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Abstract: In this study, a nonlinear mathematical model for the transmission dynamics of mastitis diseases is formulated and analyzed.

The local and global stability analysis of mastitis-free equilibrium and endemic equilibrium is obtained using the stability theory of

differential equation. It was established that the mastitis-free equilibrium is locally stable if the basic reproduction number is less than
unity. The endemic equilibrium, which exists only when the basic reproduction number is greater than unity, is globally asymptotically

stable. Sensitivity analysis of the reproduction number suggested that the concentration of bacteria in the environment has a high impact

on the dynamics of mastitis. Furthermore, an optimal control problem is formulated by applying Pontryagin’s minimum principle with

three control strategies, namely, prevention strategy, screening strategy, and treatment strategy. Therefore, based on optimal control

problem simulation results and analysis of cost-effectiveness prevention strategy is the most effective and least costly to eradicate the

transmission of mastitis from the cattle.
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1 Introduction

Infectious diseases caused by bacteria, viruses and
parasites easily affect humans and animals. Mastitis is a
disease caused by bacteria staphylococcus and
streptococcus that affects mammal glands of the animal
[1]. The mastitis arises from poor environmental
sanitation and the location of the cow is the main
facilitator of herd infection [2]. In addition, it is often
transmitted through environments contaminated with
staphylococcus and streptococcus bacteria from infected
cattle. Mastitis symptoms may be clinical or subclinical.
Clinical mastitis is characterized by visible symptoms
such as rupture or leakage in the milk, swelling and gut
discoloration of the breast, as well as abnormal discharge.
Also Mastitis with no obvious symptoms and known to
cause breast cancer is called subclinical Mastitis [3]. The
standard method of detecting SCM is to measure the
Somatic Cell Count (SCC). Currently, the SCC threshold

of 100,000 cells/ml in first-quarter milk is accepted
internationally, but an SCC greater than 50,000 cells/ml in
composite milk is considered to indicate SCM [4].
Ethiopia has an estimated 57.83 million cattle. This
makes it the most cattle-rich country in Africa. Mastitis
accounts for 78% of total milk production losses in
Ethiopia. In addition to reproductive diseases,
approximately USD/cow/ approximately 140 to 200 USD
per year is the main reason for the economic decline in
Ethiopia. Mastitis causes an economic loss of 58 and
78.65 USD per cow and 78.65 USD per calf respectively
in the urban and suburban areas of Addis Ababa [5].
Mathematical modeling plays an important role in
analyzing the understanding and control of infectious
diseases. It also helps us to predict inexpensive ways to
control disease. Understanding this, many researchers
have conducted various studies at different times. Among
them [[6], [7],[8],[9],[10],[11], ] are researchers who have
tried to develop mathematical modeling of mastitis using
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by different aspects.
All of the above studies consider the context of different
countries and reveal the dynamics of mastitis with
important consequences. But no mathematical model has
been developed on Mastitis investigate using optimal
control strategies. In our study, we developed a
deterministic mathematical model of mastitis with
optimal control strategies and also the cost-effectiveness
of the implemented control strategies was investigated.

2 Model Assumption and Formulation

The model assumes cattle populations as well as bacteria
population (B). The cattle populations divided into four
classes with respect to their mastitis status. The notations
and description of this classes are as follows; Susceptible
class (S); this class contains those cattles who are at a risk
of infected by mastitis disease. Subclinical class (Cs); are
infectious cattles that is active but does not produce
noticeable symptoms of mastitis. Clinical class (C); this
class contains all cattles who are showing the symptom of
the mastitis. Recovered class (R); this class contains all
cattles that have recovered from the mastitis and got
temporary immunity.
Susceptible cattle increased by recruited rate Π and also
from recovered cattles by losing temporary immunity
with α rate. Susceptible cattles acquired mastitis through
contaminated environment by staphylococcus and
streptococcus bacteria. The force of infection of the

model is λ = Bγ
K+B

, where γ is ingestion rate, K is the
concentration of staphylococcus and streptococcus

bacteria in environment and
Bγ

K+B
is the probability of

cattles contaminated with mastitis. Susceptible cattles
progress to the clinical infectious class with probability p

and to the subclinical infectious class with probability
(1 − p). The subclinical cattles can develop mastitis
symptom and join the clinical class with a rate φ and
others join the recovered class at rate θ . Cattles in clinical
class can get treatment and join the recovered class with
rate δ . In all infectious cattles ξ is the disease induced
mortality rate and µ is the natural death rate of
individuals. The model assumed that the bacteria
population in contaminated environment, where
subclinical and clinical can contribute to increasing the
number of bacteria population in environment without
proper sanitation with a discharge rate of β1 and β2

respectively. We also considered µb to be the death rate of
bacterial and all parameters in the model are positive.
This assumption can be described below in Figure 1.

