
Appl. Math. Inf. Sci. 17, No. 5, 735-739 (2023) 735

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/170501

Power–Linear Hazard Distribution Via k-th Record Values

and Characterization

M. I. Khan

Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Kingdom of Saudi Arabia

Received: 14 Jun. 2023, Revised: 8 Jul. 2023, Accepted: 16 Jul. 2023

Published online: 1 Sep. 2023

Abstract: The power-linear hazard distribution was introduced by [1] as a mixture of power and linear hazard function. This

distribution embodies the many lifetime distributions. This paper devotes to establish the recurrence relation based on kth record values.

Moreover, characterization results also derived via moment properties.
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1 Introduction

The power-linear hazard function (P-LHF) is addressed by
[1]

h(p) =α pγ +β p, γ >−1,α, β ≥ 0 and p> 0. (1)

where γ 6= 1 and α +β > 0.
The P-LHF is very simple and exhibits the

bathtub-shaped, constant, decreasing and increasing
hazard function. The P-LHF is considered more flexible
among life-time distribution.

Suppose P denotes the random variable (R.V.) having
P-LHF in (1). Then the cumulative density function (CDF)
and probability density function (PDF) of P are outlined by

V (p) = 1− e
−
{

β
2 p2+ α

γ+1 pγ+1
}

, p > 0 (2)

v(p) = (β p+α pγ)e
−
{

β
2 p2+ α

γ+1 pγ+1
}

. (3)

This distribution is currently widely used in different
fields of studies, reliability, hydrology, engineering,
insurance, and economics. P-LH distribution contains
some important lifetime distributions (exponential,
Rayleigh, Weibull, linear, quadratic, and power hazard
distribution). For more details see [1].

From Equations (2) and (3), we note that.

v(p) = (β p+α pγ)V̄ (p) (4)

which will be considered for obtaining the required
results from (3).

First time in literature, the idea of record values was
incepted by [2] and studied many of its basic properties. It
spans over several realms of applications, for example,
sports, weather, economics, hydrology, future planning,
and many more. For a more in-depth look at the record,
see [3], [4], and [5].

The model of kth record values is taken into
consideration when record values itself taken as an
outlier. The kth record proposed by [6] and its
applications in reliability theory was cited by [7] and [8]
and many more.

Let {Pa,a ≥ 1} be a sequence of independent and
identically distributed (iid) R.V. with CDF V (p) and PDF
v(p). For a fixed positive integer k, we interpret the

sequence {Z
(k)
a , a ≥ 1} of kth upper record times of

{Pa, a ≥ 1} as:

Z
(k)
1 = 1

Z
(k)
(a+1)

= min

{

ϕ > Z
(k)
a : Pϕ:ϕ+k−1 > P

Z
(k)
a :Z

(k)
a+k−1

}

.

The sequence {Q
(k)
a ,a ≥ 1}, where Q

(k)
a = P

Z
(k)
a

is

termed the sequence of kth upper record values of

{Pa,a ≥ 1}. The {Q
(k)
a ,a ≥ 1} corresponds to the upper

record values at k = 1.
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The PDF of Q
(k)
a and the joint PDF of Q

(k)
b and Q

(k)
a are

given in (5–6) by [6] and [9]

v
Q
(k)
a
(p) =

ka

(a− 1)!
[− lnV̄ (p)]

a−1
[V̄ (p)]

k−1
v(p), (5)

v
Q
(k)
b

,Q
(k)
a
(p,q) = Ψ [− lnV̄ (p)]

b−1 v(p)

V̄ (p)
×

[lnV̄ (p)− lnV̄ (q)]
a−b−1

[V̄ (q)]
k−1

v(q),

p < q, 1 ≤ b < a, a ≥ 2 (6)

where

V̄ (p) = 1−V(p) and Ψ =
ka

(b− 1)!(a− b− 1)!
.

The moment properties of kth record values for
different distribution have been discussed by many
authors. For a detailed see, [10,11,12,13,14,15,16] and
cited therein. It has been seen that no attention paid to
obtain the moments of kth record from (3) in previous
study.

This article outlined as follows. Moments of kth

record values are proved in Sections 2-3 via recurrence
relations. Characterization results are concluded in
Section 4. Conclusion is reported at the end.

2 Single Moments

The aim of this section is to attain single moments via
recurrence relations.

Theorem 1. Fix a positive integer k ≥ 1,a ≥ 1 and ϕ =
0,1, · · · ,

E
(

Q
(k)
a

)ϕ
=

β k

ϕ + 2

{

E
(

Q
(k)
a

)ϕ+2

−E
(

Q
(k)
a−1

)ϕ+2
}

+

αk

ϕ + γ + 1

{

E
(

Q
(k)
a

)ϕ+γ+1

−E
(

Q
(k)
a−1

)ϕ+γ+1
}

(7)

and

E
(

Q
(k)
1

)ϕ
=

β k

ϕ + 2

[

E
(

Q
(k)
1

)ϕ+2
]

+

αk

ϕ + γ + 1

[

E
(

Q
(k)
1

)ϕ+γ+1
]

, for a = 1. (8)

Proof. Using (5), we have

E
(

Q
(k)
a

)ϕ
=

ka

(a− 1)!
×

∫ ∞

0
pϕ [− lnV̄ (p)]

a−1
[V̄ (p)]

k−1
v(p)d p. (9)

On substituting (6) in (9), we get.

