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Abstract: The dispersion relation of magnetohydrodynamic stability of an oscillation self-gravitating flowing fluid 
cylindrical enclosed by varying magnetic field is studied. The problem is specified, investigated analytically and the 
data verified mathematically, the fundamental equations are resolved, non-singular solutions are found using the proper 
boundary circumstances, also, derived the total second order integro-differential equation of Mathieu equation type. Just 
the small axisymmetric region is destabilized by the capillary force but is stabilized by the otherwise perturbation 
modes. The constant magnetic field that permeates the fluid is strongly stabilized regardless of the perturbation type, 
while the varied magnetic field bound the fluid is completely destabilized in axisymmetric mode(m=0), but it is either 
so or not in the non-axisymmetric (𝑚 ≥ 1) perturbation per the constraint. Moreover, the fluid's oscillating flow has a 
potent inclination to stabilize.  Once the capillary force's destabilising effect on the model is diminished and subdued, 
stability develops. 
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1 Introduction 

The whole fluid jet's fundamental stability analysis has received substantial study, perceive (cf. Rayleigh [1], Robert 
[5], Drazin and Reid [7], Chandrasekhar [8], and Kendall [9]) and reported by Radwan [10]. The last researchers 
examined the hydrodynamic stability of an axisymmetric fluid jet perturbed by a uniform magnetic field. Also he has 
several works for studied the inertial force's effect on the capillary stability of this model and under the influence the 
other forces, view (Radwan, et.al [11],[12],[14]). Radwan and Hasan [13] have focused on the stability of several 
models under the operation of self-gravitational force in additional to other forces. (ELAZAB, Samia S. et.al [15-16]) 
are explored an oscillation hollow jet's hydromagnetic stability and the effect of the stability magnetohydrodynamic 
hollow jet under the acting other forces. Hasan [17] studied the instability magnetohydrodynamic of fluid jet permeated 
by transversely changing magnetic field, but its tenuous medium is pierced by a uniform magnetic field for all 
perturbations modes (𝑚 = 0,𝑚 ≥ 1). Samia S. Elazab, and Zeinab M. Ismail [18-19] are investigated the 
magnetohydrodynamic of flowing resistance hollow jet under obliquely varied magnetic field. Moreover, are studied 
the gravity oscillator of fluid cylindrical under the effect of general varied electrical field and examined the 
compressible fluid steamer permeated by axial magnetic field and surrounds by various magnetic fields. [20] examined 
the influence of kinematics, concentrations and thermal fields for different materials on the unstable flowing of 
incompressible fluid above heating oscillation bottom. [21] studied the basic characteristic and behavior of metallic 
materials can be conducted in a number of ways. But the current work is varying to above that is examine the self-
gravitating oscillating magnetohydrodynamic stability of fluid cylinder penetrated by a uniform magnetic field while 
the encircle medium is pervaded by the general varying magnetic field. 

2 Formulation of the problem 

Consider a perfectly conducting, incompressible, non-viscous fluid cylinder of radius  𝐑𝟎 encircled by negligible 
motion medium. The model is assumed to be streaming with oscillating velocity  
𝐮𝟎 = (𝟎, 𝟎, 𝐔 𝐜𝐨𝐬𝛀𝐭)                                                                                                    (1)   
And permeated from inner and external with magnetic fields.	
𝐇𝟎 = (𝟎, 𝟎, 𝐇𝟎)                                                                                                               (2) 
𝐇𝟎𝐞𝐱 = 6𝟎, 𝐑𝟎𝐇𝟎

𝐫
, 𝛂𝐇𝟎9                                                                                               (3) 
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Where 𝛂	𝐚𝐧𝐝	𝛃 are parameters while 𝐇𝟎 is the intensity of the magnetic field. 𝐔 and 𝛀 are magnitude of the velocity 
𝐮𝟎 and oscillating frequencies of the fluid at time t respectively. 