Based on the model assumptions and the schematic
diagram, the mastitis model equations are formulated as

Fig. 1: Schematic Diagram of Mastitis Model

follows;

dS

dt
= Π +αR− (λ + µ)S,

dCs

dt
= (1− p)λ S− (θ +φ +β1 + µ + ξ )Cs,

dC

dt
= pλ S+φCs − (δ +β2 + µ + ξ )C,

dR

dt
= θCs + δC− (α + µ)R,

dB

dt
= β1Cs +β2C− µbB,

(1)

where λ = Bγ
K+B

with initial condition

S(0) = S0,Cs0 = Cs0,C(0) = C0,R(0) = R0 and
B(0) = B0.

3 Analysis of Mastitis Model

3.1 Invariant Region

We obtained a region in which the solutions of model
equation (1) is bounded. To obtain this, first we consider
the total cattle population N, where N = S+Cs+C+R.
Then, differentiating N both sides with respect to t, we
get,

dN

dt
=

dS

dt
+

dCs

dt
+

dC

dt
+

dR

dt
. (2)

By combining equation (1) and (2), we get;

dN

dt
= Π − µN − ξ (Cs+C). (3)

In the absence of death due to mastitis disease (ξ = 0),
equation (3) becomes;

dN

dt
≤ Π − µN. (4)

After solving equation (4) and equating it as time tends to
infinity, we get 0 ≤ N(t)≤ Π

µ . Hence, the feasible solution

set of model equation (1) remains in the region;
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Ω = {(S,Cs,C,R,B) ∈ R
5
+ : N ≤ Π

µ }.

Therefore, the model is well posed epidemiologically and
mathematically. Hence, it is sufficient to study the
dynamics of the model in Ω .

3.2 Positivity of the Solution

We assumed that the initial condition of the model is
positive, and now we showed all the solution of the model
equation (1) remain positive for future time.
Theorem 1: Let Ω = {(S,Cs,C,R,B) ∈ R

5
+ : S(t) >

S0,Cs(t) ≥ Cs0,C(t) ≥ C0,R(t) ≥ R0,B(t) ≥ B0} then the
solution of {S,Cs,C,R,B} are positive for all t ≥ 0.

Proof: Consider dS
dt

in model equation (1);

dS
dt

= Π +αR− (λ + µ)S, eliminating the positive terms
Π +αR we obtain

dS
dt

≥−(λ + µ)S, using variables separable method we
get,

dS
S
≥−(λ + µ)dt integrating both side we can get,

∫

dS
S
≥−

∫

(λ + µ)dt we obtain,
ln(S)≥−(λ + µ)t + ln(A) where ln(A) is any arbitrary

constant,
Then after solving for S we obtain:

S(t)≥ S0e−(λ+µ)t .

Recall that an exponential function is always
non-negative irrespective of the sign of the exponent, i.e.,

the exponential function e−(λ+µ)t is a non-negative
quantity. Hence,it can be concluded that

S(t)>Ce−(λ+µ)t ≥ 0. Therefore S(t)> 0 for all t ≥ 0.
Similarly using the other equations of system (1),
positivity of solutions can be established. Hence, all the
solutions of the model equation (1) are positive for all
t ≥ 0.

3.3 Mastitis Free Equilibrium

Mastitis free equilibrium points are steady state solutions
where there is no mastitis in the cattles. Absence of
mastitis implies that Cs(t) =C(t) = 0 and the equilibrium
points require that the right hand sides of the model
equations set equal to zero. Therefore, the mastitis free
equilibrium E0 = (Π

µ ,0,0,0,0).

3.4 Basic Reproduction Number

The basic reproduction number is the number of people
getting secondary infection among the whole susceptible
cattle. It is determined using the next generation matrix
method so that it is the largest eigenvalue of the next
generation matrix [12]. Using the notation as in [12] for
the model equation (1) the associated matrices f and v for

the newly infectious terms and the remaining transition
terms are respectively given as;

fi =







(1−p)(Bγ)S
K+B
(Bγ)S
K+B

0






,vi =





(θ +φ +β1 + µ + ξ )Cs

−φCs +(δ +β2 + µ + ξ )C
−β1Cs −β2C+ µbB



 .

