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Abstract: In this paper, we present an up-to-date benchmarking of the most commonly used pre-trained CNN models 
using a merged set of three available public datasets to have a large enough sample range. From the 18th century up to 
the present day, cardiovascular diseases, which are considered among the most significant health risks globally, have 
been diagnosed by the auscultation of heart sounds using a stethoscope. This method is elusive, and a highly 
experienced physician is required to master it. Artificial intelligence and, subsequently, machine learning are being 
applied to equip modern medicine with powerful tools to improve medical diagnoses. Image and audio pre-trained 
convolution neural network (CNN) models have been used for classifying normal and abnormal heartbeats using 
phonocardiogram signals. We objectively benchmark more than two dozen image-pre-trained CNN models in addition 
to two of the most popular audio-based pre-trained CNN models: VGGish and YAMnet, which have been developed 
specifically for audio classification. The experimental results have shown that audio-based models are among the best-
performing models. In particular, the VGGish model had the highest average validation accuracy and average true 
positive rate of 87% and 85%, respectively. 

Keywords: Heart sound, Heart Diseases, CVDs, Convolutional Neural Network (CNN), Image pre-trained model, 
Deep Learning, Transfer learning, Sound pre-trained models. 

 
1 Introduction 

The most important organ in the human body is the heart, as all the body’s organs receive blood from the heart. 
Cardiovascular diseases (CVDs) currently pose the greatest threat to human health globally. According to a World 
Health Organization (WHO) report, 17.9 million people died from CVDs in 2019, accounting for 32 percent of all 
global deaths [1]. 

Numerous techniques are used to diagnose CVDs. The auscultation of cardiac sounds with a stethoscope is one of the 
most commonly used techniques. The initial step toward confirming diagnoses of cardiovascular illness is auscultation 
diagnosis, which is a well-established procedure in the field of medicine. Although this approach is quick and simple to 
use, it is also challenging in that it requires extensive knowledge and experience. Primary care providers have accuracy 
rates of 20% to 40% [2]. These difficulties arise because each heart sound and murmur have its own unique properties, 
such as intensity, sharpness, pitch, radiation, auscultation location, and the start of the cardiac cycle [3]. Figure 1 depicts 
a time-domain example of both typical and abnormal phonocardiogram signals. Every cardiac cycle is represented by 
the normal heart sounds S1 and S2 on the normal phonocardiogram signal. An abnormal phonocardiogram signal 
suggests that each cardiac cycle’s S1 and S2 heart sounds are preceded by a murmur. Recently, advancements in 
computing have led to the rapid expansion of healthcare applications. Cardiac applications aid in the care of heart 
health. They offer numerous benefits, including usability, self-care, monitoring, saving time for clinical visits, and quick 
medical intervention for treatment. Heart sounds and signals provide information on many heart diseases. An automated 
system capable of interpreting heart sounds could be utilized to test for CVDs early and effectively as well as to manage 
the disease’s progress. Algorithms can be used to move the signal analysis accountability from the doctor toward 
technology [4]. 

In general, a heart sound analysis system consists of four steps. Denoising is the process of removing undesirable 
components from the PCG signals, such as background noise during heart sound recordings. The step of sound 
segmentation consists of identifying the boundaries between the primary cardiac sounds (S1, S2, S3, and S4) and 
murmurs. The feature extraction stage is the process of reducing the high dimension of the PCG signal to the low 
dimension and preparing it for use by machine learning algorithms. The signal’s features can be extracted from a wide 
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range of domains, including time, frequency, time-frequency, and depth domain, and there are numerous feature 
extraction techniques, including mel-frequency of cepstral coefficients (MFCCs) and continuous wavelet. The final 
phase is the classification process, which distinguishes normal PCG signals from aberrant categories. All steps are 
critical to the accuracy of the model [5]. 

 
Fig. 1: An example of normal and abnormal phonocardiogram signals for heart sounds. 

Researchers have put extensive effort into creating algorithms that automatically classify heart sounds with high 
accuracy. K-nearest neighbors (KNN), random forest, support vector machine (SVM), and decision tree were used as 
traditional machine learning techniques. They also used deep learning methods such as convolution neural networks 
(CNNs), recurrent neural networks (RNNs), and deep neural networks (DNNs). Recent advances in medical big data 
and artificial intelligence technologies have increased the emphasis on the development of deep learning methods for 
categorizing heart sounds [6], [7], [8]. 

Transfer learning is a way to reuse pre-trained CNN models and their weights that have been trained on very big 
datasets. Image pretrained CNN models have trained on the ImagNet dataset, which has over one million images for 
1000 classes. Image pre-trained CNN models are available and can be employed for feature extraction and fine-tuning. 
Examples of image pre-trained CNN models are VGG family models, GoogleLetNet, InceptionV3, and residual 
network ResNet50. Image pre-trained CNN models were applied for heart sounds classification before the emergence of 
audio pre-trained models [9]. 

Currently, large audio datasets like AudioSet are being used to construct audio pre-trained CNN models. The AudioSet 
dataset has nearly two million audio files and 632 audio event classes. Audio pre-trained CNN models have been used 
for audio classification tasks such as bird audio detection, audio tagging, music genre classification, music mood 
classification, and environmental sound classification tasks. Audio pre-trained CNN algorithms such as VGGish, 
Yamnet, look listen and learn (L3), TRILL (TRIpLet loss network), and heart sound classification can be developed 
with PANNs (large-scale pretrained audio neural networks for audio pattern recognition) [10]. 

The availability of datasets that are standardized, high-quality, thoroughly vetted, and well documented encourages the 
advancement of algorithms for the study and analysis of heart sounds. Presently, the available and accessible public 
heart sound dataset recordings are the PhysioNet, PASACAL A and B, unnamed/GitHub and Sounds Shenzhen (HSS) 
datasets. Table 1 shows the technical details of the available public heart sound datasets. These datasets are limited in 
their number of recordings or classes. Other researchers have used their own private datasets [12]. 

In this study, we provide a phonocardiogram recognition benchmark using a combination of the image pre-trained 
models and popular sound pre-trained models with three merged public heart sound datasets: the Physionet/CinC 2016 
dataset [13], the PASCAL Heart SoundChallenge (PHSC11) dataset [14] and a dataset collected from public databases 
[15]. 

Our primary objective is to suggest strong classification outcomes as a starting point reference benchmark for upcoming 
CVD recognition research and to simultaneously test the most appropriate model for heart sounds PCG classification. 
Can audio pre-trained CNN models accomplish greater CVD recognition accuracy than image pre-trained CNN 
models? 