The basic equations in the fluid under the present circumstances are 
𝝆 ?𝝏𝒖

𝝏𝒕
+ (𝒖	. 𝛁)𝒖F = −𝛁𝑷 + 𝝆𝛁𝑽 + 𝝁

𝟒𝝅
M𝛁	ʌ𝑯Pʌ𝑯	                                                                     (4)                                        

𝛁. 𝒖 = 𝟎																					                                                                                                         (5)  
𝝏𝑯
𝝏𝒕
= 𝛁ʌM𝒖ʌ𝑯P												                                                                                                     (6)                                                                                      

𝛁.𝑯 = 𝟎																																															                                                                                  (7)        
𝛁𝟐𝑽 = −𝟒𝝅𝑮𝝆                                                                                                                                                                  (8) 

In external the fluid cylinder 

𝛁.𝑯𝒆𝒙 = 𝟎																																															                                                                                     (9) 
 𝛁ʌ𝑯𝒆𝒙 = 𝟎                                                                                                                   (10)                                                                                                                  
𝛁𝟐𝑽𝒆𝒙 = 𝟎                                                                                                                   (11) 
Along the fluid interface 

𝑷𝒔 = 𝑻(𝛁.𝑵𝒔)                                                                                                               (12) 
 𝑵𝒔 = 𝛁𝒇(𝐫,𝝋	, 𝐳	; 𝐭)/⃓𝛁𝒇(𝐫,𝝋	, 𝐳	; 𝐭)⃓                                                                    (13)                                                                   
Where f(r,𝝋 , z ;t)=0                                                                                                   (14) 
Here 𝑯	𝒂𝒏𝒅	𝑯𝒆𝒙	are the magnetic field inside and outside of the fluid. T is the surface tension coefficient,	𝑵𝒔 is the 
surface's unit outward vector normal and  𝑷𝒔 is the curvature pressure due to the capillary force. 𝒖	, 𝝆, 𝒑 are the velocity 
vector, density, and, static pressure respectively. 

Equation (4) can be rewritten in the form 
𝜌 ?cd

ce
+ (𝑢	. ∇)𝑢F − h

ij
M𝐻. ∇P𝐻 = −∇𝛱                                                                                                                          (15) 

with 𝛱 = 𝑃 − 𝜌𝑉 + h
ij
M𝐻.𝐻P.                                                                                                                                        (16)  

where 𝛱 is the total magnetohydrodynamic pressure. 
The basic equations (4-16) are solved in the unperturbed state and applied boundary conditions at  𝑟 = 𝑅q. We get 

𝛱q = 𝑃q − 𝜌𝑉q +
h
rj
M𝐻q. 𝐻qP = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.                                             (17)                                       

The self-gravitational potentials	𝑉q	,𝑉qyz	in unperturbed state are 

∇{𝑉q = −4𝜋𝐺𝜌                                                                                                                                                                (18) 

∇{𝑉qyz = 0                                                                                                      (19) 
The non-singular solutions of equations (18),(19) in cylindrical system (r,𝜑, 𝑧) with cylindrical symmetries 
 ( c
c�
= 0, c

c�
= 0) are given 

𝑉q = −𝜋𝐺𝜌𝑟{ + 𝐶�                                                                                                                                                          (20)      

𝑉qyz = 𝐶{ 	ln 𝑟	 + 𝐶�                                                                                       (21) 
Where  𝐶� ,	𝐶{  and 𝐶� are integrating constants can be found by application condition that. 

 (𝒊) At the unperturbed surface r=𝑹𝟎	 ,the self-gravitational potential V and its derivative must be continuous we get  
	

𝑽𝟎 = −𝝅𝑮𝝆𝒓𝟐                                                                                                              (22) 
𝑽𝟎𝒆𝒙 = −𝝅𝑮𝝆𝑹𝟎𝟐[𝟏 + 𝟐 𝐥𝐧

𝒓
𝑹𝟎
]                                                                                     (23) 

The pressure due to the capillary force is given by 
𝑷𝟎𝒔 =

𝑻
𝑹𝟎

                                                                                                                          (24) 
(𝒊𝒊) At	𝒓 = 𝑹𝟎 , the whole magnetohydrodynamic pressure must be identical , the distribution pressure in unperturbed 
state is obtain 
𝑷𝟎 = 𝑻