E
(

Q
(k)
a

)ϕ
=

kn

(a− 1)!
×

∫ ∞

0
pϕ [− ln F̄(p)]

n−1
[F̄(p)]

k
(β p+α pγ)d p

E
(

Q
(k)
a

)ϕ
=

β kn

(a− 1)!

∫ ∞

0
pϕ+1 [− lnV̄ (p)]

a−1
[V̄ (p)]

k
d p

+
αkn

(a− 1)!

∫ ∞

0
pϕ+γ [− lnV̄ (p)]

n−1
[V̄ (p)]

k
d p.

(10)

Integrating (10) by parts we obtain,

E
(

Q
(k)
a

)ϕ
=

β ka

(a− 1)!(ϕ + 2)
×

{

∫ ∞

0
pϕ+2 [− lnV̄ (p)]

a−1
[V̄ (p)]

k−1
v(p)d p

−(a− 1)

∫ ∞

0
pϕ+2 [− lnV̄ (p)]

a−2
[V̄ (p)]

k−1
v(p)d p

}

+
(αkn

(a− 1)!(ϕ+ γ + 1)
×

{

∫ ∞

0
pϕ+γ+1 [− lnV̄ (p)]

a−1
[V̄ (p)]

k−1
v(p)d p

−(a− 1)

∫ ∞

0
pϕ+γ+1 [− lnV̄ (p)]

a−2
[V̄ (p)]

k−1
v(p)d p

}

.

(11)

The relation (7) is established after rewriting the above
expression.

Relation (8) follows from (11) by putting a = 1.

Remark 1. Single moments of kth record values for
different parameters are listed in Table 1.

Table 1: Single moments of K-th record values.

S. No. ααα βββ γγγ Distribution Author

1 α 0 0 exponential [17]

2 a/θ 0 a−1 Weibull [18]

3 0 β γ Rayleigh [19]

4 α 0 γ power hazard [20]

5 α β 0 linear hazard [21]

6 α β 2 quadratic hazard [22]

Corollary 1. Relations given in (7) reduces at k = 1, as
follows.

E
(

P
(ϕ)
Z(a)

)

=
β

ϕ + 2

{

E
(

P
(ϕ+2)
Z(a)

)

−E
(

P
(ϕ+2)
Z(a−1)

)}

+

α

ϕ + γ + 1

{

E
(

P
(ϕ+γ+1)
Z(a)

)

−E
(

P
(ϕ+γ+1)
Z(a−1)

)}

Remark 2. Single moments of upper record values for
different parameter are given in Table 2.
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Table 2: Single moments of upper record values.

S. No. ααα βββ γγγ Distribution Author

1 α 0 0 exponential [17]

2 a/θ 0 a−1 Weibull [18]

3 0 β γ Rayleigh [19]

4 α 0 γ power hazard [20]

5 α β 0 linear hazard [21]

6 α β 2 quadratic hazard [22]

3 Product Moments

Relations for product moments of kth record are provided
in this section.

Theorem 2. For b ≥ 1 and φ ,ϕ = 0,1, · · · ,

E
(

Q
(k)
b

)φ (

Q
(k)
b+1

)ϕ
=

β k

ϕ + 2
×

{[

E
(

Q
(k)
b

)φ (

Q
(k)
b+1

)ϕ+2
]

−

[

E
(

Q
(k)
b

)φ+ϕ+2
]}

+

αk

ϕ + γ + 1

{[

E
(

Q
(k)
b

)φ (

Q
(k)
b+1

)ϕ+γ+1
]

−

[

E
(

Q
(k)
b

)φ+ϕ+γ+1
]}

(12)

and for 1 ≤ b ≤ a− 2,

E

(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ
=

β k

ϕ + 2
×

{[

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ+2
]

−

[

E
(

Q
(k)
b

)φ
E
(

Q
(k)
a−1

)ϕ+2
]}

+
αk

ϕ + γ + 1

{[

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ+γ+1
]

−

[

E

(

Q
(k)
b

)φ
E

(

Q
(k)
a−1

)ϕ+γ+1
]}

. (13)

Proof. In view of (2) and (6), we have,

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ
=Ψ

∫ ∞

0
qϕD(q) [V̄ (q)]

k−1
v(q)dq,

where

D(q) =

β

∫ q

0
pϕ+1 [− lnV̄ (p)]

b−1
[− lnV̄ (q)+ lnV̄ (p)]

a−b−1
d p+

α

∫ q

0
pϕ+γ [− lnV̄ (p)]

b−1
[− lnV̄ (q)+ lnV̄ (p)]

a−b−1
d p.