The rest of this study is arranged as follows. In Section 2, related work is presented. In Section 3, we show the proposed 
benchmark process. In Section 4, the experiments and results are provided. In Section 5, the conclusion is presented. 
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Table 1: Technical details of the available public heart sounds datasets 
Ref Dataset Class Recordings 

numbers 
Tot
al 

Recordings 
lengths (s) 

Sampling 
frequency 

Acquisition Device Limitation 

[13] PhysioNet Normal 2575 324
0 

5 -120 s 2KHz Digital stethoscope Lacks other 
heart diseases Abnormal 655 

[14] Pascal - A Normal 45 167 1- 30s 44.1 KHz istethoscope Pro 
iPhone app 

Small number 
of recordings 
Lacks other 
heart diseases 

Murmur 48 
Extrahs 27 
Artifact 56 

[14] Pascal - B Normal 167 279 1-30s 44 KHz Digital stethoscope Lacks other 
heart diseases Murmur 69 

extrasystole 39 
[15] GitHub\un

named 
Normal 200 100

0 
Roughly 3s 8KHz Collected from 

different sources 
Lacks other 
heart diseases 
Small number 
of recordings 

Aortic stenosis 
(AS) 

200 

Mitral valve 
prolapse (MVP) 

200 

Mitral stenosis 
(MS) 

200 

Mitral 
regurgitation 
(MR) 

200 

[34] HSS Normal - 845 30s on average 4KHz Electronic 
Stethoscope 

Lacks other 
heart diseases Mild - 

Moderate/Severe - 

2 Related work 

CVD detection using the advancement of technologies such as deep learning algorithms has been a recent focus for 
many researchers. Even though those researchers have considered the same problem of CVD detection, they have dealt 
with using heart sound PCG signals for classifying normality or abnormalities the heart. Generally, there are four phases 
in classifying heart sounds PCG signals: de-noising, segmentation, feature extraction, and classification [16]. 

2.1 The de-noising phase 
De-noising is the method used to eliminate unwanted components from heart sound signals. During the recording of 
heart sounds, environmental interference affects the quality of the recordings. Heart sound signals are affected by 
factors such as contact pressure between both the stethoscope and the skin and noise such as lung sounds, breathing 
sounds, and background sounds; thus, it is necessary to remove this noise. The effectiveness of the segmentation, 
feature extraction, and classification phases are significantly impacted by denoising. The most popular de-noising 
methods include wavelet de-noising, empirical mode de-noising, and filter de-noising. The filters can be used for band-
pass, low-pass, and high-pass applications [17]. 

2.2 The features extraction phase 
Segmentation aims to split PCG signals into four portions or sections: first heart sounds (S1), systole, second heart 
sounds (S2), and diastole. Each of these segments has features that make it possible to effectively distinguish the 
different categories [18]. 

2.3 The features extraction phase 
Features play a crucial role in classifying a signal. The features consist of the important information in the signal. In the 
case of heart sounds classification, these feature extraction methods are a very important stage of PCG analysis for 
detecting any CVD. As a result, the feature extraction technique is useful in converting data into information, making it 
easier to achieve higher accuracy in the classification stage [19]. The features can be extracted from various domains 
such as the time domain, frequency domain, and time-frequency domain. In the time domain, the features of the time 
domain are the characteristics of the signal over time. The windowing technique is used to divide the signal into frames. 
The features are taken from each frame in the audio signal. In the frequency domain, frequency domain analysis is the 
most vital tool in audio signal processing. To analyze audio signals in the frequency domain, the time area signal is 
converted into the frequency domain using Fourier transform. The time-frequency domain provides frequency 
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information and the time of the audio signal. It bridges the gap between the time domain and frequency domain [8]. 
There is many time- frequency domain methods such as spectrogram [20] and MFCCs [21]. MFCCs can be used in the 
form of images as input for a CNN classifier. 

2.4 The classification phase 
The classification phase is the method used to split PCG signals into normal sounds or additional abnormal sounds. 
Classification methods can be applied to the takeout features to recognize the exact sound type. Machine learning 
algorithms and deep learning methods have been applied to PCG signals such as SVM, CNN, and image pre-trained 
models [22], [20],[23]. Mehrez Boulares et al. [22] applied image pre-trained models to the Pascal dataset. MFCCs 
features were extracted and saved as images. The main findings of this paper are a benchmark that can be used for 
classification results comparison of CVD recognition. Omair Rashed Abdulwareth Almanifi et al. [24] applied four 
image pre-trained models: inceptionV3, MobileNet, VGG16, and VGG19. The Pascal dataset was used for training and 
testing the models. The primary contribution of this paper is its demonstration that transfer learning models can enhance 
CVD recognition. 

Tomoya Koike et al. [25] proposed a new audio pre-trained audio neural networks (PANNs) model. The PhysioNet 
dataset was used to train the model. Log mel spectrograms are used as features. The main findings of this paper are a 
novel audio pre-trained model. Moreover, audio-pre-trained models outperformed popular image pre-trained models. 

Mukherjee et al. [26] applied images of six pre-trained CNN models: DenseNet169, ResNet152V2, MobileNetV2, 
MobileNet, InceptionResNetV2, and Xception. The Pascal A B Datasets were used. The spectrogram features were 
saved as images. The main finding is that image-pre-trained models are promising for the automation of heart sound 
classification. 

Shahid Ismail et al. [20] suggested a mechanism that includes filtering the PCG signal, time segmentation, extracting 
spectrogram features, image pre-trained AlexNet with SVM classification, and a voting-based system. They used the 
Pascal A B dataset. The main finding of this paper is that 2–3-s length of data is enough for classification. 

Menghui Xiang et al. [27] applied deep learning and transfer learning using four image pre-trained models: Xception 
ResNet50, InceptionV3, and MobileNet. In this study, four types of features were used: mel spectrogram, log power 
spectrogram, waveform, and envelop. The primary conclusions of this study are that using time-frequency features is 
preferable to using just time-domain features. Additionally, transfer learning can increase the model’s classification 
precision. 

Zhihua Wang et al. [28] utilized a pretrained deep neural network. The authors of the paper used eight different time- 
frequency feature extraction methods. The PCG features were converted to images to be input for the classifier. The 
main findings of this paper are that a fine-tuned deep model can improve the mean accuracy. In addition to this finding, 
Stockwell transformation provides noise robustness of PCG signals. 

Miao Wang et al. [29] considered ten image pre-trained models. The PCG signals were converted to a 3-dimensional 
spectrogram by continuous wavelet transform (CWT). The dataset in GitHub [15] used an extra class of heart sound, 
pulmonary hypertension, comprised of 200 samples. The total number of samples is 1200, with 200 samples for each 
class. The main findings of this paper are that the proposed method achieved high accuracy despite the noisy 
background and that this proposed model can be used for CVD detection. 

Guangyang Tian et al. [30] suggested a new deep learning model called DsaNet. The PhysioNet dataset was applied for 
training the model. The model’s input was the 1D time domain. On the open-source 2016 PhysioNet dataset, the 
reported model outperformed seven different baseline models. This article’s key conclusion is that DsaNet may 
compete favorably in imbalanced PCG signal classification with fewer parameters and calculations. 

