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Abstract: In this article, with the use of the Bayesian, Expected Bayesian, and H-Bayesian estimation methods, the shape parameter

and hazard rate of the Kumaraswamy distribution are calculated. Three separate loss functions the Squared Error loss function(SELF),

the Precautionary loss function(PLF), and the Asymmetry loss function(ALF) along with an informative prior the Gamma prior are used

to provide the estimates . The definitions and properties of the proposed estimators are given. Monte Carlo simulation is used to compare

all of the estimates in terms of mean square error (MSE). Taking data from the real world, different estimation methodologies’ efficacy

has also been studied. Numerical analyses show that the E-Bayesian estimates outperform the Bayesian and Hierarchical estimates.

Keywords: Bayesian estimation, Expected Bayesian estimation and H-Bayesian estimation, Kumaraswamy distribution.

1 Introduction

The Kumaraswamy distribution [1] is a probability distribution with two parameters, defined on the interval (0,1). Its
probability density function (PDF) can be expressed as follows:

f (x;θ ,λ ) = θλ xθ−1(1− xθ)λ−1;x,θ ,λ > 0 (1)

where θ , λ are the shape parameter respectively.

The CDF of the Kumaraswamy distribution is given as

F(x;θ ,λ ) = 1− (1− xθ)λ ;x,θ ,λ > 0 (2)

The reliability function and hazard rate of the Kumaraswamy distribution are as follows respectively

R(t) = (1− tθ)λ ;t,θ ,λ > 0 (3)

H(t) =
θλ tθ−1

1− tθ
;t > 0 (4)

The Kumaraswamy distribution and the beta distribution exhibit similar probabilistic characteristics. Depending on the
chosen shape parameters, both distributions can display a range of features in their density functions, such as unimodal
or multimodal shapes, increasing or decreasing patterns, or constant behavior. However, the Kumaraswamy distribution
has an advantage over the beta distribution in terms of its distribution function. Unlike the beta distribution, the
Kumaraswamy distribution’s distribution function can be expressed in a closed form, allowing for easier computation of
quantiles. In contrast, the distribution function of the beta distribution requires integration, which can be more
computationally intensive. The Kumaraswamy distribution has demonstrated a strong correlation with various natural
phenomena, including daily rainfall, water flows, and other relevant fields. This makes it particularly suitable for
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modeling variables with upper and lower bounds, such as human heights, test scores, air temperatures, and economic
data. In recent years, scholars have increasingly recognized the significance of the Kumaraswamy distribution and have
directed their attention towards studying and evaluating its properties. Works by Fletcher and Ponnambalam [2], Sundar
and Subbiah [3], and Ponnambalam et al. [4] have contributed to advancing our understanding and practical application
of this distribution in diverse domains. A variety of distributions, including the uniform, beta, exponential, and
generalised beta distributions, can be created by changing the parameters alpha and beta of the Kumaraswamy
distribution. According to Jones [5], Kumaraswamy distribution has valuable applications in simulating reliability data
obtained from different life tests. It possesses several important distributional properties that make it a suitable choice for
such analyses. The Kumaraswamy Weibull distribution, a versatile model for assessing failure time data, was introduced
and some of its mathematical aspects were examined by Cordeiro, Ortega, and Nadarajah [6]. With a known alpha value,
Reyad and Ahmed [7] were able to obtain Bayes estimates for the shape parameter beta. Both symmetric and asymmetric
loss functions were used to get these estimates. Furthermore, they revealed significant comparative findings amongst the
suggested methodologies utilising a Monte Carlo simulation analysis. Jones [5] added that despite the Kumaraswamy
distribution’s highly flexible probabilistic structure, researchers have not shown a sufficient level of interest in it. Ghosh
and Nadarajah [8] investigated the use of two loss functions in Bayesian estimation with three distinct censoring
schemes: left censoring, single type-II censoring, and double type-II censoring with a specified parameter. In order to
gain insight into parameter estimation, issues for the same distribution, Sultana et al. [9] recently merged hybrid and
progressive type I censoring techniques. With a hybrid censoring technique, Sultana et al. [10] analysed and calculated
parameters for the kumaraswamy distribution. In addition to the Bayesian methodology, we have also studied
Hierarchical Bayesian (H-Bayesian) approaches. The H-Bayesian approach is more resilient than Bayesian methods
since it comprises two stages for constructing the prior distribution. The complicated integrals contained in the estimator
formulation are one of the technique’s drawbacks. It must be solved using a combination of numerical approximation
methods or Matlab. As a result, the calculation takes longer and becomes more tedious.In response to the limitations of
the Hierarchical Bayesian method, a different approach called the Expected Bayesian estimation method was introduced
as an alternative. This method offers a simpler alternative compared to the H-Bayesian method.