𝑹𝟎� + 𝝅𝑮𝝆𝟐M𝑹𝟎𝟐 − 𝒓𝟐P +
𝝁	𝑯𝟎

𝟐

𝟖𝝅
(	𝜷𝟐 + 𝜶𝟐 − 𝟏)                                                                                                   (25)    

3 Perturbation analysis. 

Based on the normal mode analysis technique each variable quantity Q(r, φ	, z	; t) as follows from slight deviation from 
unperturbed state Q(r, φ	, z	; t) = Qq(r)+∈ (t)Q�(r, φ	, z	; t)                                                                                   (26) 
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where Q� =∈q q�(r)exp	(σt + i(kz +mφ))                                                                                                             (27) 
Due to the expression (28) the distortion in the cylindrical interface is provided by 
 r = Rq + R�+…                                                                                                                                                        (28) 
with R� =∈ (t)exp	(i(kz +mφ))                                                                                                                              (29) 
where ∈ (t) =∈q exp	(σt)  
Here Q(r, φ	, z	; t)  denote to u, P, H, H¤¥, and	N§, while Qq(r) is the value of Q(r, φ	, z	; t)  in the unperturbed state, 
also ∈q is initial amplitude and σ is the growth rate. The applicable linearized perturbation equations for the 
fundamental equations ((4)–(14)) are presented as follows. 
ρ ?©ª«

©¬
+ Muq. ∇Pu�F −

­
i®
MHq 	 ∙ 	∇PH� = −∇Π�                                                                                                               (30) 

	Π� = P� − ρV� +
­
i®
∇(Hq ∙ 	H�)                                                                                                                                  (31) 

 ∇ ∙ u� = 0                                                                                                                                                                        (32) 
∇ ∙ H� = 0                                                                                                                                                                         (33) 
©³«
©¬
= MHq 	 ∙ ∇Pu� − (uq 	 ∙ 	∇)H�                                                                                                                                      (34)                   

	∇{V� = 0                                                                                                                                                                         (35) 
	P�§ = (´µ

¶·¸
)(R� +

©¸¶«
©¹¸

+ Rq{(
©¸¶«
©º¸

))                                                                                                                                 (36) 

∇ ∙ H�¤¥ = 0                                                                                                                                                                    (37)  
∇ʌ𝐻�yz = 0                                                                                                                                                                       (38) 
	∇{V�¤¥ = 0                                                                                                      (39) 
By using expansion (27), eqs. ((35), (39)) give the second-order ordinary differential equation. 
6�
»
9 ¼
¼»
6r ¼½«

¼»
9 − 6¾

¸

»¸
+ k{9 q�(r) = 0                                                   (40) 

Here q� refere to V�	andV�¤¥, the solution of equation(40)is obtain in Bessel ordinary functions of imaginary argument. 
For the problem under the consideration the finally solution of eqs.((35),(39)) take the form 
V� = A ∈q I¾(kr)exp(σt + i(kz +mφ)                                                                              (41) 

V�¤¥ = B ∈q K¾(kr)exp(σt + i(kz +mφ))                                                        (42) 
Where 	I¾(kr)and	K¾(kr) are the first and second kind of Bessel function of order m, while A, B are constants or 
integration can be determined. 

Equation (34) based on (27) is given by 

H� =
Å	Æ	³·

(ÇÈÅÆÉ	 ÊË§Ì¬)
  u�                                                                                               (43) 

By taking divergence to eq.(30) we get 

∇{ Π� = 0                                                                                                                    (44)    
The fluid is irrotational, so  u� = ∇ф�	                                                                    (45) 
Combining equations (32), (45) we find 

∇{ф� = 0                                                                                                                                                                          (46) 

Equation (38) means that the magnetic field H�¤¥ could be derived from scalar functionΨ�¤¥(say). 
H�¤¥ = ∇Ψ�¤¥                                                                                                             (47) 
Combining equation (37)with (47)we get 