Neeraj Baghel et al. [31] employed a deep learning model, convolutional neural network (CNN). The PCG signals were 
converted to log-mel spectrogram images to use as input for the model. The GitHub dataset [15] contains 1000 samples, 
with 200 for each class of the 5 classes used. The main finding of this paper is that the proposed model can be deployed 
to any computer type as it achieved a high accuracy of 98.60%. 

Jay Karhade et al. [32] proposed a time frequency domain deep learning framework. The authors of the paper examined 
both time and frequency-domain chirplet transform-based images as input for deep CNN to detect four types of CVDs. 
The key conclusion of this paper is that the recommended model can be validated in real-time for CVD detection. 

Bin Xiao et al. [33] presented a 1D CNN with remarkably minimal parameter usage. The suggested model has three 
parts: prepossessing, deep CNN classification with an attention mechanism, and majority voting for final prediction. 
The PhysioNet dataset was used to evaluate the model. The proposed model shows superior results compared to cutting-
edge approaches. It produces superior classification results and consumes fewer resources. Table 2 shows an overview 
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of related work. We conclude that audio-pre-trained CNN models have not been employed by researchers yet. In [22], 
the dataset used is the Pascal dataset, which is confined to a small number of samples and murmur classes. Also, the 
study does not include all Keras image pre-trained CNN models and audio pre-trained CNN models. In this study, we 
bridge the gap by using huge dataset samples, 26 image pretrained CNN models and popular audio pretrained CNN 
models. 

Table 2: An overview of the related work papers. 
Reference Year Dataset Feature extraction 

methods 
Classifier Classification 

type 
Accuracy 
(%) 

Shahidi smail et 
al. [20] 

- 
2023 

- PASCAL A & B 
[14] 

- Spectrogram - AlexNet -SVM - Binary - 
multi-class 

> 97 

 
Menghui Xiang et 
al. [27] 

 
- 
2023 

 
- Physionet2016 
[13] 

- Dataset on 
GitHub [15] 

- Mel spectrogram 
- Log power 
spectrogram 

-Waveform 
-Envlop 

 
- Xception - 
MobileNet 

 
- Binary 

 
94%. 

Zhihua Wang et 
al. [28] 

- 
2023 

- Physionet2016 
[13] 

- Time–frequency 
(images) 

VGG16 -VGG19 - Binary 65% 

Miao Wang et al. 
[29] 

- 
2022 

- Dataset on 
GitHub [15] 

- private 

- Spectrograms 
(Image) 

- ResNet101 -
DenseNet201 

- DarkNet19 -
GoogleNet 

- Mult-calss 98% 

Guangyang Tian 
et al. [30] 

- 
2022 

PhysioNet/CinC 
[13] 

- 1D time domain - DsaNet - Binary - 

Jay Karhade et al. 
[32] 

- 
2022 

- Dataset on 
GitHub [15] 

- Physionet2016 
[13] 

- Time–frequency 
images 

- Deep CNN -Binary - multi-
class 

99.48 
multiclass 
- 85.16 
binary 

Omair Almanifi et 
al. [24] 

- 
2021 

- PASCAL [14] - Spectrograms - VGG16 - VGG19 
- MobileNet - 
InceptionV3 

 80.25 

 
Mukherjee et al. 
[26] 

 
- 
2021 

 
- Pascal A & B 
[14] 

 
- Spectrograms 
(Image) 

- DenseNet169 - 
ResNet152V2 

-MobileNetV2 -
MobileNet 

- InceptionResNetV2 
-Xception 

 
- Multi-class 

 
AUROC 
0.97 

Mehrez Boulares 
et al. [22] 

- 
2020 

Pascal A & B [14] - Image MFCCs - Image pre-trained 
models 

- Binary 0.89 

Tomoya Koike et 
al. [25] 

- 
2020 

- PhysioNet2016 
[13] 

- Log Mel 
spectrogram 

- Spectrograms 

- Audio pre-trained 
model 

- Binary UAR 89.7%. 

Neeraj Baghel et 
al. [31] 

- 
2020 

- Dataset on 
GitHub [15] 

- Private 

- Log mel 
spectrograms 

- CNN - Multi-class 98.60% 

Bin Xiao et al. 
[33] 

- 
2020 

- Physionet2016 
[13] 

- I D time domain - Deep CNN - Binary 93 

3 Benchmark process 

We transform heart sound signals to mel spectrograms. For image pre-trained CNN models, we added three layers to 
the base model to increase the accuracy classification. As shown in Figure 2, the first added layer was Global Average 
Pooling 2D, and the second and third are dense layers 1024 and 512 respectively. The last layer is the dense 
classification layer with a sigmoid activation function. A stochastic gradient descent (SGD) optimizer is employed. The 
learning rate is 0.0001. The epochs are set to 30, and the batch size is set to 5. For the audio pre-trained CNN models 
heart sound signals were converted to log mel spectrograms. As shown in Figure 3, we add five dense layers 2287 with 
the relu activation function. To prevent systems from overfitting, a dropout with a rate of 0.5 is implemented after the 
three dense layers. Before the last layer, batch normalization was introduced to reduce overfitting. Dense layer of 
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classification by the softmax activation function. The optimizer is Adam, the batch size is 32, the epoch is 20, and the 
learning rate is 0.0001. 

 

Fig. 2: The proposed approach architecture using Keras image CNN pre-trained models. 

 
Fig. 3: The proposed approach architecture using YAMnet and VGGish audio CNN pre-trained models. 

