σ1) ≥ −(σ4 +σ1) I . (11)

These leads

I(t) = I0Eα

(
−

∫ t

0

(σ4+σ1)ds

)
≥ 0,

⇒ I(t) ≥ 0.

(12)

From the 4th equation of system (6), we develop

C
0 Dα

t T = σ4I − (σ5 +σ1)T ≥ −(σ5 +σ1)T, (13)
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leads to follow

T (t) = T0Eα

(
−

∫ t

0

(σ5 +σ1)

)
ds ≥ 0,

⇒ T (t) ≥ 0.

(14)

Similarly 5th equation of system (6), we acquire

C
0 Dα

t R = σ5T −σ1R ≥ −σ1R, (15)

leads to follow.

R(t) = R0Eα

(
−

∫ t

0

σ1ds

)
≥ 0,

⇒ R(t) ≥ 0.

(16)

Hence, the results (S,E,I,T,R) of system (6) sustaining the
primary conditions S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, T (t) ≥ 0,
and R(t) ≥ 0 for all t ∈ [0, t0) are nonnegative in the section
[0, t0).
Now, we demonstrate that the boundedness of clarifications
of system (6). The positivity of the solutions indicates that

C
0 Dα

t S ≤ ∧− µS. (17)

From the beyond equation, we can write that limt→∞ ≤ ∧
σ1

and S ≤ Λ

σ1
.

Consider the total populations N = S + E + I +T + R. On
differentiation gives C

0
Dα
t N ≤ ∧ − σ1N which leads to

limt→∞ supN ≤
(∧)
(σ1)

. Then, we get N ≤ Λ

σ1

⇒ S+E + I +T + R ≤
Λ

σ1

. (18)

Therefore, all the solution curves (S,E, I,T,R) sustaining
by the primary conditions are consistently bounded in R5

+

and in the section

Ω =

{
(S,E, I,T,R) ∈ R5

+
: 0 ≤ (S,E, I,T,R) ≤

Λ

σ1

}
. (19)

4.2 Basic Reproduction Number

A crucial factor for communicable disease is the Basic
Reproduction Number (R0) which is distinct as the
middling number of subordinate cases obtained by
distinct primary case during the infectious dated in a
susceptible populace. With R0, the epidemic growth rate
can be estimated, and the stability of the model will be
analyzed [9]. R0 Value can be determined through
approach of next Generation Matrix method [35],

R0 = ρ

(
FV−1

)
,

where

F =
©«
σ2+σ1

0
0

ª®
¬

and

V =
©«

(σ3+σ1)E
σ3E − (σ4+σ1)I
σ4I − (σ5+σ1)T

ª®
¬
.

The Jacobian of F and V are dual matrices F and V which
determined at disinfection state E = 0, I = 0 and T = 0, we
have

F =
©«
0 σ2 σ1

0 0 0
0 0 0

ª®
¬

and

V =
©
«
(σ3+σ1) 0
α (σ4+σ1) 0
0 −σ4 (σ5+σ1)

ª®¬
,

then

R0 = ρ

(
FV−1

)
=

σ2σ3

(σ3+σ1)(σ4+σ1)

+

σ3σ5σ1

(σ3+σ1)(σ4+σ1)(σ5+σ1)
.

(20)

4.3 Local Stability of Disease-Free Equilibrium

In this part, we utilized the method to investigate the local
stability of the disease-free equilibrium point.

Theorem 4. For R0 < 1, the Disease-Free Equilibrium

point E0 =

(
∧
σ1
,0,0,0,0

)
was locally asymptotically stable

and for R0 > 1, it was unstable [36].

Proof. The Jacobian matrix corresponding to the structure
1 at disease free equilibrium E0 is

J (E0)

=
©«
−σ1 0 −σ2 0 0

0 −(σ1+σ3) σ2 0 0
0 σ3 −(σ4+σ1) 0 0
0 0 σ4 −(σ5+σ1) 0
0 0 0 σ −σ1

ª®
¬
.

(21)

The characteristic equation is

(σ4+σ1)
2(σ4+ (σ5+σ1))

(
σ4

2
+ a1σ4+ a2

)
= 0, (22)

where a1 = 2σ1 +σ3 +σ4 and a2 = (σ1 +σ3)(σ4 +σ1) −
σ3σ2.