∇{Ψ�¤¥ = 0                                                                                                                                (48) 

Based on expansion (27), the non-singular solutions of equations (44, 46, 48) are given in the form. 
ф� = Ci ∈q I¾(kr)expMσt + i(kz +mφ)P	                       (49) 

 Π� = CÐ ∈q I¾(kr)exp(σt + i(kz +mφ))                                                                                                                    (50) 

𝚿𝟏
𝐞𝐱 = 𝐂𝟔 ∈𝟎 𝐊𝐦(𝐤𝐫)𝐞𝐱𝐩(𝛔𝐭 + 𝐢(𝐤𝐳 +𝐦𝛗))                                                                      (51) 

Here 𝐂𝟒	, 𝐂𝟓	, 𝐂𝟔 are integral parameters.  According to eqs.(29) ,(36) the surfaces pressure in the perturbed state caused 
by the capillary force along cylindrical fluid interface 𝐫 = 𝐑𝟎	 is  obtain. 
𝐏𝟏𝐬 = Ý´𝐓

𝐑𝟎
𝟐ß [𝟏 −𝐦𝟐 − 𝐱𝟐]𝐑𝟏                                                                                   (52) 

Where (x=k𝐑𝟎) is the longitudinal dimensionless wavenumber. 
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4 Boundary Conditions 

The boundary conditions of the problem must be satisfied by the solutions of the basic equations (4-14) in the 
unperturbed obtain by eqs.(1-3),(17),(22-25), while in perturbed state given by(43), (52) , the following is a list  of these 
boundaries conditions. 

(𝑖)Magnetodynamic Condition 

the normal component or the magnetic field must be continuous across the fluid interface 𝑟 = 𝑅q. This condition is read 
𝑁â ∙ 𝐻 − 𝑁â ∙ 𝐻yz = 0  . At	𝑟 = 𝑅q                                                                         (53) 
from which we get 

𝐶ã =
ä·

zåæç (z)
6𝑖𝑘𝛼𝐻q +

êëìí·
äî

9                                                                                                                                         (54) 

(𝑖𝑖) Kinematic conditions 

The normal component of the velocity vector u of the fluid must be compatible with the velocity of the perturbed 
boundary fluid interface at	𝑟 = 𝑅q , this condition state. 

𝑢�ï =
cä«
ce
+ 𝑈 cos𝛺𝑡	 cä«

c�
                                                                                         (55)  

Combining eq.(55)with (56) 

𝑢�ï =
cф«
cï

= 𝐶i	𝑘	 ∈q 𝐼ëö (𝑘𝑟)exp	(𝜎𝑡 + 𝑖(𝑘𝑧 +𝑚𝜑))                                        (56) 
we obtain 

𝐶i =
�

øùæç (z)
(𝜎 + 𝑖𝑘𝑈 cos𝛺𝑡)                                                                                                                                          (57) 

From eqs.(30) and (43)we have 

𝜌 ?cd«ú
ce

+ 𝑈 cos𝛺𝑡 cd«ú
c�
F + hø¸í·¸

ij(ûÈêøü ÊË§ýe)
𝑢�ï	 =

´cþ«ú
cï

                                      (58) 
From which we get 

𝐶Ð = 6 ´�
øùæç (z)

9 [𝜌(𝜎{ + 2𝑖𝑘𝜎𝑈 cos𝛺𝑡 − 𝑖𝑘𝑈𝛺 sin𝛺𝑡 − 𝑘{𝑈{ (cos𝛺𝑡){) + hø¸í·¸

ij
	]         (59)       	

(𝑖𝑖𝑖) Self-gravitating conditions 

the gravitational potentials and it's derivative must be continuous across the perturbed fluid interface (30)at unperturbed 
surface	𝑟 = 𝑅q. These conditions are	

𝑉� + 𝑅�
c!·	
cï

= 𝑉�yz + 𝑅�
c!·

"#

cï
                                                                                                                                           (60)  

c!«
cï
+ 𝑅�

c¸$·	

cï¸
= c!«

"#

cï
+ 𝑅�

c¸$·
"#

cï¸
                                                                               (61) 