3.1 Dataset 
In this section, we will demonstrate the open-access heart sounds public datasets and the merged dataset that has been 
used for this benchmark. Table 1 presents the technical aspects of the accessible public heart sounds datasets. The 
PhysioNet/CinC Challenge 2016 dataset is an openly accessible heart sounds public dataset [13]. The total number of 
recordings is 3240 files in .wav format. The PhysioNet dataset is gathered by seven research teams. The dataset contains 
only two classes: normal heart sounds and pathological abnormal sounds. The total number of normal heart sound 
recordings is 2575 and the total number of aberrant heart sound recordings that show pathological cases is 655. The 
recorded files are sampled at 2000 Hz. The duration of the recordings varies from 5 seconds to 120 seconds. This 
dataset lacks disease-based labeling and is comprised of only two groups (normal and abnormal). The accessible 
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available heart sounds Pascal dataset is set A and B [14]. The Pascal dataset A has four kinds of heart sounds: normal is 
45 files, murmur is 48 files, extra heart sound is 27 files, and artifact is 56 files. The total is 149 recording files in .wav 
format. They were gathered publicly by the istethoscope Pro iPhone app. The sample rate is 44.1 kHz. The recordings’ 
duration varies from 1 to 30 seconds. The Pascal dataset B is larger than the Pascal dataset A. The total of all recordings 
is 279 files in .wav format. There are three types of heart sounds: normal is 167 files, murmur is 69 files and 
extrasystole is 39 files. They were collected from a hospital clinic using a digital stethoscope called a DigiScop. The 
recording files’ duration ranges from 1 to 30 seconds and the sampling rate is 4 kHz. The Heart Sounds Shenzhen 
(HSS) PCG signal corpus dataset contains 845 recording files [34]. They were gathered from 170 different persons. 
Files were recorded from individuals suffering from a wide range of heart conditions, including coronary heart disease, 
arrhythmia, valvular heart disease, congenital heart disease, and others. The PCG recordings are recorded at 4 kHz and 
labeled with three class labels: Normal, Mild, and Moderate/Severe (heart disease). This dataset has no heart sounds or 
murmurs. The class Moderate/Severe does not indicate the severity of the valve or disease. The audio was captured in 
.wav format using an electronic stethoscope (Eko CORE, USA). The duration of the length of the recordings is 30 
seconds on average. They are relatively limited in terms of the number of samples. The fourth public dataset is proposed 
in [15]. There is a total of one thousand .wav audio files included, with five different heart sound types (normal, aortic 
stenosis, mitral valve prolapses, mitral valve stenosis, and mitral regurgitation). Each class has 200 recordings with a 
duration of 3 s. The dataset was collected from many resources such as websites and books. All the recording files are 
sampled at 8000 Hz. The limitation of this public dataset is that it is missing classes that are common such as aortic 
regurgitation, tricuspid regurgitation, tricuspid stenosis, and abnormal classes that indicate S3 and S4, which indicate 
many heart diseases. In this work, we merged the PhysioNet, PASCAL A–B and (GitHub) datasets to have more 
samples for normal and abnormal classes so that any pathological sounds are in the abnormal class and healthy (normal) 
sounds are in the normal class. After the merging, we obtained 3127 samples of the normal class and 1659 of the 
abnormal class. The total of both classes is 4785. Table 3 shows the merged dataset with the sample numbers of each 
class, and Figure 4 shows the merged dataset compared to the public heart sound datasets. 

Table 3: Merged dataset. 
Class Samples Number 

Normal 3126 
Abnormal 1659 

Total 4785 

 
Fig. 4: The merged dataset vs public heart datasets. 
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3.2 Preprocessing 
Mel spectrograms have been widely used for heart sound recognition tasks [35]. We use mel spectrograms for image 
pretrained CNN models and log mel spectrograms for audio pre-trained CNN models as they performed better in [37]. 
For the image pre-trained CNN model, we converted the heart sound signals to mel spectrograms and saved them as 
png format images. For audio pre-trained CNN models, the models take the audio clips as input and convert them to log 
mel spectrograms. For image pre-trained CNN models, mel spectrograms were computed as follows: 

–The heart sound signal sampling rate 44,100 

–Divide PCG signals into frames using the Hamming windowing function at interval 1024 and hop length 256. Obtain 
from this step the cepstral feature vector per each frame. 

–Apply discrete Fourier transform for each frame. 

–Apply 40 mel filter banks to the spectrograms. Figure 5 shows an example of converted PCG signals to mel 
spectrogram image for heart sound normal and abnormal. 

 
Fig. 5: An example of converted PCG signals to mel spectrogram images for normal and abnormal heart sounds. 

For audio pre-trained CNN models, the log mel spectrograms are computed as follows: 

–Audio clips are resampled to 16 KHZ mono. 

–Short-time Fourier transform is employed to compute the spectrogram with a 25-ms window size, 10-ms window hop 
and a periodic Hann window. the spectrogram to 64 mel bins surrounding the range 125–7500 Hz. 

–Log transform the magnitude of each bin and add a small offset to evade abiding of the logarithm of zero. 

–Frame features include non-overlapping frames of 0.96 seconds, where every frame lids 64 mel bands and 96 frames 
of 10-ms apiece. Therefore, the form of log-mel spectrogram is 96 * 64 bins that input to the classifier. 

We have used the PCG signal as raw without any of preprocessing methods such as de-noising or segmentation. 

3.3 Image pre-trained CNN models 
Deep CNNs models take days or weeks to train process on very big datasets. To overcome this issue, this procedure 
reuses the model weights from pretrained models created for standard computer vision datasets, for example, the 
ImagNet dataset for image recognition tasks. The best models that have elevated performance should be used 
(transferred) straight or joint over on a new model. The best models can be used as the basis for transfer learning in 
computer vision applications. These models have been taught on millions of images for 1000 classes. The models have 
state-of-the-art performance. They have been used for real image recognition tasks. The model weights can be 
downloaded for free and easily with the required Keras libraries. Many of these models are free and can be transferred. 
In our work, we use all the available models for a total of 26 pretrained models. Table 4 demonstrates Keras-image-
trained CNN models and the popular audio-pretrained models with the layer total, model size, and model parameters. In 
our study, we used all the available models for a total of 26 image pre-trained CNN models. 
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Table 4: Keras image and audio pre-trained CNN Models. 
Model’s name Layers Size Parameters Ref 
Xception 81 88 MB 22.9 million [38] 
VGG16 16 528 MB 138.4 million [39] 
VGG19 19 549 MB 143.7 million [39] 
ResNet50 107 98 MB 25.6 million [40] 
ResNet50V2 103 98 MB 25.6 million [41] 
ResNet101 209 171 MB 44.7 million [40] 
ResNet101V2 205 171 MB 44.7 million [40] 
ResNet152 311 232 MB 60.4 million [41] 
ResNet152V2 307 232 MB 60.4 million [41] 
InceptionV3 189 92 MB 23.9 million [42] 
InceptionResNetV2 449 215 MB 55.9 millions [43] 
MobileNet 55 16 MB 4.3 million [44] 
MobileNetV2 105 14 MB 3.5 million [45] 
DenseNet121 242 33 MB 8.1 million [46] 
DenseNet169 338 57 MB 14.3 million [46] 
DenseNet201 402 80 MB 20.2 million [46] 
NASNetMobile 389 23 MB 5.3 million [47] 
NASNetLarge 533 343 MB 88.9 million [47] 
EfficientNetB0 132 29 MB 5.3 million [48] 
EfficientNetB1 186 31 MB 7.9 million [48] 
EfficientNetB2 186 36 MB 9.2 million [48] 
EfficientNetB3 210 48 MB 12.3 million [48] 
EfficientNetB4 258 75 MB 19.5 million [48] 
EfficientNetB5 312 118 MB 30.6 million [48] 
EfficientNetB6 360 166 MB 43.3 million [48] 
EfficientNetB7 438 256 MB 66.7 million [48] 
VGGish 15 256.37 MB 72.1 million [49] 
YAMnet 86 13.58 MB 3.7 million [49] 

3.4 Audio pretrained CNN models 
The image pre-trained CNN models have been used for audio classification tasks. Audio pre-trained CNN models were 
not developed due to the scarcity of data sets for audio classification. Nowadays, several large-scale audio datasets have 
been developed such as the YouTube-8M dataset and the Audioset dataset. Audioset consists of 1.9 million audio clips 
and 521 audio event classes [36]. Many CNN models have been trained on the Audioset dataset and can be ported to 
audio classification tasks. We will demonstrate the audio pre-trained audio CNN models. 