Han and Ding [11] were the first to address the definition of E-Bayesian estimation. Since then, there has been a lot of
work in the literature on inference using E-Bayesian estimation. Han [12], conducted a study on the estimation of failure
rates in exponential distributions and proposed both Expected Bayesian and hierarchical Bayesian estimators. The
research aimed to explore the characteristics and properties of these estimators. Han [13] also explored the estimators for
Pareto distribution parameter under various loss functions. Basheer et.al [14] examined the estimation of parameter and
reliability function in the inverse Weibull distribution, focusing on the Expected Bayesian and H-Bayesian estimation
methods. The study aimed to analyze and discuss the properties and implications of these estimation techniques.
Abdul-Sathar and Athirakrishnan [15] investigated the estimation of the scale parameter and inverted hazard rate in the
inverse Rayleigh distribution using Expected Bayesian and H-Bayesian estimation approaches. The study aimed to
explore the characteristics and performance of these estimation methods for the specified distribution. In this article, the
parameter and hazard rate of the kumaraswamy distribution is estimated using Bayesian, Expected Bayesian, and
H-Bayesian methods. We also present simulated data to evaluate the proposed estimators performance.

The information is arranged as follows: Section 2 deduces the Bayesian estimators of the parameter λ and hazard rate for
various loss functions. Expected Bayesian estimators of the parameter and hazard rate under various loss functions are
developed in section 3. The H-Bayesian estimation is covered in Section 4, and the Expected Bayesian and H-Bayesian
estimators’ properties are covered in Section 5. The performance of the estimators under various loss functions is
investigated using a simulation study in section 6 using R. In section 7, the suggested study’s conclusions are finally
discussed.

2 Bayesian Estimation

In this part, we presented Bayesian estimators for the parameter λ and the hazard rate of the Kumaraswamy distribution.
These estimators were formulated using three distinct loss functions: SELF, PLF and ALF.

Suppose we have a random sample of size n, denoted as x1,x2, ...,xn, drawn from the Kumaraswamy distribution. In terms
of the observed sample values, the likelihood function can be expressed as follows:

L(λ |x) =
n

∏
i=1

f (xi,θ ,λ )

L(λ |x) = n logθ + n logλ +(θ − 1)
n

∑
i=1

logxi +(λ − 1)
n

∑
i=1

log(1− xθ
i )
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L(λ |x) ∝ λ n exp(−λ T ) (5)

where Q = log(1− xθ
i )

−1.
We are using gamma distribution as prior distribution of λ . The gamma prior distribution with shape and scale parameter
’r’ and ’s’ respectively has the following PDF

g1(λ |r,s) =
srλ r−1

Γ (r)
e−sλ ;λ ,r,s > 0 (6)

Using equation (5) and (6), the posterior distribution for the parameter λ becomes

P1(λ |x) =
L(λ |x)∗ g1(λ |r,s)

∫ ∞
0 L(λ |x)∗ g1(λ |r,s)dλ

=
λ n exp(−λ Q) sr

Γ r
λ r−1 exp(−sλ )

∫ ∞
0 λ n exp(−λ Q) sr

Γ r
λ r−1 exp(−sλ )dλ

P1(λ |x) =
(Q+ s)n+r

Γ (n+ r)
λ n+r−1 exp(−λ (Q+ s))

2.1 Bayes estimate of λ with SELF

The Squared Error loss function (SELF) is defined as

L(λ̂ ,λ ) = c(λ̂ −λ )2 (7)

where λ̂ is an estimator of λ . The Bayes estimator can be obtained as:

λ̂BS = E[λ |x] (8)

Provided that the expectation E[λ |x] exists and finite.

By using SELF, the Bayes estimator is given by

E[λ |x] =
∫ ∞

0
λ .P1(λ |x)

=
∫ ∞

0

(Q+ s)n+r
λ (n+r+1)−1 exp−(λ (Q+ s))

Γ (n+ r)
dλ

=⇒ λ̂BS = E[λ |x] = n+ r

Q+ s
(9)

The bayes estimator of Hazard rate is given as

E[ ˆH(t)|x] =
∫ ∞

0
H(t).P1(λ |x)

=
∫ ∞

0

θλ tθ−1

1− tθ
.
(Q+ s)n+r

λ (n+r)−1 exp−(λ (Q+ s))

Γ (n+ r)
dλ

=
θ tθ−1

1− tθ
.
(Q+ s)n+r

Γ (n+ r)
.
Γ (n+ r+ 1)

(Q+ r)n+r+1

ĤBS = E[λ |x] = θ tθ−1

1− tθ
.
n+ r

Q+ s
(10)
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2.2 Bayes estimate of λ with PLF

The Precautionary loss function (PLF) is defined as

L(λ̂ ,λ ) =
c(λ̂ −λ )2

λ̂
(11)

where λ̂ is an estimator of λ . The Bayes estimator can be obtained as:

λ̂BP = E[λ 2|x] (12)

Provided that the expectation E[λ 2|x] exists and finite.