There are 5 Eigenvalues for the Jacobian matrix J (E0)
of which first three are −σ1, −σ1, (σ5 + σ1), and the
remaining two Eigenvalues are roots of quadratic equation
(λ2+ a1λ+ a2) = 0, which are negative. Through
Routh-Hurwitz criterion, all the roots of characteristic
equation have destructive real part which revenues steady
equilibrium if a1 > 0 and a2 > 0.

Since σ1 > 0, α > 0 and γ > 0, we have 2σ1+α+γ > 0
that is a1 > 0.
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Since (σ1+α)(γ+σ1) −αβ > 0 that is a2 > 0.
If R0 < 1, then

σ1σ2

(σ2+σ1)(σ4+σ1)

+

σ2σ5σ1

(σ2+σ1)(σ4+σ1)(σ5+σ1)
< 1,

(23)

⇒ (σ2 +σ3) (σ4 +σ1)−σ3σ2 > 0, that is a2 > 0.
Therefore, a2 > 0 if R0 < 1.
Therefore, according to the Routh-Hurwitz criteria, the
disease-free equilibrium point E0 is locally asymptotically
stable if R0 < 1.

4.4 Global Stability of Disease-Free

Equilibrium

In this part, we utilized the to investigate the global
asymptotic stability of the disease-free equilibrium point.

Theorem 5. The disease-free equilibrium points

E0 =

(
Λ
σ1
,0,0,0,0

)
of structure 1 was globally asymptotic

stable if R0 < 1.

Proof. It can be detected that from the structure (6), the
disease-free sections are S, R and the infected sections are
E,I,T. The system of Equations (6) will be arranged as

dU

dt
=Q(W,V),

dV

dt
= F(W,V)

and

F(W,0) = 0,

where W = (S,R) ∈ R2
+
, V = (A, I,Q, J) ∈ R3

+
.

By using the technique introduced by Casagrandi,
Renato, et al [37], we derived global stability of the

disease-free equilibrium point E0 =

(
Λ

µ
,0,0,0,0

)
. For the

worldwide asymptotic stability of E0 the succeeding two
conditions should be satisfied

1. dW
dt
= P(W,0) where X∗ is worldwide asymptotically

steady.
2. F(W,V) = KV − F̂(W,V), F̂(W,V) ≥ 0, where K =

DV F (W∗,0) is the Metzler Matrix and (X,Y ) ∈ ω.

If the given system of equations (1) satisfies (2) then
the equilibrium point E0 is a global asymptotically stable
for R0 < 1.

Therefore, system (6) can be rewritten as

Q (W,0) =

(
∧−σ1S

0

)
,

K =
©«
(σ3+σ1) 0 0
α (σ4+σ1) 0
0 σ4 (σ5+σ1)

ª®
¬

F̂(W,V) =
©«
σ2I (S0 − S)

0
0

ª®
¬
.

Since S0 > S, by observation, F̂((W,V)) ≥ 0(W,V) ∈ Ω.
We can say that the matrix K is M matrix by the definition

of M and also, we able to find that X∗
=

(
∧
σ1
,0
)

is

globally asymptotic stable steady state of the limiting
structure dW

dt
= Q(W,0).

Since the two conditions are fulfilled, the disease-free

steady state E0 =

(
∧
σ1
,0,0,0,0

)
of structure of equations (6)

is globally asymptotic stable if R0 < 1.

4.5 Local Stability of the Endemic Equilibrium

Point

We conclude the endemic steady state
X∗
= (S∗E∗, I∗,T ∗,R∗) with their possibility conditions are

S∗
=

∧

σ2I∗+σ1

,

E∗
=

σ2S∗I∗

(σ3+σ1)
,

T ∗
=

σ4I∗

(σ3+σ1)
,

R∗
=

σ5T ∗

σ1

,

I∗ =
(∧σ3σ2 −σ1(σ4+σ1))

(σ2(σ4+σ1(σ5+σ1)))

=

(∧(R0 −1)−ασ5σ1)

(σ2(σ4+σ1)(σ+σ1))
.

Theorem 6. When R0 > 1, then Endemic Equilibrium point

X∗ is locally asymptotically steady and unstable if R0 < 1.

Proof. The Jacobian matrix corresponding to the system
(6) at endemic equilibrium point X∗ is

J (X∗)

=
©«
(−σ2I

∗
+σ1) 0 −σ2S

∗ 0 0
σ2I

∗ −(σ1+σ3) σ2S
∗ 0 0

0 σ3 −(σ4+σ1) 0 0
0 0 γ −(σ5+σ1) 0
0 0 0 σ −σ1

ª®
¬
.