–Pretrained audio neural networks (PANNs) model 

PANNs is an audio pre-trained CNN model [50]. PANNs is trained on the Audioset dataset [51]. Audioset consists of 
1.9 million audio clips and 521 audio event classes. PANNs inspired the VGG CNN model. PANNs consists of a 14-
layer CNN. The 14-layer CNN has been transferred to several audio pattern tasks and performed well. PANNs consists 
of 14 layers: 5 blocks of 3*3 convolutional. Each convolutional block is comprised of two convolution layers with a 
kernel size of 3*3 followed by batch normalisation and a ReLU function. For each convolutional block, the 2*2 average 
pooling size has been implemented. Global pooling has been implemented after last convolutional block followed by 
two fully connected layers: one with ReLU and the second layer with softmax nonlinearity [50]. The input of the 
PANNs model is log mel spectrogram. Log mel spectrograms compute by employing short-time Fourier transform on 
the audio signal waveforms using a Hann window size of 1024 and 320 samples of hop size. One hundred frames per 
second are obtained, then 64 mel filter banks are applied. The mel banks are set to 50 Hz and 14 Khz for the upper and 
lower frequencies, respectively, to eliminate low frequency noise. The sample rate is 32,000 Hz [50]. In [25], the PANN 
was employed for classifying normal and pathological heart sounds. This is only the paper using the audio CNN 
pretrained model. 

–Kumar embeddings 

Kumar embeddings was suggested in AudioSet [52]. It is proposed for solving weak labels. It combines embeddings 
through the time for each file. It is trained as a supervised method. It uses mel spectrograms as input. It has good 
embeddings. These embeddings are used and fine tuned with support vector machine and showed a good result. Global 
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max pooling has been used. 

–LOOK, LISTEN, AND LEARN (L3) 

The L3 pretrained audio CNN model uses a supervised technique. It uses audio visual in the videos and produces robust 
embeddings. The selections made during the L3-Net design influence the output of audio classifiers trained with all 
these extracted features. It shows that audio-informed input representation choices are important and that it is necessary 
to use sufficient data for embedding training [53]. 

–OpenL3 embeddings 

As an extension, OpenL3 embedding was suggested in in [53]. This embedding is proposed for Net-L3. It has been 
trained as an audio data set. Various models were trained in the identical of L3-Net (self-supervised way) to examine 
the AudioSet. Various design choices affect classification accuracy. The accuracy depends on the embedding size as 
well as the embedding input representation. 

TRILL (TRIpLet Loss network) Model 

TRILL representation is learned in a self-supervised method on speech containing clips from AudioSet. The model 
network defines audio such that segments that are nearer in time are also nearer in the embedding space. TRILL 
demonstrates that this simple proxy objective is very effective in learning a robust representation for several non-
semantic speech tasks [54]. 

–FRILL: Non-Semantic Speech Embedding for Mobile Accessories 

FRILL (fast TRILL) is a non-semantic speech embedding model. It is meant for mobile device speech embedding. It is 
sufficient for operating in real time on mobile devices and exhibits low performance cost on a benchmark of non-
semantic speech tasks [55]. 

–VGGISH 

VGGish is an audio pretrained CNN model. It has been developed in [56] using the VGG network architecture, which is 
a CNN model trained on over 2*106 YouTube videos and can forecast over 600 audio occurrence types. Figure 6 shows 
the VGGish Convolutional Neural Networks Architecture. In the VGGish model, three fully connected layers and four 
convolutional (CONV) layers come after a single channel input layer. The well-known VGG model is reimagined as 
VGGish, with configuration A having 11 weight layers. The audio signal was split into 0.96-second intervals with no 
overlap in order to prepare it for the VGGish model. Using a short-time Fourier transform, the window size is 25 ms. 
The hop length is 10 ms. For the Hanning window with periodic sampling, each window was converted into a 
spectrogram. The spectrogram was then translated to 64 mel bins with a frequency range of 125–7500 Hz to create a 
mel spectrogram. To avoid computing a logarithm of zero, a log offset value of 0.001 was added to construct a log mel 
spectrogram. Each window created a 96 x 64-pixel two-dimensional (2D) spectrogram picture (96 frames by 64 mel 
bands). VGGish is suitable for many kinds of applications. Many studies have used it and proved this. In [57], VGGish 
was employed for speech emotion recognition. In [58], the VGGish model was used for environmental sound 
classification. In [59]], VGGish was utilized for domestic activity recognition. In [60], VGGish was used for sound 
event detection. In [61], the VGGish model was used for speech and music classification. In [62], the VGGish model 
was applied to urban sound classification. In our review of the literature, the VGGish model was not employed to 
classify heart sounds. This motivates the adoption of the VGGish model for classifying heart sounds and determining its 
accuracy. 

 
Fig. 6: VGGish Convolutional Neural Networks Architecture. 
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YAMnet Model 

YAMnet is an audio-pre-trained CNN model proposed in [56] . YAMnet employs the MobileNet network architecture 
[44]. YAMNet classifies the audio files to sound categories detailed in the AudioSet dataset [36]. YAMnet was trained 
on the AudioSet dataset. The MobileNet network utilizes depth-separable convolutions. The depthwise separable 
convolutions consist of a conventional convolution (1 x 1 convolution filter) into a depthwise and a pointwise 
convolution. The filter is applied to each intake channel utilizing depthwise convolution, and the outcomes of depthwise 
convolution are merged using 1 x 1 pointwise convolution. Figure 7 shows the YAMNET neural network architecture 
using the MobileNet model. It is a conventional convolution in the first layer. The last layers are pooling, fully linked 
layers, and a softmax layer for classification. All layers are depth-wise separable convolutions. Each convolution layer’s 
activation function was ReLU, and batch norm was employed to standardize the batch distribution. The design of the 
typical convolution layer with batchnorm and ReLU is shown in Figure 8. Figure 9 illustrates the depthwise separable 
convolutions using Depthwise and Pointwise layers followed by batchnorm and ReLU. One-side short-time Fourier 
transform (STFT) was applied. The periodic Hann window is 25 ms. The hop length is 10 ms. The discrete Fourier 
transform has 512 points. The segments were converted into a size (magnitude) spectrogram with 257 frequency bins 
(DFT). The magnitudes of each band were added after the spectrum was run through a 64-band mel-spaced filter bank. 
A 96 by 64 by 1 by L array, where 96 is the number of spectrums in the mel spectrogram and 64 is the number of mel 
bands, was used to describe the audio. The mel spectrograms were eventually scaled using the log scale. The 96 by 64 
by 1 by L array of mel spectrograms was fed into YAMNet as the input layer. The outcome of the YAMnet model 
conveys confidence scores for each of the 521 sound categories for a given piece of audio over time. The YAMnet 
model has been extensively applied to audio classification. In [63], YAMnet was used for the automatic recognition of 
COVID-19 cough. In [64], YAMnet was used for speech emotion recognition. In [65], the YAMNet model was used to 
recognize COVID-19 cough. In [66], the YAMnet model was applied for identifying Parkinsonian speech. In [67], 
YAMnet was applied to respiratory sound classification applications. In our literature review, YAMnet was not used for 
heart sound classification tasks. This has motivated us to use the YAMnet model for heart sound classification tasks and 
discover the accuracy. In our work, we will use the popular audio pre- trained CNN models VGGish and Yamnet. Table 
4 shows the popular audio CNN models’ layers and the model’s size. In our work, we use these pre-trained models. 