The Bayes estimator based on PLF, is given by

E[λ 2|x] =
∫ ∞

0

1

λ 2
.P1(λ |x)

=
∫ ∞

0

(Q+ q)n+r
λ (n+r+2)−1 exp−(λ (Q+ s))

Γ (n+ r)
dλ

=
(n+ r+ 1)(n+ r)

(Q+ s)2

=⇒ λ̂BP = E[λ 2|x] =
√

(n+ r+ 1)(n+ r)

(Q+ s)2
(13)

The bayes estimator of Hazard rate is given as

ĤBP = E[H(t)2|x] =
∫ ∞

0
H(t)2

.P1(λ |x)

=

(

θ tθ−1

1− tθ

)2

.
(Q+ s)n+r

Γ (n+ s)

∫ ∞

0
λ (n+r+2)−1 exp(−λ (Q+ s))dλ

ĤBP =
θ tθ−1

1− tθ
.

√

(n+ r+ 1)(n+ r)

(Q+ s)2
(14)

2.3 Bayes estimate of λ with ALF

Wang and Wang [16] introduced the asymmetry loss function (ALF), defined as

L(λ̂ ,λ ) =

(

√

λ

δ
−
√

δ

λ

)2

=
λ

δ
+

δ

λ
− 2 (15)

where λ̂ is an estimate of λ . And, the corresponding Bayes estimate of λ is given as

λ̂BA =

[

E[λ−1|x]
E[λ |x]

]− 1
2

(16)

E[λ−1|x] =
∫ ∞

0

1

λ
.P1(λ |x)

=
∫ ∞

0

(Q+ q)n+r
λ (n+r−1)−1 exp−(λ (Q+ s))

Γ (n+ r)
dλ

E[λ−1|x] = Q+ s

n+ r− 1
(17)
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And, From equation (9)

E[λ |x] = n+ r

Q+ s
(18)

The Bayes estimate of λ is given by

λ̂BA =

√

(n+ s)(n+ r− 1)

(Q+ s)
(19)

Similarly, The Bayes estimate of Hazard Rate is given by

ĤBA =

[

E[H−1(t)|x]
E[H(t)|x]

]− 1
2

ĤBA =
θ tθ−1

1− tθ
.

√

(n+ r)(n+ r− 1)

(Q+ s)
(20)

3 Expected-Bayesian Estimation

Han [17] mentioned that the prior parameters ’r’ and ’s’ should be selected in such a manner that the prior given in (6) be
a decreasing function of θ .

d

dλ
g1(λ |r,s) =

(rs)

Γ (r)
θ (s−2) exp(−λ r)((s− 1)− rλ) (21)

Thus, for 0 < r < 1 and s > 0, our prior distribution (6) becomes a decreasing function of λ . The E-Bayesian estimate of
λ is given by

λ̂EB =
∫ 1

0

∫ v

0
λ̂B ∗π(λ ,r,s)drds (22)

The domain of the first and second integrals in this case is the domain of the hyperparameters ’r’ and ’s’, respectively,

for which our prior density function is the decreasing function of λ . λ̂B is the Bayesian estimate of λ obtained using
three various loss functions. We now choose the prior distribution of the hyperparameters ’r’ and ’s’ for the E-Bayesian
estimates of λ . These distributions are primarily used to investigate the impact of different prior distributions on E-
Bayesian estimates of λ . The prior distribution of the hyperparameters ’r’ and ’s’ is given by

π(r,s) =
1

v
;0 < r < 1,0 < s < v. (23)

3.1 Expected Bayesian estimation under SELF

E-Bayes estimate of λ based on (23) is given by

λ̂E1 =

∫ 1

0

∫ v

0
λ̂BS ∗π(r,s)drds

=
∫ 1

0

∫ v

0

n+ r

Q+ s
.
1

v
drds

λ̂E1 =
2n+ 1

2v
log

(

Q+ s

Q

)

(24)

The Expected-Bayesian estimate of hazard rate is given as

=

∫ 1

0

∫ v

0

θ tθ−1

1− tθ
.
n+ r

Q+ s
.
1

v
drds

ˆH(t)E1
=

θ tθ−1

(1− tθ)
.
2n+ 1

2v
log

(

Q+ s

Q

)

(25)
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3.2 Expected Bayesian estimation under PLF

E-Bayes estimate of λ based on (23), is given by

λ̂E2 =
∫ 1

0

∫ v

0
λ̂BP ∗π(r,s)drds

=
∫ 1

0

∫ v

0

√

(n+ r+ 1)(n+ r)

(Q+ s)2
.
1

v
drds

λ̂E2 =
1

v
log

(

Q+ s

Q

)

∫ 1

0

√

(n+ r+ 1)(n+ r)dr (26)

The Expected-Bayesian estimate of hazard rate is given as

=

∫ 1

0

∫ v

0

θ tθ−1

1− tθ
.