(24)

The characteristic equation is

(σ4+σ1)(σ4+ (σ5+σ1))(
λ3
+ b1λ

2
+ b2λ+ b3

)
= 0,

(25)

where

b1 = σ2I∗ +3σ1+σ3+σ4,

b2 = (σ3+σ1) (σ4 +σ1)−ασ2S∗

+ (σ4 +σ1) (σ2I∗ +σ1),

and

b3 = (σ2I∗+σ1) ((σ3+σ1)(σ4+σ1) −σ3σ2S∗)

−σ2
2S∗I∗.
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Therefore, the first two Eigen values are −σ1, −(σ5 +σ1)
and remaining three Eigenvalues are the roots of the(
λ3
+ b1λ

2
+ b2λ+ b3

)
= 0.

Yet again if the constants of specific equation a1 > 0,
a2 > 0, a3 > 0 and a1a2 > a3 are true, formerly by
Routh-Hurwitz criterion, altogether the roots of the
specific equation have negative real portions and hence a
stable equilibrium. Therefore, Endemic equilibrium at X∗

is locally asymptotically stable if R0 > 1.

5 Numerical Simulations

Here, we present some numerical models to illustrate
potential behaviors of the hypothesized fractional-order
flu. Taking various fractional-order values, we show
several numerical simulations of susceptible, exposed,
infected, treatment, and recovered individuals. All
numerical simulations are performed in MATLAB for this
research with the initial conditions of S (0) = 5, E (0) = 2,
I (0) = 1, T (0) = 1, R (0) = 1. Figure 2 shows the
numerical solution of the flu model described by equation
(9). It provides a comprehensive overview of the system’s
dynamics over time, illustrating the interactions between
different population groups.

Fig. 2: Numerical solution of model (9).

Figure 3 illustrates the behavior of the susceptible
population (S) as a function of time t. It showcases how
the number of susceptible individuals changes over the
course of the simulation, offering insights into the spread
and containment of the flus.

Fig. 3: Susceptible Population Over Time t.

Figure 4 displays the size of the exposed population
(E) as a function of time t. It depicts the progression of
individuals who have been exposed to the flu but are not
yet infectious. This information is crucial for understanding
the potential outbreak and transmission dynamics.

Fig. 4: Size of the exposed population over time t.

Figure 5 presents the size of the infected population (I)
as a function of time t. It showcases the growth and decline
of the infected individuals, providing valuable insights into
the severity and progression of the flu outbreak.

Fig. 5: Size of the infected population over time t.

Figure 6 illustrates the size of the treatment population
(T) over time t. It depicts the number of individuals
receiving medical treatment for the flu, providing insights
into the healthcare system’s demand and the effectiveness
of treatment strategies.
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Fig. 6: Size of the treatment population over time t.

Figure 7 showcases the size of the recovered population
(R) as a function of time t. It demonstrates the number
of individuals who have successfully recovered from the
flu, offering insights into the overall recovery rate and the
duration of the outbreak.

Fig. 7: Size of the recovered population over time t.

These figures collectively offer a comprehensive
visual representation of the numerical simulations,
enabling a deeper understanding of the dynamics and
potential outcomes of the hypothesized fractional-order
flu model.

6 Conclusion

In order to better comprehend the dynamics of the
transmission of infectious diseases, epidemiological
models have provided us with invaluable information. The
paper presents the Fractional SEITR epidemiological
model, which is a five-compartment framework, and
discusses its fundamental properties. It was found to have
a value of R0 for the fundamental replication number.
Verification of positivity and boundedness was carried
out. It was proven that the disease-free equilibrium point
E0 exists and is locally and universally asymptotically
stable for small values of R0 < 1 similarly, the endemic
equilibrium point X∗ must exist and be locally
asymptotically stable for large values of R0 > 1. The
reproduction number R0 shows that the outbreak has
reached epidemic proportions. As a result, the only way to

decrease the spread of disease is to increase the rate of
treatment. Furthermore, future studies can be performed
to determine the most effective management strategies for
the disease spread model, as well as the effects of
medications and immunizations on the fractional SEITR
model. As a future work, we advise the reader to study
new models [38,39,40,41,42,43,44], with different kinds
of fractional derivatives.
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