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Abstract: The major goal of the study, is investigate solving various kinds of Volterra integral equations via via a new method. This

article presents a novel double ARA- Sumudu (ARA-S) transformation . this novel approach is implemented to handle some integral

equations and partial integro-differential equations. Fundamental characteristics and results related to double ARA-S transformation

are investigated including the existence, inverse derivative and the convolution property. Furthermore, to prove the applicability of the

presented transform, we discuss the solution of some examples on integral equations using double ARA-S transformation.
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1 Introduction

One of the most important techniques recently used to
solve Volterra integral equations of various classes is the
integral transformation approach. For this reason, many
phenomena in the field of engineering, science, and
mathematical physics can be introduced by integral
equations of different types [1,2,3,4,5,6,7,8]. Using
integral transformations, we can transformation integral
equations into algebraic or differential equations and get
the exact solution of the target integral equations.
Developed through the hard work of many scientists and
researchers, these techniques are used today to tackle
challenging problems in contemporary arithmetic. For
example, we mention ARA transform, Sumudu
transformation, formable transformation, Elzaki
transformation and others [9,10,11,12,13,14]. Recently,
double transformations are extensively used to solve
partial differential equations and partial integral
equations, which gave good results in comparison other
analytical techniques like decomposition method, power
series method, variational iteration method and homotopy
analysis method etc. [15,16,17,18,19,20]. In addition,
there are other extensions of double transformations in
the previous literature, such as double Laplace

transformation, double Elzaki transformation, double
Shehu transformation, double Sumudu transformation,
double Laplace-Sumudu transformation and others[21,22,
23,24,25,26]. In 2022, authors have presented a new
transformation called the ARA-Sumudu transformation
[25], which is a double transformation that combines
ARA and Sumudu transformation, then it is implemented
to solve differential equations of integer and fractional
orders in [26]. In this research, we use double ARA-S
transformation to solve integral equations of different
kinds. We define the double ARA-S transformation to the
integrable function Φ(x,y) as

GxSy [ϕ (x,y)] = Φ (s,u)

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ϕ (x,y)dxdy,

s > 0, u > 0,

provided the integrals exist. The kinds of this article is to
investigate the solution of two types of equations: integral
equations and integro-partial differential equations of
Volterra kind.
We apply the double ARA-S transformation to solve the
above integral equations by converting them to algebraic
equations in the double ARA-S transformation space,
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then, the inverse double ARA-S transformation is applied
to get the solution in the initial space. This study provides
some fundamental properties of double ARA-S
transformation to basic functions, derivatives properties
and results related to the double convolution theorem.
Furthermore, we establish new results related to the
procedure of solving integral equations, and we utilize
them to handle examples.

2 Basic Definitions and Properties

In this part, we spotlight the fundamental characteristics
and definitions concerning.

Definition 1.[9] Assume that f (x) is a function in wich

| f (x)| ≤ Meax, ∀x > 0 and M > 0. Then

S [ f (x)] =
1

u

∫ ∞

0
e−

x
u f (x)dx, u > 0.

Definition 2.[12] If the function f (x) is of exponential

order defined on [0,∞). Then ARA transformation of

order one of the function f (x) is defined and denoted by

G [ f (x)] = s

∫ ∞

0
e−sx f (x)dx, s > 0.

Definition 3.[25] Let ϕ (x,y) be a function expressed as a

convergent infinite series. Then double ARA-S

transformation definition to ϕ (x,y) is given and denoted

by

GxSy [ϕ (x,y)] = Φ (s,u)

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ϕ (x,y)dxdy,

s > 0, u > 0.

(1)

We define the inverse of the double ARA-S transformation

by

G
−1
x S−1

t [Φ (s,u)] = ϕ (x,y)

=
1

2π i

∫ c+i∞

c−i∞

esx

s
ds

1

2π i

∫ ω+i∞

ω−i∞

e
y
u

u
Φ (s,u)du .