(5)
The Jacobian matrices of f and v evaluated at mastitis free
equilibrium are given by F and V respectively, such that;

F(E0) =











0 0
(1− p)Πγ

µK

0 0
Πγ

µK
0 0 0











and

V (E0) =





(θ +φ +β1 + µ + ξ ) 0 0
−φ (δ +β1 + µ + ξ ) 0
−β1 −β2 µb



.

It can be verified that that the matrix V (E0) is non-singular
as its determinant det(V (E0)) = (θ +φ +β1+µ +ξ )(δ +
β1 + µ + ξ )µb 6= 0 is non-zero. That is V (E0) 6= 0 then it
is invertible and the inverse is given by;

[V (E0)]
−1 =







1
r1

0 0
φ

r1r2

1
r1

0
r1β1+φβ2

r1r2µb

β2
r2µb

1
µb







where r1 =(θ +φ +β1+µ+ξ ) and r2 =(δ +β1+µ+ξ ).
Then

F[V (E0)]
−1 =







(1−p)Πγ(r2β1+φβ2)
µKr1r2µb

(1−p)Πγβ2
µKr2µb

(1−p)Πγ
µKµb

pΠγ(r2β1+φβ2)
µKr1r2µb

pΠγβ2
µKr2µb

pΠγ
µKµb

0 0 0







Thus, the eigenvalues are computed by evaluating
det(FV−1 −λ I) = 0. Then we obtained the characteristic
equation;

λ 2(λ − ( (1−p)Πγ(r2β1+φβ2)
µKr1r2µb

+ pΠγβ2
µKr2 µb

)) = 0.

The eigenvalues are λ1 = λ2 = 0 and

λ3 = (1−p)Πγ(r2β1+φβ2)
µKr1r2µb

+ pΠγβ2
µKr2µb

. However, the largest

eigenvalue here is λ3. Thus, it can be concluded that the
basic reproduction number R0 of the model after
substituting r1 and r2 is;

R0 =
(1−p)Πγ((δ+β1+µ+ξ )β1+φβ2)

µK(θ+φ+β1+µ+ξ )(δ+β1+µ+ξ )µb
+ pΠγβ2

µK(δ+β1+µ+ξ )µb
.

3.5 Local Stability of Mastitis Free Equilibrium

Theorem 2: The mastitis free equilibrium point of model
equation (1) is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.
Proof: To proof this theorem first we obtain the Jacobian
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matrix of model equation (1) at mastitis free equilibrium
E0 as follows;

J(E0) =















−µ 0 0 α γΠ
Kµ

0 −r1 0 0
(1−p)γΠ

Kµ

0 φ −r2 0
pγΠ
Kµ

0 θ δ −(α + µ) 0
0 β1 β2 0 −µb















. (6)

From the Jacobian matrix of (6), we obtained a
characteristic equations;

(−λ − µ)(−λ − (α + µ))[[λ 3 +λ 2(r1 + r2 + µb)+

λ [r1r2 + µb(r1 + r2)− ((1− p)β1+ pβ2)
Πγ
Kµ ]]+

r1r2µb(1−R0)] = 0.

After some simplification we obtain;

(−λ −µ)(−λ −(α+µ))[λ 3+L1λ 2+L2λ +L3] = 0 (7)

where, r1 = (θ +φ +β1 + µ + ξ ) and r2 = (δ +β1 + µ +
ξ ),
L1 = r1 + r2 + µb,

L2 = r1r2 + µb(r1 + r2)− [(1− p)β1+ pβ2]
Πγ
Kµ ,

L3 = r1r2µb(1−R0).
From equation (7) we obtained;

−λ − µ = 0,
or −λ − (α + µ) = 0,

or λ 3 +L1λ 2 +L2λ +L3 = 0.

This implies,λ1 = −µ ,λ2 = −(α + µ) and for the last
expression λ 3 + L1λ 2 + L2λ + L3 = 0, we applied Routh
Hurwitz criteria. By the principle of Routh Hurwitz
criteria λ 3 + L1λ 2 + L2λ + L3 = 0 has strictly negative
real root if and only if L1 > 0,L3 > 0, and L1L2 > L3.
Clearly we see that L1 is positive because it is a sum of
positive variables, but L3 to be positive (1−R0) must be
positive, which leads to R0 < 1. Therefore, mastitis free
equilibrium will be locally asymptotically stable if and
only if R0 < 1.

3.6 Global Stability of Mastitis Free

Equilibrium

The global stability of disease free equilibrium was
implemented by Castillo-Chavez and Song technique
[13]. The model equation (1) can be re-written as

dX/dt = F(X ,Z),

dZ/dt = G(X ,Z),G(X ,0) = 0.