(14)

On integrating D(q),we reach,

D(q) =
β

ϕ + 2

{

(a− b− 1)

∫ q

0
pϕ+2 [− lnV̄ (p)]

b−1
×

[− lnV̄ (q)+ lnV̄ (p)]
a−b−2 v(p)

V̄ (p)
d p− (b− 1)×

∫ q

0
pϕ+2 [− lnV̄ (p)]

b−2
[− lnV̄ (q)+ lnV̄ (p)]

a−b−2

v(p)

V̄ (p)
d p

}

+
α

ϕ + γ + 1

{

(a− b− 1)
∫ q

0
pϕ+γ+1×

[− lnV̄ (p)]
b−1

[− lnV̄ (q)+ lnV̄ (p)]
a−b−2 v(p)

V̄ (p)
d p

−(b− 1)

∫ q

0
pϕ+γ+1 [− lnV̄ (p)]

b−2

[− lnV̄ (q)+ lnV̄ (p)]
a−b−2 v(p)

V̄ (p)
d p

}

. (15)

Substituting the above terms into (14) and simplifying it
confirms to (13).
The relation (12) can easily be proved by taking
a = b+ 1.
Equation (13) reduces to Equation (7) at φ = 0.

Remarks 1 and 2 are also validates for product moments.

Corollary 2. From (13) the following expression

E
(

P
(φ)
Z(b)

P
(ϕ)
Z(a)

)

=
β

ϕ + 2
×

{

E
(

P
(φ)
Z(b)

P
(ϕ+2)
Z(a)

)

−E
(

P
(φ)
Z(b)

P
(ϕ+2)
Z(a−1)

)}

+
α

ϕ + γ + 1
×

{

E

(

P
(φ)
Z(b)P

(ϕ+γ+1)
Z(a)

)

−E

(

P
(φ)
Z(b)P

(ϕ+γ+1)
Z(a−1)

)}

.

at k = 1.

4 Characterization

The following theorem expresses the characterization
results for (3) via recurrence relations, which leads to an
important role in mathematical statistics. There are
several techniques are taken to characterize the
distribution, one of them is recurrence relations.

Theorem 3. For a positive integer k and let φ ,ϕ > 0. A
necessary and sufficient condition for R.V.P to be
distributed with (3) is that

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ
=

β k

ϕ + 2

{[

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ+2
]

−

[

E

(

Q
(k)
b

)φ
E

(

Q
(k)
a−1

)ϕ+2
]}

+

αk

ϕ + γ + 1
×

{[

E
(

Q
(k)
b

)φ (

Q
(k)
a

)ϕ+γ+1
]

−

[

E
(

Q
(k)
b

)φ
E
(

Q
(k)
a−1

)ϕ+γ+1
]}

. (16)
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Proof. From (14) necessary part follows. If (16) is
satisfied, then on using (4) and (6), we have.

E
(

Q
(k)
m

)φ (

Q
(k)
n

)ϕ
=

β k

ϕ + 2
Ψ

∫ ∞

0

∫ ∞

p
pφ qϕ+2 ×

[− lnV̄ (p)]
b−1 v(p)

V̄ (p)
T

′
(q)dqd p+

αk

ϕ + γ + 1
Ψ ×

∫ ∞

0

∫ ∞

p
pφ qϕ+γ+1 [− lnV̄ (p)]

b−1 v(p)

V̄ (p)
T

′
(q)dqd p, (17)

where

T (q) =−
[− lnV̄ (q)+ lnV̄ (p)]a−b−1[V̄ (q)]k

k
. (18)

Now consider,

T (P) =

∫ ∞

p
qϕ+2T

′
(q)dq+

∫ ∞

p
qϕ+γ+1T

′
(q)dq. (19)

Integrating (19) by parts and using (18). We have the
following simplified expression.

Ψ

∫ ∞

0

∫ ∞

p
pφ qϕ [− lnV̄ (p)]b−1 v(p)

V̄ (p)
×

[− lnV̄ (q)+ lnV̄ (p)]a−b−1[V̄ (q)]k−1{v(q)−

(β q+αqγ)V̄ (q)}dqd p = 0. (20)

Applying the extension of [23] to (20). It confirms (3).

Corollary 3. Putting φ = 0 in (16), we can get the
characterization result for single moment as follows.

E

(

Q
(k)
a

)ϕ
=

β k

ϕ + 2

{

E

(

Q
(k)
a

)ϕ+2

−E

(

Q
(k)
a−1

)ϕ+2
}

+
αk

ϕ + γ + 1

{

E
(

Q
(k)
a

)ϕ+γ+1

−E
(

Q
(k)
a−1

)ϕ+γ+1
}

,

for a = 1,2, · · · ,

5 Conclusion

In this paper, moment properties of kth upper record
values from power-linear hazard distribution based on
recurrence relations are derived. These moments help to
reduce the number of direct calculations to calculate the
moments. Further, the characterization result is also
presented.
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