 
Fig. 7: YAMnet Convolutional Neural Networks Architecture. 

 
Fig. 8: The design of the typical convolution layer with batchnorm and ReLU. 
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Fig. 9: The depthwise separable convolutions using depthwise and pointwise layers followed by batchnorm and ReLU. 

In our work, we will use the popular audio pre-trained CNN models VGGish and Yamnet. Table 4 shows the image pre-
trained models and the popular audio CNN models’ layers and the model’s size. In our work, we use these pre-trained 
models. 

4 Experiments and results 

In this part, we demonstrate our experiments using image pretrained models and the audio pretrained models VGGish 
and YAMnet with the merged dataset. The merged dataset is unbalanced and has two classes: 3126 normal samples and 
1658 abnormal samples as shown in Table 3. We fine-tuned twenty-six Keras image pretrained CNN models and two 
popular audio pre-trained models listed in Table 4. We employ 2 and 3 cross-validation to the merged dataset. The 
configuration is using image pre-trained models, and the number of epochs is fixed 30. The batch size is set to 5. The 
learning rate is 0.0001. For audio pretrained CNN models, the learning rate is 0.0001. The epochs number is set to 20. 
The optimizer is Adam. The batch size is 32. We use Google Colab Pro for training. Dedicated GPU usage is 
provided by the Colab Pro platform, with 2496 CUDA processors, compute 3.7, and 12 GB, GDDR5 
VRAM, and the GPU is a 1xTesla K80. 

4.0.1 Using two folds 
50% of the merged dataset is used for training, and 50% is used for testing where there are 1563 normal class samples 
and 829 abnormal class samples. We will discuss the obtained results for each fold; then, we will explain the results of 
3-fold cross-validation as the average for two-folds. 

Table 5: Validation TPR of the Keras image and audio pre-trained CNN models utilizing two folds. 
Model 2 Fold 

Fold one Fold two AVG 
Normal Abnormal Avg Normal Abnormal Avg 

VGG16 0.91 0.76 0.84 0.72 0.92 0.82 0.83 
VGG19 0.97 0.62 0.80 0.02 1.0 0.51 0.65 
MobileNet 0.90 0.79 0.84 0.99 0.10 0.55 0.70 
InceptionV3 1.0 0.0 0.5 0.99 0.08 0.54 0.52 
InceptionResNetV2 0.94 0.24 0.59 1.0 0.0 0.5 0.54 
Xception 1.0 0.06 0.53 0.99 0.39 0.69 0.61 
DenseNet121 0.95 0.45 0.70 0.98 0.36 0.67 0.68 
DenseNet169 0.99 0.00 0.49 0.47 0.95 0.71 0.60 
DenseNet201 1.0 0.0 0.5 0.99 0.020 0.56 0.51 
NasNetMobile 0.99 0.16 0.57 1.0 0.0 0.5 0.53 
MobileNetV2 0.99 0.16 0.57 1.0 0.0 0.5 0.53 
ResNet50 0.93 0.73 0.83 0.85 0.83 0.84 0.84 
ResNet101 0.87 0.80 0.84 0.99 0.54 0.76 0.80 
ResNet152 1.0 .002 0.50 0.89 0.80 0.84 0.67 
ResNet50V2 1.0 0.0 0.5 1.0 0.0 0.5 0.50 
ResNet101V2 1.0 0.0 0.5 1.0 0.0 0.5 0.5 
ResNet152V2 1.0 0.0 0.5 1.0 0.0 0.5 0.5 
NASNetLarge 1.0 0.0 0.5 1.0 0.0 0.5 0.5 
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EfficientNetB0 1.0 0.06 0.53 0.88 0.69 0.78 0.66 
EfficientNetB1 0.98 0.58 0.78 0.98 0.63 0.81 0.80 
EfficientNetB2 0.96 0.68 0.82 0.98 0.53 0.76 0.79 
EfficientNetB3 0.99 0.46 0.73 1.0 0.10 0.55 0.64 
EfficientNetB4 0.97 0.54 0.76 0.99 0.20 0.60 0.68 
EfficientNetB5 0.99 0.32 0.66 0.99 0.58 0.79 0.72 
EfficientNetB6 0.96 0.63 0.80 0.99 0.47 0.73 0.76 
EfficientNetB7 0.98 0.51 0.75 0.99 0.57 0.78 0.76 
VGGish 0.93 0.77 0.85 0.89 0.80 0.83 0.84 
YAMnet 0.95 0.59 0.77 0.94 0.61 0.77 0.77 

 
Fig. 10: The average validation accuracy for image and audio pre-trained CNN models utilizing two-folds. 

–Fold1: 

The VGGish audio pre-trained models reach the highest average validation accuracy of around 87% with the average 
true positive rate (TPR) of both classes of 85%. The normal class reaches TPR=93%, while the abnormal class reaches 
TPR=77%. The image pre-trained CNN models, MobileNet, ResNet50 and EfficientNetB2 pre-trained CNN models 
reach an average validation accuracy of around 86% as displayed in Figure 10. The MobileNet ResNet101 and VGG16 
have the top average TPR at around 84% as shown in Table 5. This represents the depth of the model architecture and 
has no influence on the validation accuracy or the average of the TPR. Table 4 shows the layers of the models. The 
depth of the model layer does not play a large role in the accuracy. For example, VGG16 has 16 layers, MobileNet has 
55 layers, and both of them have the same validation accuracy. ResNet50 has 107 layers and achieves 86% validation 
accuracy, the same as VGG16, which has 16 layers. ResNet101 has 209 and achieves 85% validation accuracy, the 
same validation accuracy of VGG19, which has 19 layers. EfficientNetB2 has 186 layers and achieves the VGG16’s 
validation accuracy. An imbalanced dataset has a large impact on the abnormal class TPR for most models such as 
ResNet50V2, ResNet152V2 and NASNetLarg. ResNet50V2, ResNet152V2 and NASNetLarg reach 100% TPR for the 
normal class and a 0% TPR for the abnormal class, while ResNet101 has less impact. ResNet101 reaches a TPR of 87% 
for the normal class and 80% for the abnormal class as displayed in Table 5. Even though YAMnet is an audio pre-
trained CNN model and trained on AudioSet, YAMnet achieves 82% validation accuracy and an average TPR that is 
less than some image pretrained CNN network models such as VGG16 or VGG19 and EfficientNetB6. YAMnet 
achieves the average TPR for both classes of 77%; this is 95% for the normal class and 59% for the abnormal class. The 
results of fold one proves our hypothesis that audio models can achieve better validation accuracy for audio tasks than 
image models as VGGish results. The imbalanced training samples impact the TPR. The depth of neural networks has 
no effects on increasing or decreasing the validation accuracy. 