Where, X stands for the uninfected population, that is
X = (S, R) and Z also stands for the infected population,
that is Z = (Cs,C,B). The disease free equilibrium point
of the model is denoted by U = (X∗, 0). The
point U = (X∗, 0) to be globally asymptotically stable

equilibrium for the model provided that R0 < 1 and the
following conditions must be met:
(H1). For dX/dt = F(X ,0), X∗ is globally asymptotically
stable.
(H2). G(X ,Z) = AZ − G̃(X ,Z) , G̃ (X ,Z) =
0 for (X ,Z)⊂ Ω .
where A = DZG(U,0) a Metzler matrix is i.e. the off
diagonal elements of A are non-negative and G is the
region where the model makes biologically sense. If the
model (1) met the above two criteria then the following
theorem holds.
Theorem 3: The point U = (X∗, 0) is globally
asymptotically stable equilibrium provided that R0 < 1
and the condition (H1) and (H2)are satisfied.
Proof: From system (1) we can get F(X ,Z)
and G(X ,Z);

F (X ,Z) =

[

Π +αR− (λ + µ)S
θCs + δC− (α + µ)R

]

and G(X ,Z) =





(1− p)λ S− (θ +φ +β1 + µ + ξ )Cs

pλ S+φCs − (δ +β2 + µ + ξ )C
β1Cs +β2C− µbB





Consider the reduced system

dX

dt |Z=0
=

[

Π − µS

0

]

(8)

From equation (8) above it is obvious that X∗=
{

Π
µ ,0
}

is

the global asymptotic point. This can be verified from the

solution, namely, S=Π
µ +
[

S (0)−Π
µ

]

e−µt . As t −→ ∞ the

solution S −→ Π
µ implying that the global convergence of

(8) in Ω . From the equation for infected compartments in
the model we have:

A=







−(θ +φ +β1 + µ + ξ ) 0
(1−p)Πγ

Kµ

φ −(δ +β2 + µ + ξ ) pΠγ
Kµ

β1 β2 −µb







Since A is Metzler matrix, i.e. all off diagonal elements are
nonnegative. Then, G(X ,Z) can be written as,G(X ,Z) =
AZ− G̃(X ,Z), where

G̃(X ,Z) =





(1− p)γB( Π
Kµ − S

K+B
)

pγB( Π
Kµ − S

K+B
)

0



=





G̃1(X ,Z)
G̃2(X ,Z)
G̃3(X ,Z)





(9)
It follows that, in equation (9) G̃1 (X ,Y ) ≥ 0, G̃2 (X ,Y )≥
0 and G̃3 (X ,Y ) = 0 and. Hence, G̃(X ,Y )≥ 0. Therefore,
condition (H1) and (H2) are satisfied and we conclude
that U is globally asymptotically stable for R0 < 1.

3.7 Endemic Equilibrium Point

Endemic equilibrium point E1 is a steady state solution
where the mastitis persists in the cattle. Then it is obtained
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by setting left hand sides of equations of the system (1)
equal to zero. Thus, solving for state variables we obtained
the following;

S∗ = λ ∗+µ
Π+αR∗ ,

C∗
s = (1−p)λ ∗

(θ+φ+β1+µ+ξ )
( λ ∗+µ

Π+αR∗ ),

C∗ = ( λ ∗+µ
Π+αR∗ )(

pλ ∗(θ+φ+β1+µ+ξ )+φ(1−p)λ ∗

(θ+φ+β1+µ+ξ )(δ+β2+µ+ξ )
),

R∗ =
θC∗

s +δC∗

(α+µ) ,

B = β1
µb
( (1−p)λ S∗

(θ+φ+β1+µ+ξ )
)+

β2
µb
(( λ ∗+µ

Π+αR∗ )(
pλ ∗(θ+φ+β1+µ+ξ )+φ(1−p)λ ∗

(θ+φ+β1+µ+ξ )(δ+β2+µ+ξ )
)).

On substituting the expression for B into the force of
infection, that is, λ ∗ = [Bγ]/K +B, characteristic
polynomial of force of infection is obtained as

p(λ ∗) = D1λ ∗2 +D2λ ∗,

Here D1 = (δα((pβ1 + µ + φ) + (1− p)φ) +αθ p(β2 +
µ + δ + ξ ))+R(β2 + δ + µ + ξ )(β1 + φ + µ)µµbK + 1
and D2 = µ(α + µ)(1−R0).
Clearly, D1 > 0 and D2 ≥ 0, when
R0 < 1,λ ∗ = −D2/D1 = 0. From this, we see that, for,
there is no endemic equilibrium for this model. Therefore,
this condition shows that it is not possible for backward
bifurcation in the model if R0 <<< 1.
Lemma 1: A unique endemic equilibrium point E1 exists
and is positive if R0 >>> 1.