Clearly, DARA-ST and its inverse are linear integral
transformations as shown below:

GxSy [γϕ (x,y)+ηψ (x,y)]

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u (γϕ (x,y)+ηψ (x,y))dxdy

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u γϕ (x,y)dxdy

+
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ηψ (x,y)dxdy

=
sγ

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ϕ (x,y)dxdy

+
sη

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ψ (x,y)dxdy

= γGxSy [ϕ (x,y)]+ηGxSy [ψ (x,y)]

= γ Φ (s,u)+η Ψ (s,u) ,

where γ and η are constants, Φ (s,u) = GxSy [ϕ (x,y)],
Ψ (s,u) = GxSy [ψ (x,y)], ϕ and ψ are two continuous
functions. Similarly, we can show the inverse double
ARA-S transformation is linear, i.e

G
−1
x S−1

y [γΦ (s,u)+ηΨ (s,u)] = γ ϕ (x,y)+η ψ (x,y) ,

Definition 4.[25] If ϕ (x,y) defined on [0,A]× [0,B], and

satisfies the condition

|ϕ (x,y)| ≤ Reαx+β y
, ∃R > 0, ∀x > A and y > B,

then, we call ϕ (x,y) an exponential orders function with

α and β as x → ∞ and y → ∞.

Theorem 1.[25,26] The existence condition of DARA-ST

of the continuous function ϕ (x,y) defined on [0,A]× [0,B]
is to be of exponential orders α and β , for Re [s] > α and

Re
[

1
u

]

> β .

Proof. The double ARA-S transformation of the function
implies

|Φ (s,u)|=
∣

∣

∣

∣

s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ϕ (x,y)dx dy

∣

∣

∣

∣

≤ s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u |ϕ (x,y)|dx dy

≤ R s

u

∫ ∞

0
e−(s−α)xdx

∫ ∞

0
e−(

1
u−β)ydy

=
R s

u(s−α)
(

1
u
−β

)

=
R s

(s−α)(1− uβ )
,

where Re [s]> α and Re
[

1
u

]

> β . �

Definition 5.The convolution of ϕ (x,y) and ψ (x,y) is

denoted by(ϕ ∗ ∗ψ)(x,y) and defined by

(ϕ ∗ ∗ψ)(x,y) =
∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ψ (δ ,ε)dδdε.

Theorem 2.[25] Assume that G(s,u) = GxSy [g(x,y)] and

then

GxSy [g(x− δ ,y− ε)H (x− δ ,y− ε)] = e
−sδ− ε

y G(s,u) ,

where H(x,y) is the Heaviside function defined by

H (x− δ ,y− ε) =

{

1, x > δ , y > ε
0, otherwise

(2)

Theorem 3.(Double Convolution Theorem) If

GxSy [ϕ (x,y)] = Φ (s,u) and GxSy [ψ(x,y)] =Ψ (s,u), then

GxSy [(ϕ ∗ ∗ψ)(x,y)] =
u

s
Φ(s,u)Ψ (s,u) . (3)

c© 2023 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 17, No. 4, 727-734 (2023) / www.naturalspublishing.com/Journals.asp 729

Proof. The double ARA-S transformation definition
implies

GxSy [(ϕ ∗ ∗ψ)(x,y)]

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u (ϕ ∗ ∗ψ)(x,y)dxdy

=
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u

(

∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ψ (δ ,ε)dδdε

)

dxdy.

The definition of unit step function in Eq. (3) implies

GxSy [(ϕ ∗ ∗ψ)(x,y)] =
s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u

(

∫ ∞

0

∫ ∞

0
ϕ (x− δ ,y− ε)H (x− δ ,y− ε)

ψ (δ ,ε)dδdε

)

dxdy.

Thus,

GxSy [(ϕ ∗ ∗ψ)(x,y)] =

∫ ∞

0

∫ ∞

0
ψ (δ ,ε)dδdε

(

s

u

∫ ∞

0

∫ ∞

0
e−sx− y

u ϕ (x− δ ,y− ε)

H (x− δ ,y− ε)dxdy

)

=

∫ ∞

0

∫ ∞

0
ψ (δ ,ε)dδdε

(

e−sx− y
u Φ (s,u)

)

= Φ (s,u)

∫ ∞

0

∫ ∞

0
e−sx− y

u ψ (δ ,ε)dδdε

=
u

s
Φ(s,u)Ψ (s,u) .

In Table 1 below, we introduce the values of double
ARA-S transformation to several functions.

Table 1: double ARA-S transformation to basic functions [25].