From which we find 

𝐴 = 4𝜋𝐺𝜌𝑅q𝐾ë(𝑥)                                                                                                                                                         (62)  

𝐵 = 4𝜋𝐺𝜌𝑅q𝐼ë(𝑥)                                                                                                                                                          (63) 

5 Stability criterion 

The jump of the normal component of the stresses in the fluid and surround medium must be discontinuous by surface 
pressure  	𝑃�â across the fluid cylindrical interface (28) at	𝑟 = 𝑅q.This condition is 

𝑃� + 𝑅�
c)·
cï
+ h

ij
M𝐻q ∙ 𝐻�P −

h
ij
M	𝐻q. 𝐻�P

yz = 𝑃�â                                              (64) 
From equation (31) the condition (64) takes the form 

𝛱� = 𝑃�â − 𝜌𝑉� − 𝑅�
c)·
cï
+ h

ij
M	𝐻q. 𝐻�P

yz
                                                             (65) 

Substituting for 𝛱�	, 𝑃�â	, 𝑅�, 𝑃q	, 𝐻qyz	, 𝑎𝑛𝑑, 𝐻�yz .we find 

𝜎{ + 2(𝑖𝑘𝜎𝑈 cos𝛺𝑡) − 𝑖𝑘𝑈𝛺 sin𝛺𝑡 − 𝑘{𝑈{(cos𝛺𝑡){ =	
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𝑇
𝜌𝑅q�

,
𝑥𝐼ëö (𝑥)
𝐼ë(𝑥)

- (1 −𝑚{ − 𝑥{) + 4𝜋𝐺𝜌,
𝑥𝐼ëö (𝑥)
𝐼ë(𝑥)

- .𝐾ë(𝑥)𝐼ë(𝑥) −
1
2/	

+ hí·¸

ij0ä·¸
{−𝑥{ + [−𝛽{ + 6𝛼𝑥 +𝑚𝛽){ åæ(z)

zåæç (z)
F 6zùæ

ç (z)
ùæ(z)

9}                                                                                                 (66)                                                                                                                                     

6 Stability Discussion 

The formula (66), which describes the dispersion relation of oscillating in-compressible conducting fluid cylinder 
ambient with a uniform magnetic field and surround by general varying transversely magnetic field. It has connections 
to  the  problem's  parameters 𝜌,𝑇,𝜇, 	𝐻q, 	𝑅q, 𝛼, 𝐺, 𝑎𝑛𝑑, 𝛽, 𝑈, 𝛺, 𝑥, 𝑚 and the modified Bessel 
functions𝐼ë(𝑥)𝑎𝑛𝑑	𝐾ë(𝑥), and their derivatives, with the growth rate. This is contained ( 5

0ä·6
), ( h	í·¸

ij0ä·¸
), 4𝜋𝐺𝜌 as a unit 

of (𝑡𝑖𝑚𝑒)´{ and this truth is essential in creating the non-dimension form of equation (66).  If the secular factor in eq. 
(66) can be ignored and the equation can be rewritten as a Mathieu-type equation (cf.Mclachan [2] and Kelly[4]), 
allowing us to indicate that the fluid's oscillating streaming has a stabilizing tendency. 

If we assume 𝛺 = 0	and	β = 0, the generalized relation (66) yields. 

(σ + ikU){ = µ
:¶·6

(¥;<
ç (¥)
;<(¥)

)(1 −m{ − x{) + 4πGρ6¥;<
ç (¥)
;<(¥)

9 6K¾(x)I¾(x) −
�
{
9 + ­	³·¸

i®:¶·¸
[−x{ + x{α{ @<(¥);<

ç (¥)
@<ç (¥);<(¥)

]    (67)                                                                              
The explanation of this equation illustrates that the uniform fluid streaming has a destabilizing effect, and this effect 
holds true for both the axisymmetric (m=0) and non-axisymmetric mode (𝑚 ≥ 1) perturbation. 