4 Sensitivity Analysis of Model Parameters

We carried out a sensitivity analysis in order to determine
the relative significance of model parameters on mastitis
transmission. The analysis will enable us to find out
parameters that have a high impact on the basic
reproduction number and which should be targeted by
intervention strategies. We perform sensitivity analysis by
calculating the sensitivity indices of the basic
reproduction number R0 in order to determine whether
mastitis can be spread in the cattles or not. These indices
tell us how crucial each parameter is in the transmission
of mastitis. To investigate which parameters in the model
system (1) have high impact on the R0, we apply the
approach presented by [14].
The explicit expression of R0 is given byR0 =

(1−p)Πγ((δ+β1+µ+ξ )β1+φβ2)
µK(θ+φ+β1+µ+ξ )(δ+β1+µ+ξ )µb

+ pΠγβ2
µK(δ+β1+µ+ξ )µb

. Since

R0 depends only on seven parameters;
p = 0.6,Π = 500,γ = 0.09,δ = 0.998,β1 = 0.009,µ =
0.02,ξ = 0.9992,φ = 0.999,β2 = 0.008,K = 1000,θ =
0.98,µb = 0.01 we derive an analytical expression for its
sensitivity to each parameter using the normalized
forward sensitivity index as by Chitnis [14] as follows:

The sensitivity indices of the reproductive number
with respect to parameters are arranged orderly in Table 1
and as shown in Figure 2. Those parameters that have
positive indices i.e. Π ,γ,β1,φ , and β2 show that they

Table 1: Sensitivity indices Table.

Parameter Symbol Sensitivity indices

Π +1

γ +1

β1 0.4743

φ 0.191

β2 0.00955

δ -0.25758

θ -0.32589

ξ -0.56

µ -1

K -1

µb -1

Fig. 2: Sensitivity indices of basic reproduction number R0.

have a great impact on expanding the disease in the cattle
if their values are increasing. The reason that the basic
reproduction number increases as their values increase,
means that the number of secondary cases of infection
increases in the community. Furthermore, parameters in
which their sensitivity indices are negative i.e. δ ,θ ,ξ ,K
and µb have an influence of minimizing the burden of the
disease in the cattle as their values increase while the
others are left constant. And also as their values increase,
the basic reproduction number decreases, which leads to
minimizing the endemicity of the disease in the cattle.

5 Optimal Control Problem Formulation

In this section, mathematical model of mastitis (1) is
extended to optimal control model by including the
following three controls;

1.u1 is the prevention efforts that protect susceptible
individuals from contracting the mastitis disease.

2.u2 is the screening for subclinical individuals which
helps them to get proper treatment if they are aware of
their status.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


704 E. D. Gurmu: Optimal Control Strategy on Mathematical Model of Mastitis

3.u3 is the treatment for clinical individuals who develop
symptoms of mastitis disease.

After incorporating the controls into the model equations
(1) we obtain the following equation;

dS

dt
= Π +αR− (1− u1)λ S− µS,

dCs

dt
= (1− u1)(1− p)λ S− (u2+φ)Cs − (θ +β1 + µ + ξ )Cs,

dC

dt
= (1− u1)pλ S+(1− u2)φCs − (u3 + δ )C− (β2 + µ + ξ )C,

dR

dt
= θCs +(u2 + δ )C− (α + µ)R,

dB

dt
= β1Cs +β2C− µbB,

(10)
with a bounded Lebesgue measurable control set

U = {(u1,u2,u3) : 0 ≤ ui ≤ uimax, i = 1,2,3,0 ≤ t ≤ T}.
The main objective is to minimize the number of infected
cattle while minimizing the rate of interventions u1,u2

and u3 on a fixed time period T . Therefore, the optimal
control problem for model equation (10) is to minimize
the objective functional;

J (u1,u2,u3) =

min(u1,u2,u3)
∫ T

0

(

M1Cs +M2C+
1

2

3

∑
i=1

wiu
2
i (t)

)

dt.

(11)

The constants w1,w2 and w3 measures the cost or effort
required for the implementation of each of the three
control measures adopted while M1 and M2 measures the
relative importance of reducing subclinical and clinical
classes on the spread of the mastitis disease. Thus, we
need to find the optimal controls u∗ = (u∗1,u

∗
2,u

∗
3) such

that;

J(u∗) = minUJ(u1,u2,u3).