ϕ (x,y) GxSy [ϕ (x,y)] = Φ (s,u)

1 1

xα yβ s−aΓ (a+1)ubΓ (b+1)

eαx+βy s
(s−a)(1−bu)

ei (αx+βy) i s
(s−i a)(bu+i)

sin(αx+βy)
s (a+b s u)

(a2+s2)(b2 u2+1)

cos (αx+βy)
s (s−ab u)

(a2+s2)(b2 u2+1)

sinh(αx+βy)
s (a+b s u)

(a2−s2)(b2 u2−1)

cosh(αx+by) s (s+ab u)
(a2−s2)(b2 u2−1)

J0

(

c
√

xy
)

,

J0 the zero order Bessel function 4s
4s+c2u

ϕ (x−δ ,y− ε) H (x−δ ,y− ε) e−sδ− ε
u Φ (s,u)

(ϕ ∗∗ψ) (x,y)
(

u
s

)

Φ (s,u)Ψ (s,u)
φ(x) Gx[φ(x)] = Φ(s)
ψ(y) Sy[ψ(y)] =Ψ(u)
φ(x)ψ(y) Φ(s)Ψ(u)

The following theorem, presents double ARA-S
transformation for partial derivatives of order one and
two.

Theorem 4.[25] (Derivative properties) If Φ (s,u)
= GxSy[ϕ (x,y)], then

1. GxSy

[

∂ϕ(x,y)
∂x

]

= sΦ (s,u)− sSy [ϕ (0,y)].

2. GxSy

[

∂ϕ(x,y)
∂y

]

= 1
u
Φ (s,u)− 1

u
Gx [ϕ (x,0)].

3.GxSy

[

∂ 2ϕ(x,y)
∂x2

]

= s2Φ (s,u)− s2Sy [ϕ (0,y)]

. −sSy [ϕx (0,y)].

4. GxSy[
∂ 2ϕ(x,y)

∂y2 ] = 1
u2 Φ(s,u)− 1

u2 Gx[ϕ(x,0)]

. − 1
u
Gx[ϕy(x,0)].

5. GxSy[
∂ 2ϕ(x,y)

∂x∂y
] = s

u
(Φ(s,u)− Sy[ϕ(0,y)]

. −Gx[ϕ(x,0)]+ϕ(0,0)).
Where Sy and Gx denote the single Sumudu and ARA

transformations respectively.

3 Applications of double ARA-S

transformation to Solve Integral Differential

Equations

This part of the research presents the application of double
ARA-S transformation to solve different classes of IEs. We
also mention that the values of the transformed functions
can be found in Appendix 1.

3.1 Two variables IEs

Consider the following IE o Volterra type

ϕ (x,y) = g(x,y)+ a

∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ψ (δ ,ε)dδdε,

(4)
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where ϕ (x,y) is the function we need to find, a is any real
number, g(x,y) and ψ (x,y) are two given functions.
Operating double ARA-S transformation on Eq. (4) we
get

GxSy [ϕ (x,y)] = GxSy [g(x,y)]

+ a

(

∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ψ (δ ,ε)dδdε

)

.
(5)

Theorem 3 implies that

Φ (s,u) = G(s,u)+ a
u

s
Φ (s,u)Ψ (s,u) , (6)

where Φ (s,u) = GxSy [ϕ (x,y)] ,G(s,u) = GxSy [g(x,y)]
and Ψ (s,u) = GxSy [ψ (x,y)]. Consequently,

Φ(s,u) =
s G(s,u)

s− auΨ (s,u)
. (7)

Applying the inverse transformation G −1
x S−1

y [Φ(s,u)] on

(7), we get the exact value of ϕ (x,y) in Eq. (4)

ϕ (x,y) = G
−1
x S−1

y

[

s G(s,u)

s− auΨ (s,u)

]

. (8)

The following examples applications on Eq. (8).
Example 1. Consider the following IE:

ϕ (x,y) = b− a

∫ x

0

∫ y

0
ϕ (δ ,ε)dδdε, (9)

considering a and b are real number.
Solution. Applying double ARA-S transformation to Eq.

(9) and depending on the linearity property and Theorem
3, we get

Φ(s,u) = b− au

s
Φ(s,u). (10)

As a result,

Φ(s,u) =
b s

s+ au
. (11)

Running the inverse transformation G −1
x S−1

y on Eq. (11),

we obtain the exact solution ϕ (x,y) of Eq. (9) in the
original space as

ϕ (x,y) = G
−1
x S−1

y

[

b s

s+ au

]

= b J0 (2
√

axy) .