√

(n+ r+ 1)(n+ r)

(Q+ s)2
.
1

v
drds

ˆH(t)E2
=

θ tθ−1

v(1− tθ)
. log

(

Q+ s

Q

)

∫ 1

0

√

(n+ r+ 1)(n+ r)dr (27)

3.3 Expected Bayesian estimation under ALF

E-Bayes estimate of λ based on (23), is given by

λ̂E3 =

∫ 1

0

∫ v

0
λ̂BA ∗π(r,s)d pdq

=

√

(n+ r)(n+ r− 1)

(Q+ s)
.
1

v
dsdr

λ̂E3 =
1

v
log

(

Q+ s

Q

)

∫ 1

0

√

(n+ r− 1)(n+ r)dr (28)

The Expected-Bayesian estimate of hazard rate is given as

=

∫ 1

0

∫ v

0

θ tθ−1

1− tθ
.

√

(n+ r)(n+ r− 1)

(Q+ s)
.
1

v
drds

ˆH(t)E3
=

θ tθ−1

v(1− tθ)
. log

(

Q+ s

Q

)

∫ 1

0

√

(n+ r− 1)(n+ r)dr (29)

4 Hierarchical Bayesian Estimation

In this section, the H-Bayesian estimates of shape parameter and Hazard rate of Kumaraswamy distribution based on
SELF, PLF and ALF are derived.

Based on Lindley and Smith [18], if a and b are hyper parameters in the prior density function of λ i.e. g1(λ |r,s) given in
Eq.(6) and the hyper prior distribution of r, s given in Equation (23), then the corresponding hierarchical prior distributions
of λ have the following forms:

π1(λ ) =

∫ 1

0

∫ v

0
g1(λ |r,s)π(r,s)dsdr =

∫ 1

0

∫

0

srλ r−1

Γ (r)
exp(−sλ )

1

v
dsdr (30)

According to Bayesian theorem, the hierarchical posterior density for λ can be derived by combining Eqs. (5) and (30) to
be

π1(λ |r,s) =
L(λ |x)π1(λ )

∫ ∞
0 L(λ |x)π1(λ )dλ
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=
1
v

∫ 1
0

∫ v
0

sr

Γ r
λ r−1 exp(−sλ ).λ n exp(−λ Q)drds

1
v

∫ 1
0

∫ v
0

∫ ∞
0

sr

Γ r
λ r−1 exp(−sλ ).λ n exp(−λ Q)dλ drds

π1(λ |r,s) =
∫ 1

0

∫ v
0

sr

Γ (r)λ n+r−1 exp(−λ (s+Q))dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(31)

4.1 H-Bayesian estimation with SELF

Assuming Squared Error loss function defined in Eq. (8) and the hierarchical posterior density defined in Equation (31),

the Hierarchical Bayes estimates λ̂H1
, of λ have the following expression

λ̂H1
= E[(λ |r,s)]

E[(λ |r,s)] =
∫ ∞

0
λ .π1(λ |r,s)dλ

=

∫ 1
0

∫ v
0

∫ ∞
0

sr

Γ (r)λ (n+r+1)−1 exp(−λ (s+Q))dλ dsdr

∫ 1
0

∫ v
0

sr

Γ (p)
Γ (n+r)
(s+Q)n+r dsdr

=⇒ λ̂H1
=

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+1)

(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(32)

Similarly, the Hierarchical Bayesian estimator of hazard rate is given as

ˆH(t)H1
= E

[

θλ tθ−1

1− tθ
|r,s

]

=

∫ ∞

0

θλ tθ−1

1− tθ
.π1(λ |r,s)dλ

ˆH(t)H1
=

θtθ−1

1−tθ

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+1)
(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(33)

4.2 H-Bayesian estimation with PLF

Assuming Precautionary loss function defined in Eq. (12) and the hierarchical posterior density defined in Equation (31),

the hierarchical Bayes estimates λ̂H2
, of λ have the following expressions

λ̂H2
=
√

E[(λ 2|r,s)]

E[(λ 2|r,s)] =
∫ ∞

0
λ 2

.π1(λ |r,s)dλ

=

∫ 1
0

∫ v
0

∫ ∞
0

sr

Γ (r)
λ (n+r+2)−1 exp(−λ (s+Q))dλ dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

=⇒ λ̂H2
=

√

√

√

√

√

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+2)
(s+Q)n+r+2 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(34)

Similarly, the Hierarchical Bayesian estimator of hazard rate is given as

ˆH(t)H2
=
√

E[(H2(t)|r,s)]
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E

[(

θλ tθ−1

1− tθ

)2

|r,s
]

=

∫ ∞

0

(

θλ tθ−1

1− tθ

)2

.π1(λ |r,s)dλ

ˆH(t)H2
=

θ tθ−1

1− tθ

√

√

√

√

√

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+2)

(s+Q)n+r+2 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+p)
(s+Q)n+r dsdr