5.1 Optimal Control Problem Analysis

5.1.1 Existence of an optimal Controls

The existence of the optimal control can be showed by
using an approach of [15]. We have already justified the
boundedness of the solution of the basic mastitis model.
This results can be used to prove the existence of optimal
control. For detailed proof, see [15][Theorem 4.1,
p68-69].

5.1.2 The Hamiltonian and Optimality System

To obtain the Hamiltonian (H), we follow the approach of
[16] such that;

H =
dJ

dt
+λ1

dS

dt
+λ2

dCs

dt
+λ3

dC

dt
+λ4

dR

dt
+λ5

dB

dt
(12)

That is,

H(S,Cs,C,R,B, t) = (M1Cs +M2C+
w1u2

1
2 +

w2u2
2

2 +
w3u2

3
2 )+λ1[Π +αR− (1− u1)λ S− µS]+λ2[(1− u1)(1−

p)λ S− (u2 +φ)Cs − (θ +β1 + µ + ξ )Cs]+λ3[(1−
u1)pλ S+(1− u2)φCs − (u3 + δ )C− (β2 + µ + ξ )C]+

λ4[θCs +(u2 + δ )C− (α + µ)R]+λ5[β1Cs +β2C− µbB].

Based on [17], if the control u∗ and the corresponding
state φ∗ are an optimal couple, necessarily there exists a
non trivial adjoint vector λ = (λ1,λ2,λ3,λ4,λ5) satisfying
the following equality;

dΦ

dt
=

∂H(Φ,u,λ )

∂λ
,

dλ

dt
=−

∂H(Φ,u,λ )

∂Φ
,

∂H(Φ,u,λ )

∂u
= 0,

(13)

which gives after derivatives;

u∗i = 0, if ∂H
∂ui

< 0,

0 ≤ u∗i ≤ uimax, if ∂H
∂ui

= 0,

u∗i = uimax, if ∂H
∂ui

> 0.

Theorem 5: There exist an optimal control set of u1,u2

and u3 and corresponding solutions,S,Cs,C,R and B, that
minimize J(u1,u2,u3) over U . Furthermore, there exist
adjoint functions λ1,λ2,λ3,λ4 and λ5 such that;

dλ1

dt
= λ1[

(1− u1)Bγ

K +B
+ µ ]−λ2[

(1− u1)(1− p)Bγ

K +B
]−λ3[

(1− u1)Bγ

K +B
],

dλ2

dt
=−M1 +λ2(u2 +φ +θ +β1 + µ + ξ )−λ3(1− u2)φ −λ4θ −λ5β1,

dλ3

dt
=−M2 +λ3(u3 + δ +β2 + µ + ξ )−λ4(u3 + δ )−λ5β2,

dλ4

dt
=−λ1α +λ4(α + µ),

dλ5

dt
= λ1[

(1− u1)γKS

(K +B)2
]−λ2[

(1− p)(1− u1)γKS

(K +B)2
]−λ3[

(1− u1)pγKS

(K +B)2
]

+λ5µb,
(14)

with transversality conditions;

λi(T ) = 0, i = 1,2,3,4,5. (15)

And the characterized control set of (u∗1,u
∗
2,u

∗
3) is;

u∗1(t) = max{0,min(1, S(λ3 pBγ−λ2Bγ+λ2 pBγ)−λ1Bγ
(K+B)w1

)}

u∗2(t) = max{0,min(1,
Cs(λ2+φλ3)

w2
)}

u∗3(t) = max{0,min(1, C(λ3−λ4)
w3

)}.

Proof: To prove this theorem, we used the classical result
of [16]. Accordingly, to get the system of adjoint variables,
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we differentiate the Hamiltonian (12) with respect to each
state as follows;

dλ1

dt
= λ1[

(1− u1)Bγ

K +B
+ µ ]−λ2[

(1− u1)(1− p)Bγ

K +B
]−λ3[

(1− u1)Bγ

K +B
],

dλ2

dt
=−M1 +λ2(u2 +φ +θ +β1 + µ + ξ )−λ3(1− u2)φ −λ4θ −λ5β1,

dλ3

dt
=−M2 +λ3(u3 + δ +β2 + µ + ξ )−λ4(u3 + δ )−λ5β2,

dλ4

dt
=−λ1α +λ4(α + µ),

dλ5

dt
= λ1[

(1− u1)γKS

(K +B)2
]−λ2[

(1− p)(1− u1)γKS

(K +B)2
]−λ3[

(1− u1)pγKS

(K +B)2
]+λ5µb.