Fig. 1: The 3D plot of Example 1 with a = b = 1.

where J0 is the Bessel function.

Example 2. Solve the following IE:

b2y =

∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ϕ (δ ,ε)dδdε, (12)

where b real number.

Solution. Operating double ARA-S transformation to Eq.
(12) and hiring the double convolution property to obtain

b2u =
u

s
Φ2(s,u). (13)

Thus,

Φ(s,u) = b
√

s. (14)

Running the inverse transformation G −1
x S−1

y to Eq. (14),

we get the exact solution ϕ (x,y) of Eq. (14) as follows

ϕ (x,y) = G
−1
x S−1

y

[

b
√

s
]

=
b√
π

1√
x
. (15)

Fig. 2: The 3D plot of Example 2 with b = 1.
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Example 3. Consider the following integral equation:
∫ x

0

∫ y

0
eδ−ε ϕ (x− δ ,y− ε)dδdε = xex−y − xex

. (16)

Solution. Applying double ARA-S transformation on Eq.
(16) and using convolution theorem, we get

u Φ(s,u)

(s− 1)(1+ u)
=

s

(s− 1)2 (1+ u)
− s

(s− 1)2
. (17)

After simple computations and applying the inverse
transformation G −1

x S−1
y for Eq. (17), the solution of

equation Eq. (16) becomes

ϕ (x,y) = G
−1
x S−1

y

[ −s

s− 1

]

=−ex
. (18)

Fig. 3: The 3D plot of Example 3

3.2 First order partial integro–differential

equations of two variables

Given the following Volterra partial integro–differential
equation

∂ϕ (x,y)

∂x
+

∂ϕ (x,y)

∂y

=Ψ (x,y)

+ a

∫ x

0

∫ y

0
ϕ (x− δ ,y− ε)ψ (δ ,ε)dδdε,

(19)

with the conditions

ϕ (x,0) = f0 (x) , ϕ (0,y) = h0(y). (20)

where ϕ (x,y) is the unknown function, a is a real number,
g(x,y)and ψ (x,y) are given functions. Firstly, we operate
double ARA-S transformation to Eq. (19), to get

sΦ (s,u)− sSy [ϕ (0,y)]+
1

u
Φ (s,u)− 1

u
Gx [ϕ (x,0)]

= G(s,u)+ a
u

s
Φ (s,u)Ψ (s,u) .

Substituting the values of the transformed condition Eq.
(20)

Φ(s,u) =
sF0(s)+ s2uH0(u)+ suG(s,u)

s+ s2u− au2Ψ (s,u)
, (21)

where F0 (s) = Gx [ϕ (x,0)] and H0 (u) = Sy [ϕ (0,y)]

Running the inverse transform G −1
x S−1

y to Eq. (21),the
solution of Eq. (19) is introduced by

ϕ (x,y) = G
−1
x S−1

y

[

sF0(s)+ s2uH0(u)+ suG(s,u)

s+ s2u− au2Ψ (s,u)

]

.

(22)
We implement the above technique to solve some
examples.

Example 4. Solve the partial integro-differential:

∂ϕ (x,y)

∂x
+

∂ϕ (x,y)

∂y
=−1+ ex+ ey + ex+y

+

∫ x

0

∫ y

0
φ (x− δ ,y− ε)dδdε,

(23)

with the conditions

φ (x,0) = ex = f0 (x) , φ(0,y) = ey = h0(y). (24)

Solution. Substituting the transformed values:























F0(s) = Gx[e
x] = s

s−1
,

H0(u) = Sy[e
y] = 1

1−u
,

G(s,u) = GxSy[−1+ ex+ ey + ex+y]

=−1+
s

s− 1
+

1

1− u
+

s

(s− 1)(1− u)
,

(25)

into Eq. (22) and after simple computations, we obtain the
solution of Eq. (23)

ϕ (x,y) = G
−1
x S−1

y

[

s

(s− 1)(1− u)

]

= ex+y
. (26)

Fig. 4: The 3D plote of Example 4
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3.3 Second order partial integro–differential

equations of two variables

Given the following partial integro–differential equation

∂ 2ϕ (x,y)

∂y2
− ∂ 2ϕ (x,y)

∂x2
+ϕ (x,y)

+

∫ x

0

∫ y

0
ψ (x− δ ,y− ε)ϕ (δ ,ε)dδdε

= g(x,y) ,

(27)

with the conditions

ϕ (x,0) = f0 (x) ,
∂ϕ (x,0)

∂y
= f1 (x) ,

ϕ (0,y) = h0 (y) ,
∂ϕ (0,y)

∂x
= h1 (y) .