If we put (𝛺 = 0,U = 0,G = 0,β = 0	and	m ≥ 0	) equation (66) is becomes 

σ{ = µ
:¶·6

(¥;<
ç (¥)
;<(¥)

)(1 −m{ − x{) + ­	³·¸

i®:¶·¸
?−x{ + x{α{ @<(¥);<

ç (¥)
@<ç (¥);<(¥)

F                   (68) 
As a global, can be the relation (69) is stable if and only if 
(í·
íA
){ ≥ z@<ç (¥);<ç (z)(�´¾¸´¥¸)

z¸@<ç (¥);<(¥)´¥¸B¸@<(¥);<ç (¥)
                                                                        (69) 

Where	𝐻5 = (ij5
hä·
)
«
¸	has a unit of magnetic field. We must record some characteristics of the modified Bessel functions 

to analyses how the magneto-dynamic and  capillary forces affect the stability of the current model. 

Believe the recurrence relation (cf. Abramowitz and stegun [6]) 

2𝐼ëö (𝑥) = 𝐼ë´� + 𝐼ëÈ�                                                                                                              (70) 

2𝐾ëö (𝑥) = −(𝐾ë´� + 𝐾ëÈ�)                                                                                                   (71)   

Where 𝐼ë(𝑥) > 0, 𝑎𝑛𝑑	𝐾ë(𝑥) > 0, for every non-zero value. And also,  𝐼ëö	 (𝑥) > 0, 𝑤ℎ𝑖𝑙𝑒	𝐾ëö (𝑥) < 0. 
Let ( 𝛺 = 0,U = 0,G = 0,𝐻q = 0	and	m ≥ 0	), the relation (66) reduce to. 

𝜎{ = 5
0ä·6

(1 −𝑚{ − 𝑥{)(zùæ
ç (z)

ùæ(z)
)                                                                                               (72) 

This formula is valid for all modes.This relation is derived by Drazin and Reid [6], which means that the capillary's 
fluid is un-stable only in 0 < 𝑥 < 1 in case (m=0), while the capillary is stable for otherwise perturbation mode. 

If we take ( 𝛺 = 0,U = 0,G = 0,T = 0,α = 0	and	m ≥ 0	), the dispersion relation (66) degenerates to 

𝜎{ = hí·¸

ij0ä·¸
{−𝑥{ + ?−𝛽{ + 𝑚{𝛽{ åæ(z)

zåæç (z)
F zùæ

ç (z)
ùæ(z)

}                                                    (73) 

This the dispersing relation actually found by (Radwanet.al.[10]). Here we find the different effects of the magnetic 
fields that is inside and outside the fluid regions separately. The phase (-𝑥{) after the natural amount ( hí·¸

ij0ä·¸
) represents 

the influence of the axial magnetic field prevalent inner fluid in equation (66), it has a constant stabilising impact 
regardless of the type of perturbation. The azimuthally magnetic field exterior the fluid cylinder indicated by the phases 
containing 𝛽 after the natural amount ( hí·¸

ij0ä·¸
) in equation (66), it is mainly destabilising in the axisymmetric mode 

 m = 0, but under certain conditions, it may stabilise or not in the non-axisymmetric mode (m>0). 

If we let	(		𝑈 = 0,𝑇 = 0,𝐻q = 0, 𝛺 = 0	and	m = 0	) the relation (66) yields 

𝜎{ = 4𝜋𝐺𝜌 6zù«(z)
ù·(z)

9 [𝐾q(𝑥)𝐼q(𝑥) −
�
{
]                                                                          (74) 
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This formula is proved by Chandraseklar and Fermi [3] 

In case (𝐻q = 0,𝑈 = 0, 𝛺 = 0	𝑎𝑛𝑑	𝑚 = 0	), equation (66) degenerates  

𝜎{ = 5
0ä·6

(zù«(z)
ù·(z)

)(1 − 𝑥{) + 4𝜋𝐺𝜌 6zù«(z)
ù·(z)

9 [𝐾q(𝑥)𝐼q(𝑥) −
�
{
]                (75)    

This relation is examining by Abromowiz and Stegun [6], that discussion the capillary gravito-dynamic stability of two 
fluids interface when the density of the outer fluid is vanished. 