(35)

4.3 H-Bayesian estimation with ALF

Assuming Asymmetry loss function as defined in Eq. (16) the Hierarchical posterior distribution defined in Equation (31),

the hierarchical Bayes estimates λ̂H3
, of λ are

λ̂H3
=

[

E[(λ−1|r,s)]
E[(λ |r,s)]

]− 1
2

E[(λ−1|r,s)] =
∫ ∞

0

1

λ
π1(λ |r,s)dλ

=

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r−1)

(s+Q)n+r−1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(36)

From equation (32), we have

E[(λ |r,s)] =
∫ 1

0

∫ v
0

sr

Γ (r)
Γ (n+r+1)
(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

(37)

=⇒ λ̂H3
=

[

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+1)
(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r−1)
(s+Q)n+r−1 dsdr

]
1
2

(38)

Similarly, the Hierarchical Bayesian estimator of hazard rate is given as

ˆH(t)H3
=

[

E[(H−1(t)|a,b)]
E[(H(t)|a,b)]

]− 1
2

=⇒ ˆH(t)H3
=

θ tθ−1

1− tθ

[

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+1)

(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r−1)

(s+Q)n+r−1 dsdr

] 1
2

(39)

5 Properties of Estimators

Here, we covered through some of the key characteristics of E-Bayesian estimators, such as how they relate to H-Bayesian
estimators.

Theorem 1. The relation among the Expected Bayesian estimators of λ based on SELF, PLF and ALF are given as

(i) λ̂E2
< λ̂E1

< λ̂E3
.

(ii) limT→∞ λ̂E1
= limT→∞ λ̂E2

= limT→∞ λ̂E3
= 0. Proof.

The relationship λ̂E2
< λ̂E1

< λ̂E3
is same as

∫ 1

0

√

(n+ r− 1)(n+ r)dr < n+
1

2
<

∫ 1

0

√

(n+ r)(n+ r+ 1)dr (40)

We prove the relation for n=1 by using mathematical induction, since
∫ 1

0

√

(n+ r− 1)(n+ r)dr = 0.8403 and
∫ 1

0

√

(n+ r)(n+ r+ 1)dr = 1.9349. So, we have 0.8403 < 1.5 < 1.9349. Hence the result is true for n=1.
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for r ∈ (0,1),
√

(n+ r+ 1)(n+ r) and
√

(n+ r− 1)(n+ r) is continuous, through Generalized Mean Value theorem, At
least one number can be found r1 ∈ (0,1) and r2 ∈ (0,1) s.t.
∫ 1

0

√

(n+ r− 1)(n+ r)dr =
√

(n+ r− 1)(n+ r)
∫ 1

0 d p =
√

(n+ r1 − 1)(n+ r1)

and
∫ 1

0

√

(n+ r+ 1)(n+ r)dr =
√

(n+ r+ 1)(n+ r)
∫ 1

0 d p =
√

(n+ r2 + 1)(n+ r2)

Hence,(39) can be written as

√

(n+ r1 − 1)(n+ r1)< n+ 0.5 <
√

(n+ r2 + 1)(n+ r2)

Squaring the above equation, we get

(n+ r1 − 1)(n+ r1)< (n+ 0.5)2
< (n+ r2 + 1)(n+ r2)

Now, we assume that the result hold for n=k, i.e.

(k+ r1 − 1)(k+ r1)< (k+ 0.5)2
< (k+ r2 + 1)(k+ r2) (41)

Now, we prove that the result is true for n=k+1, we have

(k+ 1+ r1− 1)(k+ 1+ r1)< (k+ 1+ 0.5)2
< (k+ 1+ r2+ 1)(k+ 1+ r2) (42)

(k+ r1)(k+ 1+ r1)< (k+ 1+ 0.5)2
< (k+ r2 + 2)(k+ 1+ r2)

Now, (k+ r2 + 2)(k+ 1+ r2) = (k+ r2 + 1)(k+ r2) + 2(k + r2 + 1) and
(k+ r1)(k+ 1+ r1) = (k+ r1 − 1+ 2)(k+ 1+ r1) = (k+ r1)(k+ r1 − 1)+ 2(k+ r1).

Also, (k+ 0.5+ 1)2 = (k+ 0.5+ 1)2+ 2(k+ 0.5)+ 1 which is greater than (k+ r1)(k+ r1 − 1)+ 2(k+ r1) as r ∈ (0,1).

and, (k+ r2 + 1)(k+ r2)+ 2(k+ r2+ 1)> (k+ 0.5+ 1)2+ 2(k+ 0.5)+ 1 .