(28)

Applying double ARA-S transformation on both sides of
Eq. (27), we get

1

u2
Φ (s,u)− 1

u2
Gx [ϕ (x,0)]− 1

u
Gx [ϕy (x,0)]

−
(

s2Φ (s,u)− s2Sy [ϕ (0,y)]− sSy [ϕx (0,y)]
)

+Φ (s,u)+
u

s
Φ (s,u) Ψ (s,u) = G(s,u) .

(29)

After simple calculations, one can obtain

Φ (s,u) =
sF0 (s)+ suF1 (s)− s3u2H0 (u)

s− s3u
2
+ su2 + u3Ψ (s,u)

+
−s2u2H1 (u)+ su2G(s,y)

s− s3u
2 + su2 + u3Ψ (s,u)

,

(30)

where F0 (s) = Gx [ϕ (x,0)], F1 (s) = Gx [ϕy (x,0)], H0 (u) =
Sy [ϕ (0,y)] and H1 (u)= Sy [ϕx (0,y)]. Running the inverse

transform G −1
x S−1

y to Eq. (30), we obtain the solution of
Eq.(27) as follows

ϕ (x,y) = G
−1
x S−1

y

[

sF0 (s)+ suF1 (s)− s3u2H0(u)

s− s3u
2 + su2 + u3Ψ (s,u)

+
−s2u2H1(u)+ su2G(s,y)

s− s3u
2 + su2 + u3Ψ (s,u)

]

.

(31)

Example 5 below, is an application of Eq. (32).

Example 5. Consider the following partial integro -
differential equation:

∂ 2ϕ (x,y)

∂y2
− ∂ 2ϕ (x,y)

∂x2
+ϕ (x,y)

+

∫ x

0

∫ y

0
ex−δ+y−ε ϕ (δ ,ε)dδdε

= ex+y + xyex+y
,

(32)

with conditions

ϕ (x,0) = ex = f0 (x) ,
∂ϕ (x,0)

∂y
= ex = f1 (x) ,

ϕ (0,y) = ey = h0 (y) ,
∂ϕ(0,y)

∂x
= ey = h1(y).

(33)

Solution. Firstly, compute double ARA-S transformation
to the conditions in Eq. (33) and the source function
g(x,y), we get







F0 (s) = F1 (s) =
s

s−1
,

H0 (u) = H1 (u) =
1

1−u
,

G(s,u) = s
(s−1)(1−u)

+ su

(s−1)2(1−u)2
.

(34)

putting the values of Eq. (34) into Eq.(31) and simplifying,
one can obtain the solution of Eq. (32) as follows

ϕ (x,y) = G
−1
x S−1

y

[

s

(s− 1)(1− u)

]

= ex+y
. (35)

Fig. 5: The 3D plots of the solution of Example 4

4 Conclusion

In this research, a new method for solving different types
of integral equations was developed. We apply the double
ARA-S transformation transformation to resolve
Volterra’s partial integro-differential equations. To show
the validity of the method, several examples were
introduced and discussed. For possible future work, we
are planing to solve nonlinear problems, and fractional
differential equations. through the proposed
transformation combination using one of the iteration
methods. New results of DA-FT will be discussed in the
future and implemented for solving fractional PDEs and
nonlinear PDEs [27- 32].
Appendix 1. The values of ARA and Sumudu
transformations of several functions.
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Table 2: double ARA-S transformation to basic functions [25].

ϕ(x) G [ϕ (x)] = Φ(s) S [ϕ (x)] = Φ(u)

1 1 1

xα s−aΓ (a+1) uaΓ (a+1)

eαx s
s−a

1
1−au

xex s
(s−a)2

1
(1−au)2

sin(ax) as
a2+s2

au
1+a2u2

cos (ax) s2

a2+s2
1

1+a2u2

sinh(ax) as
s2−a2

au
1−a2u2

cosh(ax) s2

s2−a2
1

1−a2u2 ,

(ϕ ∗ψ)(x) G1[ϕ(x)]G1[ψ(x)]
s

u S(ϕ (x))S(ψ (x))
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