7 Numerical Analysis 

The computational study has been done to define and investigate the influence of the magnetic field, capillary force, as 
well as the impact of streaming on the model stability. Additionally, for   specific  values of  the magnetic field strength,  
the oscillating stages and the transitional points from these  stages  to  those of in stability may also be calculated. 
This has been further developed by estimating the non-dimension of eigenvalue relation (66). 

σ∗ = U∗ +J
(W∗ + N6¥;<

ç (¥)
;<(¥)

9 (1 −m{ − x{) + 6¥;<
ç (¥)
;<(¥)

9 ?K¾(x)I¾(x) −
�
{
F

+h{−x{ + [−β{ + (αx +mβ){ @<(¥)
¥@<ç (¥)

](¥;<
ç (¥)
;<(¥)

)})	
                    (76) 

In the computer simulation for the most sever sausages modes 𝑚 ≥ 0 for the various values of  ℎ, 𝑁, 𝑈∗,

𝑊∗	and	range	0	 ≤ x ≤ 3,			𝑤ℎ𝑒𝑟𝑒	𝑁 = 5
iQj0¸ä·6

, h = 6³·
³R
9
{
, 𝐻â = S6T

­
9		(4πρRq),𝑊∗ = êøüý §ÅUýe

ijQ0
, 𝑈∗ =

´êøü ÊË§ýe

(ijQ0)
«
¸
. 

The mathematical data related to𝜔
(4𝜋𝐺𝜌)

«
¸W  , which corresponds to the stable states and those related to  𝜎

(4𝜋𝐺𝜌)
«
¸W  , 

which corresponds to the unstable states. That are obtained, tabulated and graphically. 

 
In case  𝑚 = 0 , with 𝐼qö(𝑥) = 𝐼�(𝑥),𝐾qö(𝑥) = −𝐾�(𝑥), the relation (76) becomes.	 

σ∗ = U∗ +J
(W∗ + N6¥;«(¥)

;·(¥)
9 (1 − x{) + 6¥;«(¥)

;·(¥)
9 ?Kq(x)Iq(x) −

�
{
F

−h{x{ + [β{ + 𝛼{𝑥 @·(¥)
@«(¥)

](¥;«(¥)
;·(¥)

)})	
      

In case	𝑚 ≥ 1 , and, by using recurrence relations (70), (71) equation (76) take the form  

σ∗ = 𝑈∗ + X
(W∗ + N,

x(I¾´�(x) + I¾È�(x))
2I¾(x)

- (1 −m{ − x{) + ,
x(I¾´�(x) + I¾È�(x))

I¾(x)
- .K¾(x)I¾(x) −

1
2/

−h{x{ + [β{ + (αx +mβ){
2K¾(x)

x(K¾´�(x) + K¾È�(x))
](
x(I¾´�(x) + I¾È�(x))

I¾(x)
)})	

 

For (𝛼,𝛽) = (1, 0.5), 𝑚 = 0 and N=0, 0.1, 0.2, 0.4 and 0.8 corresponding to U∗ = 0	,W∗ = 0	and h=0.5. It's found the 
stable domain is	0 ≤ 𝑥 < ∞ , see figure (1). 

For (𝛼,𝛽) = (1, 0.5), 𝑚 = 0 and 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	  corresponding to U∗ = 1.4	,W∗ = 0.4	and h=0.5. The 
unstable domains have been discovered to be 0 <x <0.7479, 0 <x <0.7487, 0 <x <0.8474, 0 <x <0.8469 and  
0 <x <0.8444,   while the stable domains neighboring are 0.7479≤x<∞, 0.7487≤x<∞, 0.8474≤x<∞, 0.8469≤x<∞, and 
0.8444 ≤x<∞, show figure (2). Where  𝑥[ = 0.7479, 0.7487, 0.8474, 0.8469, 0.8444, this is the transition from unstable 
to stable domain and the equivalences that correspond to the limit states stability. 