–Fold2: 

VGGish, ResNet152 and EfficientNetB1 reach the highest validation accuracy of 86%. ResNet50 and ResNet152 reach 
the highest average TPR at 84%. The number of layers for ResNet152 and EfficientNetB1 are 311 and 186, 
respectively, as shown in Table 4. VGGish was not affected more by imbalanced training samples. VGGish reached an 
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average TPR of 83%, 89% for normal class and 80% for abnormal class. Moreover, ResNet50 was not affected by an 
imbalance in training samples. ResNet50 achieves an average TPR of 84%, 85% for normal class and 83% for abnormal 
class. For many models in this fold, the TPR was heavily influenced by imbalanced training samples such as 
InceptionResNetV2, ResNet50V2, and ResNet101V2, which had 100% for the normal category and zero for the 
abnormal category. We deduce again that the depth of the model architecture has little impact on the validation 
precision or average of the TPR. 

 
Fig. 11: The loss curves and training validations of the pre-trained CNN models using VGGish using two folds. 

 
Fig. 12: The loss curves and training validations of EfficientNetB1, ResNet50 and ResNet101 image pre-trained CNN 
models using 2 folds 
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Fig. 13: Summary of the average of training time stanzas and average of validation precision using image pretrained 
CNN models and audio pretrained CNN models for 2 folds. 

We deduce from using 2-fold cross-validation the average result of validation accuracy and average TPR as follows. 
The VGGish model has the highest average validation accuracy of 86%, which outperformed all image pre-trained 
models as seen in Figure 10. The ResNet50 and EfficientNetB2 reach an average validation accuracy of 85% and 
ResNet101 reaches 84%. Figure 11 demonstrates the loss curves and training validations of the pre-trained CNN models 
using VGGish using two folds. Figure 12 displays the loss curves and training validations of EfficientNetB1, ResNet50 
and ResNet101 image pre-trained CNN models using 2 folds. VGGish and ResNet50 reach the highest average TPR of 
84% as shown in Table 5. Figure 13 demonstrates a summary of the average of training time stanzas and average of 
validation precision using image pretrained CNN models and audio pretrained CNN models for 2 folds. We see from 
Figure 12 that VGGish, ResNet50 and EfficientNetB2 achieve the highest validation accuracy and lowest training time. 
We conclude from using 2-fold cross-validation that the VGGish pre-trained CNN model performed the best average 
validation accuracy and average TPR for both classes (normal-abnormal) amongst the twenty-six Keras image pre-
trained CNN models and audio pre-trained CNN models. ResNet50 performed the best average validation accuracy and 
average TPR for image pre-trained models. In addition, the depth of the model architecture has little influence on the 
validation precision. Moreover, even the imbalanced dataset in training samples models can have a high TPR for both 
classes such as the Resent50 pre-trained CNN model in two-fold normal class TPR=85% and abnormal class TPR=83% 
as shown in Table 5. VGGish and Resent50 are suitable pre-trained models for CVD classification of their performance 
validation accuracy, TPR and training time. 

4.0.1 Using three folds 

The merged dataset was divided into 66 percent for training and 33 percent for validation. The number of training 
samples for the normal class is 2084, while the number for the abnormal category is 1224. The number of validation 
samples for the normal category is 1042, and for the abnormal class it is 553. We will explain the obtained results for 
each fold, then we will explain the results of 3-fold cross-validation as the average for all three folds. 

Table 6: Validation true positive rate of image and audio pre-trained CNN models utilizing three folds. 
Model 3 Fold 

Fold one Fold two Fold three AVG 
Normal Abnormal Avg Normal Abnormal Avg Normal Abnormal Avg 

VGG16 0.92 0.72 0.82 0.90 0.79 0.85 0.83 0.87 0.85 0.84 
VGG19 0.93 0.76 0.84 0.89 0.85 0.87 0.36 0.99 0.67 0.80 
MobileNet 1.0 0.0 0.5 0.03 1.0 0.51 0.73 0.90 0.82 0.61 
InceptionV3 0.67 0.92 0.79 0.98 0.56 0.77 1.0 0.0 0.5 0.68 
InceptionResNetV2 1.0 0.0 0.5 0.0 1.0 0.5 0.0 1.0 0.5 0.5 
Xception 0.92 0.62 0.77 0.91 0.62 0.77 0.0 1.0 0.5 0.68 
DenseNet121 0.0 1.0 0.5 0.00 1.0 050 0.99 0.15 0.57 0.52 
DenseNet169 0.0 1.0 0.5 1.0 0.0 0.5 0.0 1.0 0.5 0.5 
DenseNet201 1.0 0.0 0.5 0.02 0.99 0.50 0.80 0.76 0.78 0.59 
NASNetMobile 0.60 0.81 0.70 0.92 0.40 0.66 1.0 0.0 0.5 0.62 
MobileNetV2 0.95 0.68 0.82 0.99 0.47 0.73 0.92 0.71 0.82 0.79 
ResNet50 0.98 0.61 0.80 0.98 0.56 0.77 0.54 0.95 0.75 0.77 
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ResNet101 0.99 0.58 0.78 1.0 0.41 0.70 0.08 0.99 0.54 0.67 
ResNet152 0.99 0.55 0.77 0.72 0.93 0.82 0.84 0.86 0.85 0.82 
ResNet50V2 0.0 1.0 0.5 0.0 1.0 0.50 0.0 1.0 0.5 0.5 
ResNet101V2 1.0 0.0 0.5 1.0 0.0 0.50 0.99 0.01 0.5 0.50 
ResNet152V2 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 0.5 
NASNetLarge 0.99 0.26 0.63 1.0 0.0 0.5 0.99 0.32 0.66 0.59 
EfficientNetB0 0.99 0.39 0.69 0.92 0.92 0.92 1.0 0.34 0.67 0.76 
EfficientNetB1 0.96 0.74 0.85 0.47 0.99 0.73 0.99 0.47 0.73 0.77 
EfficientNetB2 0.26 0.98 0.62 0.99 0.46 0.72 0.62 0.98 0.80 0.71 
EfficientNetB3 0.40 0.99 0.70 0.85 0.84 0.84 0.85 0.85 0.85 0.80 
EfficientNetB4 0.05 0.99 0.52 0.93 0.68 0.81 0.60 0.98 0.79 0.71 
EfficientNetB5 0.62 0.97 0.80 0.98 0.59 0.78 0.63 0.98 0.80 0.79 
EfficientNetB6 0.97 0.60 0.78 0.99 0.47 0.73 0.77 0.84 0.81 0.77 
EfficientNetB7 0.99 0.50 0.75 0.98 0.62 0.80 0.98 0.57 0.78 0.77 
VGGish 0.93 0.80 0.86 0.91 0.80 0.85 0.93 0.77 0.85 0.85 
YAMnet 0.95 0.59 0.77 0.94 0.64 0.79 0.95 0.62 0.78 0.78 