This proves the result.
(ii)
Using (23), we have

λ̂E1
=

2n+ 1

2v
log

(

1+
s

Q

)

Taking the limit as T → ∞

lim
T→∞

λ̂E1
= 0 (43)

Using (25), we have

λ̂E2
=

1

v
log

(

1+
s

Q

)

∫ 1

0

√

(n+ r+ 1)(n+ r)dr

Taking the limit as T → ∞

lim
T→∞

λ̂E2
= 0 (44)

Using (27), we have

λ̂E3
=

1

v
log

(

1+
s

Q

)

∫ 1

0

√

(n+ r− 1)(n+ r)dr

Taking the limit as T → ∞

lim
T→∞

λ̂E3
= 0 (45)

Theorem 2. The relation among Expected Bayesian estimators of H(t) based on SELF, PLF and ALF are given as

(i) ˆH(t)E2
< ˆH(t)E1

< ˆH(t)E3
.

(ii) limT→∞
ˆH(t)E1

= limT→∞
ˆH(t)E2

= limT→∞
ˆH(t)E3

= 0.

Theorem 3. The relationship between Expected Bayesian and Hierarchical Bayesian estimators of λ based on SELF, PLF

and ALF are given as limT→∞ λ̂E j
= limT→∞ λ̂H j

= 0, j = 1,2,3
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Proof.
Under SELF.

λ̂E1
=

1

v

∫ 1

0

∫ v

0

n+ r

Q+ s
drds

For r ∈ (0,1), s ∈ (0,v), (n+r)(Q+s)−1 is continuous, so through Generalized Mean Value theorem, At least one number
can be found r3 ∈ (0,1) and s3 ∈ (0,v) such that,

1

v

∫ 1

0

∫ v

0

n+ r

Q+ s
drds =

n+ r3

Q+ s3

∫ 1

0

∫ v

0

1

v
drds

=
n+ r3

Q+ s3

(46)

Now, taking the limit as T → ∞, we have,

lim
T→∞

λ̂E1
= 0 (47)

Using the result Γ (n+ r+ 1) = (n+ r)Γ (n+ r), we have,

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r+ 1)

(Q+ s)n+r+1
dsdr =

∫ 1

0

∫ v

0

sr

Γ (r)

n+ r

Q+ s

Γ (n+ r)

(Q+ s)n+r
dsdr

For r ∈ (0,1), s ∈ (0,v), (n+r)(Q+s)−1 is continuous and sr

Γ (r)
Γ (n+r)
(Q+s)n+r > 0 so through Generalized Mean value theorem,

At least one number can be found r4 ∈ (0,1) and s4 ∈ (0,v) such that,

∫ 1

0

∫ v

0

sr

Γ (r)

n+ r

Q+ s

Γ (n+ r)

(Q+ s)n+r
dsdr =

n+ r4

T + s4

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r)

(Q+ s)n+r
dsdr

Using (31), we have

λ̂H1

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+1)

(s+Q)n+r+1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

=

(n+r4)
(s4+T )

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(Q+s)n+r dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(Q+s)n+r dsdr

λ̂H1
=

(n+ r4)

(s4 +Q)
(48)

Taking limit as T → ∞

lim
T→∞

λ̂H1
= 0 (49)

Now, using eqs. (39) and (41), we have

lim
T→∞

λ̂E1
= lim

T→∞
λ̂H1

= 0. (50)

Under PLF.

λ̂E2
=

1

v

∫ 1

0

∫ v

0

√

(n+ r)(n+ r+ 1)

Q+ s
drds

For r ∈ (0,1), s ∈ (0,v),

√
(n+r)(n+r+1)

Q+s
is continuous, so through Generalized Mean Value theorem, At least one number

can be found r5 ∈ (0,1) and s5 ∈ (0,v) such that,

1

v

∫ 1

0

∫ v

0

√

(n+ r)(n+ r+ 1)

Q+ s
drds =

√

(n+ r5)(n+ r5 + 1)

Q+ s5

∫ 1

0

∫ v

0

1

v
drds

=

√

(n+ r5)(n+ r5 + 1)

T + s5

(51)
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Now, taking the limit as T → ∞, we have,

lim
T→∞

λ̂E2
= 0 (52)

Using the result Γ (n+ r+ 2) = (n+ r+ 1)Γ (n+ r+ 1) = (n+ r+ 1)(n+ r)Γ(n+ r), we have,

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r+ 2)

(Q+ s)n+r+2
dsdr =

∫ 1

0

∫ v

0

sr

Γ (r)

(n+ r+ 1)(n+ r)Γ (n+ r)

(Q+ s)n+r+2
dsdr

For r ∈ (0,1), s∈ (0,v), (n+r+1)(n+r) is continuous and sr

Γ (r)
Γ (n+r)
(Q+s)n+r > 0 so through Generalized Mean Value theorem,

At least one number can be found r6 ∈ (0,1) and s6 ∈ (0,v) such that,

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r+ 2)

(Q+ s)n+r+2
dsdr =

(n+ r6 + 1)(n+ r6)

(Q+ s6)2

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r)

(Q+ s)n+r
drds

Using (33), we have

λ̂H2
=

[

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r+2)
(s+Q)n+r+2 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(s+Q)n+r dsdr

]
1
2

=

(n+r6+1)(n+r6)

(Q+s6)
2

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(Q+s)n+r dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r)
(Q+s)n+r dsdr

λ̂H2
=

√

(n+ r6 + 1)(n+ r6)

(T + s6)2

Taking limit as T → ∞

lim
T→∞

λ̂H2
= 0 (53)

Now, using eqs. (49) and (50), we have

lim
T→∞

λ̂E2
= lim

T→∞
λ̂H2

= 0. (54)

Under ALF.