For (𝛼,𝛽) = (1, 0.5), 𝑚 = 1 and 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	  corresponding to U∗ = 0,W∗ = 0	and h=0.5, of unstable 
domains are 0 <x <2.6351, 0 <x <2.8473, while the neighboring stable domains are  2.6351 ≤x < ∞ , 2.8473  ≤x < ∞,   
0≤x<∞ et. see figure (3) Where  𝑥[ =2.6351,2.8473. 

For (𝛼,𝛽) = (1, 0.5), 𝑚 = 1 and 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	  corresponding to U∗ = 1.4,W∗ = 0.4	and h=0.5, the 
unstable domains are obtained 0 <x<2.6388, 0 <x <2.8454, 0 <x <0.7463,  0 <x <0.7466, 0 <x <0.6486, while the 
neighboring stable domains are 2.6388≤x < ∞ , 2.8454x < ∞,   0.7463≤x<∞, 0.7466≤x< ∞, and 0.6486≤x<∞, see 
figure (4) Where  𝑥[ = 2.6388, 2.8454, 0.7463,0.7466,0.6486. 

For (𝛼,𝛽) = (1, 0.5), 𝑚 = 2 and N=0, 0.1, 0.2, 0.4 and 0.8 corresponding to U∗ = 0	,W∗ = 0	and h=2. The stable 
domain has been discovered to be		0 ≤ 𝑥 < ∞ , see figure (5). 
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For (𝛼,𝛽) = (1, 0.5), 𝑚 = 2 and 𝑁 = 0,0.1,0.2,0.4	, 𝑎𝑛𝑑	,0.8	  corresponding to U∗ = 1.1,W∗ = 0.1	and h=0.5, the 
unstable domains are obtained 0 <x <0.4495, 0 <x <0.4494, 0 <x <0.4493,  0 <x <0.4490, 0 <x <0.4485,  while the 
neighboring stable domains are 0.4495≤x < ∞ , 0.4494≤x < ∞, 0.4493≤x<∞, 0.4490≤x< ∞, and 0.4485≤x<∞, see 
figure (6) Where  𝑥[ =0.4495,0.4494, 0.4493,0.4490,0.4485. 

 
Fig. 1: MDH of oscillating fluid pervaded by varying magnetic field  

For h=0.5, 𝑈∗ = 0,𝑊∗ = 0,𝑚 = 0	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5). 

 
Fig. 2:  MDH of oscillating fluid pervaded by varying magnetic field 

For h=0.5, 𝑈∗ = 1.4,𝑊∗ = 0.4, 𝑚 = 0	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5). 
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Fig. 3:  MDH of oscillating fluid pervaded by varying magnetic field 

For h=0.5, 	𝑈∗ = 0,𝑊∗ = 0, 𝑚 = 1	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5) . 

 
Fig. 4:  MDH of oscillating fluid pervaded by varying magnetic field 

for h=0.5, 𝑈∗ = 1.4,𝑊∗ = 0.4,	
		𝑚 = 1	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5). 
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Fig. 5:  MDH of oscillating fluid pervaded by varying magnetic field 

For h=2,  𝑈∗ = 0,𝑊∗ = 0, 𝑚 = 2	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5). 

 
Fig. 6: MDH of oscillating fluid pervaded by varying magnetic field 

For h=2, 𝑈∗ = 1.1,𝑊∗ = 0.1, 𝑚 = 2	𝑎𝑛𝑑	(𝛼,𝛽) = (1,0.5). 
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8 Conclusions 

Form the previous mathematical analysis we can be deduced that: 

1 The capillary force is stabilizing for smaller wavelength, but it's destabilizing for long wavelength in case (m=0) 
axisymmetric perturbations. However, it's stabilizing in non-axisymmetric modes 𝑚 ≥ 1 for all short and long 
wavelength. 

2 The effect of the magnetic field on the capillary instability of the proposed model is strong stabilized in 
axisymmetric and non-axisymmetric. 

3 The streaming has largely destabilized effect on the current model. 

4 The general varying magnetic field has strongly stabilized effect on the present model for all modes. 
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