–Fold1: 

The VGGish and EfficientNetB1 models achieve the highest validation accuracy of 88%, while the VGG19 reaches 
87% validation accuracy as seen in Figure 14. We can see in Table 4 that the number of layers of VGGish, 
EfficientNetB1 and VGG19 is 15, 186 and 19, respectively. There is no significant difference in validation accuracy 
between both models in spite of the significant difference between them in layers number. For the TPR in this fold, 
VGGish achieves the highest average positive rate of 86%. EfficientNetB1 has an average positive rate of 85%, and 
VGG19 has 84%. The results of both classes in models such as mobileNet, InceptionResV2, DenseNet201, 
ResNet50V2, and ResNet101V2 have defecated by imbalanced training data, as shown in Table 6. They have TPR 
=0.0% for the abnormal class. We conclude that the model’s architectural complexity has no bearing on its 
performance. The imbalance in sample training plays a large role in validation accuracy. This confirms our findings in 
using 2-fold cross-validation. 

–Fold2: 

VGGish and VGG19 reach the highest validation accuracy of 87%. VGG16 and EfficientNetB7 attain 86% as displayed 
in Figure 14. VGGish and VGG19 accomplish the top average of validation TPR of 85% as demonstrated in Table 6. 
VGGish and VGG19 have not been heavily affected by imbalanced training samples, while other models have a 
significant impact such as DenseNet169, ResNet152V2 and ResNet152V2, achieving TPR=0.0%. 

[H] 

–Fold3: 

VGGish reaches the highest validation accuracy of 87%. After VGGish, VGG16, MobileNetV2, ResNet152 and 
EfficientNeB3 have nearly the same validation accuracy of 85%. Figure 14 shows these results. For the average TPR, 
VGGish VGG16, ResNet152, and EfficientNetB3 achieve the highest average of 85% as shown in Table 6. They have 
nearly the same TPR in spite of their difference in the number of layers in VGGish, VGG16, ResNet152, and 
EfficientNetB3, which have 15, 16, 311 and 210 layers, respectively. Also, they have not been impacted much by 
imbalanced training samples, while other models have been heavily impacted such as InceptionResNetV2, Xception 
and ResNet50. This ensures our inference from 2-fold cross-validation that the models’ depth has no impact on 
validation accuracy while imbalanced training data does. 

We will demonstrate the average results of using 3-fold cross-validation. We get from three-fold cross-validation the 
average validation accuracy and TPR with the following consequences: VGGish achieves the highest average validation 
accuracy of 87%. VGG16 achieves 85% average validation accuracy, while MobileNetV2 and EfficientNetB7 reach 
84%, respectively. Figure 14 displays these results. Figure 15 demonstrates the loss curves and training tests of the pre-
trained CNN models using three folds for the VGGish model. Figure 16 presents an overview of the training validations 
and the loss curves of VGG16, MobileNetV2 and EfficientNetB7 pre-trained CNN models employing three folds. 
VGGish achieves the highest TPR of 85% and VGG16 achieves the highest TPR of 84% as seen in Table 6. Figure 17 
shows an overview of training time stanzas validation precision using the image pretrained models and audio pretrained 
models. In the figure, we can see that VGGish and MobileNetV2 perform the highest average validation with less 
training time. We also see that VGG16 has 85% average validation accuracy but the highest training time among other 
models. We conclude by using 3-fold as an average. VGGish models outperformed the other models, either image or 
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audio models, on average validation accuracy and TPR. MobileNetV2 performs the best on average validation accuracy 
amongst image pretrained CNN models and YAMnet audio pre-trained CNN models. The depth of layers has not had 
an impact on the average validation accuracy; for example, MobileNetV2 (105 layers) and EfficientNetB7 (438) have 
the same average validation accuracy of 84%. We summarize the experimental results as follows: The highest average 
validation accuracy amongst the image and audio pre-trained CNN models using 2 or 3 cross-validation is the VGGish 
pre-trained CNN model. The highest average validation accuracy and the lowest average training time amongst the 
image pre-trained CNN models using 2-fold cross-validation is ResNet50. The highest average validation precision 
amongst the image pretrained CNN models that employed three-fold cross-validation is VGG16. MobileNetV2 has the 
lowest average training time using 3-fold cross-validation. The VGGish audio pre-trained CNN models as trained on the 
AudioSet dataset achieve better average validation accuracy than all image pre-trained CNN models and YAMnet audio 
pre-trained models. When looking at the YAMnet model, it trained on AudioSet but performed lower on average 
validation accuracy than some of the image pre-trained CNN models either using 2 or 3-fold cross-validation. The depth 
of models has no impact on validation accuracy. The imbalanced dataset affects the performance of models’ TPR. 
VGGish can be used for CVDs recognition as audio pre-trained CNN models and ResNet50 as image pre-trained CNN 
models. Our results can be used as a benchmark for comparing research results. 

 
Fig. 14: The average validation accuracy for image and audio pre-trained CNN models utilizing three folds. 

 

Fig. 15: The loss curves and training tests of the pre-trained CNN models using three folds for the VGGish model. 
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Fig. 16: The training validations and the loss curves of VGG16, MobileNetV2 and EfficientNetB7 pre-trained CNN 
models employ three folds. 
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Fig. 17: Summary of training time against validation accuracy when employing the Keras image and audio pre-trained 
CNN models for three folds. 

5 Conclusion 

In this work, three public datasets were merged: PhysioNet 2016, PASCAL and open/Github to get enough samples for 
training the models. We benchmark the available Keras image pre-trained CNN models and the popular audio pre-
trained CNN VGGish and YAMnet models as a starting point for research results comparison and to find out the best 
CNN model that can be used for CVD recognition. We cross-validate the datasets to 2 folds and 3 folds. The VGGish 
audio pre-trained CNN model attained the top average validation accuracy and true positive rate over all image pre-
trained CNN models and the YAMnet audio pre-trained model for 2-fold and 3-fold cross-validation. ResNet50 and 
EfficientNetB1 using 2-fold and VGG16 using 3-fold achieved the best validation average accuracy. The depth of 
layers has no impact on validation accuracy as some of the models that have fewer layers produced better accuracy than 
models that have more layers. Imbalanced data impact the TPR. In future work, we will use the preprocessing methods 
for de-noising PCG signals to optimize the performance. A dataset should be built that contains the most common and 
difficult heart sounds of CVDs for diagnosis with a stethoscope and to apply transfer learning models for classification. 
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