λ̂E3
=

1

v

∫ 1

0

∫ v

0

√

(n+ r)(n+ r− 1)

Q+ s
drds

For r ∈ (0,1), s ∈ (0,v),

√
(n+r)(n+r−1)

Q+s
is continuous, so through Generalized Mean Value theorem, At least one number

can be found r7 ∈ (0,1) and s7 ∈ (0,v) such that,

1

v

∫ 1

0

∫ v

0

√

(n+ r)(n+ r− 1)

Q+ s
drds =

√

(n+ r7)(n+ r7 − 1)

Q+ s7

∫ 1

0

∫ v

0

1

v
drds

=

√

(n+ r7)(n+ r7 − 1)

Q+ s7

(55)

Now, taking the limit as T → ∞, we have,

lim
T→∞

λ̂E3
= 0 (56)

Using the result Γ (n+ r+ 1) = (n+ r)Γ (n+ r) = (n+ r)(n+ r− 1)Γ (n+ r− 1), we have,

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r+ 1)

(Q+ s)n+r+1
dsdr =

∫ 1

0

∫ v

0

sr

Γ (r)

(n+ r)(n+ r− 1)Γ (n+ r− 1)

(Q+ s)n+r+1
dsdr

For r ∈ (0,1), s ∈ (0,v), (n+ r)(n+ r − 1) is continuous and sr

Γ (r)
Γ (n+r−1)
(Q+s)n+r−1 > 0 so through Generalized Mean Value

theorem, At least one number can be found r8 ∈ (0,1) and s8 ∈ (0,v) such that,

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r+ 1)

(Q+ s)n+r+1
dsdr =

(n+ r8)(n+ r8 − 1)

(T + s8)2

∫ 1

0

∫ v

0

sr

Γ (r)

Γ (n+ r− 1)

(Q+ s)n+r−1
drds
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Using (37), we have

λ̂H3
=

[

∫ 1
0

∫ v
0

qp

Γ (p)
Γ (n+p+1)

(q+T)n+p+1 dqd p

∫ 1
0

∫ v
0

qp

Γ (p)
Γ (n+p−1)

(q+T)n+p−1 dqd p

] 1
2

=

(n+r8)(n+r8−1)

(T+s8)2

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r−1)

(Q+s)n+r−1 dsdr

∫ 1
0

∫ v
0

sr

Γ (r)
Γ (n+r−1)

(Q+s)n+r−1 dsdr

λ̂H3
=

√

(n+ r8)(n+ r8 − 1)

(Q+ s8)2

Taking limit as T → ∞

lim
T→∞

λ̂H3
= 0 (57)

Now, using eqs. (45) and (46), we have

lim
T→∞

λ̂E3
= lim

T→∞
λ̂H3

= 0. (58)

Theorem 4. Similarily, The relation between Expected Bayesian and Hierarchical Bayesian estimators of hazard rate

based on SELF, PLF and ALF are given as limT→∞
ˆH(t)E j

= limT→∞
ˆH(t)H j

= 0, j = 1,2,3

6 Simulation Study

In this part, a Monto Carlo simulation has been performed to evaluate the effectiveness of the Bayesian, Expected
Bayesian and H-Bayesian estimates associated to λ and Hazard rate of the Kumaraswamy distribution. The simulation
process is outlined in the following steps:

1. Set the true value of θ , λ at 0.5,1 respectively.

2. Generate random sample of sizes n = 30,50,75,100 from Kumaraswamy distribution.

3. Fix the value of r = 0.5,v = 1.5,u = 0.3,s = 1.

4. Bayes, Expected Bayesion and Hierarchical Bayesian estimates are obtained for the parameter λ and Hazard rate.

5. Iterate the above procedure 1000 times to figure out the value of the average estimates and their MSE.

All the results obtained through simulation are shown in Tables 1-2. The obtained estimators are compared based on the
mean squared error. We observed that
• As n increases, the value of MSE decreases.
• Under any fixed loss function, the value of mean squared error under Expected Bayesian technique is less.
• The estimators performs better under PLF.
• As the value of n increases, the estimators approaches to their true value, shows the consistency of the estimators.
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Table 1: Average estimates(AE) of λ and their MSE in parentheses.