(16)

And the optimal controls u∗i are obtained from the
optimality conditions and using the property of the
control space U . The optimality condition of the

Hamiltonian gives ∂H
∂ui

= 0. That is;

∂H
∂ui

= 0, at ui = u∗i , where i = 1,2,3.

For

i = 1, ∂H
∂u1

= 0, at u∗1,u
∗
1 =

S(λ3 pBγ−λ2Bγ+λ2 pBγ)−λ1Bγ
(K+B)w1

,

i = 2, ∂H
∂u2

= 0, at u∗2,u
∗
2 =

Cs(λ2+φλ3)
w2

,

i = 3, ∂H
∂u3

= 0, at u∗3,u
∗
3 =

C(λ3−λ4)
w3

.

Since, 0 ≤ u∗i ≤ uimax, we can write in a compact notation;

u∗1(t) = max{0,min(1,
S(λ3 pBγ −λ2Bγ +λ2pBγ)−λ1Bγ

(K +B)w1
)},

u∗2(t) = max{0,min(1,
Cs(λ2 +φλ3)

w2
)},

u∗3(t) = max{0,min(1,
C(λ3 −λ4)

w3
)}.

(17)

5.2 The Optimality System

The optimality system consists of the state system (10)
with its initial conditions coupled with the adjoint system
(14) with its transversality conditions together with the
characterization of the optimal controls. It is written as

follows:

dS

dt
= Π +αR− (1− u1)λ S− µS,

dCs

dt
= (1− u1)(1− p)λ S− (u2+φ)Cs − (θ +β1 + µ + ξ )Cs,

dC

dt
= (1− u1)pλ S+(1− u2)φCs − (u3 + δ )C− (β2 + µ + ξ )C,

dR

dt
= θCs +(u3 + δ )C− (α + µ)R,

dB

dt
= β1Cs +β2C− µbB

dλ1

dt
= λ1[

(1− u1)Bγ

K +B
+ µ ]−λ2[

(1− u1)(1− p)Bγ

K +B
]−λ3[

(1− u1)Bγ

K +B
],

dλ2

dt
=−M1 +λ2(u2 +φ +θ +β1 + µ + ξ )−λ3(1− u2)φ −λ4θ −λ5β1,

dλ3

dt
=−M2 +λ3(u3 + δ +β2 + µ + ξ )−λ4(u3 + δ )−λ5β2,

dλ4

dt
=−λ1α +λ4(α + µ),

dλ5

dt
= λ1[

(1− u1)γKS

(K +B)2
]−λ2[

(1− p)(1− u1)γKS

(K +B)2
]−λ3[

(1− u1)pγKS

(K +B)2
]+λ5µb,

(18)
with transversality conditions;

λi(T ) = 0, i = 1,2,3,4,5,

S(0) = S0,Cs0 =Cs0,C(0) =C0,R(0) = R0,B(0) = B0.

5.3 Uniqueness of the optimality system

In order to successively discuss uniqueness of the
optimality system we notice that the adjoint system is also
linear in λi for i = 1,2,3,4,5 with bounded coefficients.
Thus, there exists a M > 0 such that |λi(t)| < M for
i = 1,2,3,4,5 on [0,T ].
Theorem 6: For T sufficiently small the solution to the
optimality system is unique [17].

6 Numerical Results and Discussion

In this section, the result obtained by numerically solving
the optimality system was presented. In an optimal
control problem, we have initial conditions for the state
variables and terminal conditions for the adjoints. That is,
the optimality system is a two-point boundary value
problem with separated boundary conditions at times
step i = 0 and i = T . The numerical simulation was
carried out using the software MATLAB 2015b. To
conduct the study, a set of meaningful values are assigned
to the model parameters. These values are either taken
from literature or estimated or assumed. Using the
parameter values given in Table 2 and the initial
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Table 2: Parameter values used in Numerical Simulations

Para Description Value Reference
meter

Π Recruited rate 500 Assumed

µ Natural death rate 0.02 [8]

α Recovered rate 0.99 Estimated

γ Ingestion rate 0.09 Estimated

p Probability of susceptible
joining clinical individuals

0.6 Assumed

K Concentration of bacteria in
environment

1000 Assumed

ξ Induced mortality rate 0.9992 Estimated

δ Treatment rate of clinical

individuals

0.998 Estimated

φ Screening rate 0.999 Assumed

θ Recovered rate of subclinical

individuals

0.98 Estimated

β1 Discharge rate of bacteria

from subclinical individuals

0.009 Estimated

β2 Discharge rate of bacteria

from clinical individuals

0.008 Estimated

µb Natural death rate of bacteria 0.01 Assumed

conditions
S (0) = 1000, Cs (0) = 65, C (0) = 70,R(0) = 30 and
Bc (0) = 20 and also coefficients of the state and controls
that we used are M1 = 25, M2 = 25,
W1 = 10,W2 = 10,W3 = 10 the simulation study is
conducted and the results are given below in Figures.