n Bayes E-Bayes H-Bayes

SELF ALF PLF SELF ALF PLF SELF ALF PLF

30
1.01493 1.00151 1.02117 1.02803 1.01808 1.03489 1.02036 1.01259 1.03559

(0.03431) (0.03558) (0.03304) (0.03372) (0.03447) (0.03163) (0.03364) (0.03470) (0.03103)

50
1.01324 1.00958 1.01976 1.01479 1.00616 1.01739 1.01643 1.01175 1.03543

(0.02103) (0.02220) (0.02007) (0.02046) (0.02108) (0.01993) (0.02071) (0.02151) (0.02032)

75
1.00635 1.00170 1.00877 1.01227 1.00247 1.01509 1.02657 1.0015 1.02183

(0.01395) (0.01426) (0.01235) (0.01299) (0.01331) (0.01151) (0.01231) (0.01373) (0.01172)

100
1.00070 0.99914 1.00548 1.01125 0.99893 1.01570 1.00575 0.99513 1.01461

(0.01083) (0.01097) (0.01011) (0.01000) (0.01006) (0.00999) (0.01019) (0.01036) (0.01007)

Table 2: Avaerage estimates(AE) of hazard rate and their MSE in parentheses.

n
Bayes E-Bayes H-Bayes

SELF ALF PLF SELF ALF PLF SELF ALF PLF

30
2.05857 2.07716 2.08579 2.07824 2.02772 2.06123 2.05367 2.03451 2.05045

(0.14809) (0.15559) (0.13651) (0.13945) (0.14339) (0.11650) (0.13632) (0.14034) (0.11594)

50
2.03669 2.07087 2.05412 2.05280 2.03470 2.08167 2.05856 2.05853 2.08671

(0.02103) (0.02220) (0.02007) (0.02046) (0.02108) (0.01993) (0.07940) (0.08120) (0.07557)

75
2.02959 2.04061 2.04261 2.04044 2.02043 2.04965 2.03529 2.02820 2.06037

(0.05664) (0.05728) (0.05244) (0.05129) (0.05376) (0.05070) (0.05229) (0.05446) (0.05087)

100
2.03882 2.04134 2.02536 2.04222 2.02062 2.03689 2.03625 2.02805 2.03361

(0.04062) (0.04160) (0.03979) (0.03968) (0.04062) (0.03731) (0.04003) (0.04032) (0.03812)

7 Data Analysis

This part showcases the application of the estimation methods presented using a real-world dataset. The dataset used
consists of monthly water capacity measurements for the Shasta reservoir during the months of August and December
from 1975 to 2016. These data have been previously utilized by statisticians, including Kohansal [19], for analysis. To
ensure compatibility with the range defined for K(θ ,λ ), all the data points are normalized by dividing them by the total
capacity of the Shasta reservoir, which is 4,552,000 acre-foot. The dataset includes the monthly water capacity values for
the Shasta reservoir are as follows:
0.667157,0.287785,0.126977,0.768563,0.703119,0.729986,0.767135,0.463726,0.371904,0.291172,0.414087,0.650691,
0.538082,0.744881,0.722613,0.561238,0.813964,0.709025,0.668612,0.524947,0.605979,0.715850,0.529518,0.824860,
0.742025,0.468782,0.345075,0.425334,0.767070,0.679829,0.613911,0.461618,0.294834,0.392917,0.688100.
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Table 3: AE of λ , hazard rate and their MSE in parentheses.

Estimates
Bayes E-Bayes H-Bayes

SELF ALF PLF SELF ALF PLF SELF ALF PLF

λ̂ 0.64997 0.64227 0.65757 0.65492 0.64576 0.66114 0.65352 0.64477 0.66012

(0.12252) (0.12796) (0.11725) (0.11903) (0.12547) (0.11482) (0.12006) (0.12618) (0.11551)

ˆH(t) 1.31189 1.29636 1.33444 1.32202 1.30341 1.33239 1.31902 1.30140 1.32723

(0.49913) (0.52131) (0.49777) (0.48491) (0.51118) (0.47059) (0.48911) (0.51406) (0.47768)

8 Conclusion

In this paper, different methods of estimation are used to estimate the shape parameter and hazard rate of Kumaraswamy
distribution. The estimates were computed by performing the simulation using R. The findings and properties of the
various estimates are also proved in the form of theorem 1-4. The results showed that the MSE of Bayesian estimates is
more than the E-Bayesian and Hierarchical Bayesian so it is less efficient than the Expected Bayesian and H-Bayesian.
Also, the H-Bayesian estimates are very close to E-Bayesian estimates, but the H-Bayesian estimates involve
complicated integrals which cannot be solved explicitly, so E-Bayesian estimation technique is easy to use and preferable
over Hierarchical Bayesian estimation. Also, the MSE of estimates under PLF is less than the SELF and ALF so it is
better than the other two loss functions. Finally, a real life dataset has been examined to study the behavior of the
proposed estimators.
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