A. Control strategy with prevention

We simulated the optimality system by incorporating a
prevention strategy only. Figures 3(a) and 3(b) show the
decrease in subclinical and clinical individuals in the
specified time. We conclude that prevention that includes
sanitation and other techniques is a vital method to reduce
Mastitis infection. The number of individuals who have
been with Mastitis disease before the implementation of
prevention control has gone down due to disease-induced
and natural deaths. Therefore, applying optimized
prevention control can eradicate Mastitis disease.

B. Control strategy with screening

As we know screening helps subclinical to identify their
status as they are leaving with the bacteria or not.
Therefore, Figures 4(a) and 4(b) show that the subclinical
and clinical individuals go down by screening strategy but
their number cannot be zero. New infection always
appears in cattle because the diseases are not avoided and
those who broaden the symptom of mastitis are not
getting treatment. Therefore, control with screening only
eradicates the burden to some extent but it is not helpful
to eradicate mastitis disease totally from the cattle.

(3a)

(3b)

Fig. 3: Simulation of Mastitis model with prevention

C. Control strategy with prevention and

screening

We simulated the model by incorporating prevention and
screening efforts as a mastitis control strategy. Figures
(5a) and (5b) show that the subclinical and clinical
individuals go to zero at the end of the implementation of
intervention time. From this, we can conclude that
applying prevention and screening can reduce the disease
even if without treating individuals that have mastitis
symptoms. Therefore, applying prevention and screening
efforts as strategies will reduce mastitis disease in cattle.

D. Control strategy with prevention and

treatment

We simulate the model using prevention and treatment
efforts as strategies for the control of mastitis disease in
cattle. Figures (6a) and (6b) clearly show that the
subclinical and clinical individuals have gone to zero at
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(4a)

(4b)

Fig. 4: Simulation of Mastitis model with screening

the end of the implementation period. Therefore, we
conclude that this strategy is effective in reducing mastitis
in cattle in a specified period of time.

E. Control strategy with screening and treatment

In this strategy, we used the combination of screening and
treatment efforts as an intervention to control mastitis
disease. Figures (7a) and (7b) show that optimized
intervention by treating clinical individuals and screening
of subclinical reduces the number of subclinical and
clinical individuals but did not go to zero. Therefore, this
strategy is not 100% effective in reducing mastitis in the
specified period of time.

F. Control strategy with prevention, screening

and treatment

In this strategy, we implemented all three controls
prevention, treatment, and screening as interventions to

(5a)

(5b)

Fig. 5: Simulation of Mastitis model with prevention and

screening

reduce Mastitis from the cattle. Figures (8a) and (8b)
show that the number of subclinical individuals and
clinical goes to zero at the end of the implementation
period.

7 Cost-Effectiveness Analysis

We use cost-effectiveness analysis to determine the
minimum cost-effective strategy to use to control the
disease. To do this, we need to compare the differences
between the costs and health outcomes of these
interventions. This is done by calculating the incremental
cost-effectiveness ratio (ICER) which is usually described
as the additional cost of an additional health outcome.
When two or more competing intervention strategies are
progressively compared, an intervention must be
compared with the next-less-effective alternative [18]. It
is calculated using the following formula;

ICER = Difference in costs between strategies
Difference in health effects between strategies .
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(6a)

(6b)

Fig. 6: Simulation of Mastitis model with prevention and

treatment

The infection averted is obtained by calculating the
difference between the total number of individuals of
species without control and the total number of
individuals of species with control. The total control costs
w1u2

1,w2u2
2 and w3u2

3 (where wi for i = 1, 2, 3 are relative
cost weight for each individual control measure, while
u1,u2,u3 are the prevention ($), Screening ($) and
treatment ($) respectively) are calculated and estimated in
($) USD over the period of one year respectively. The
control strategies are ranked in order of increasing
infection averted as presented in Table and as shown in
Figures 9,10 and 11.

The comparison between ICER(B) and ICER(E)
shows a cost saving of $0.008 for strategy B over strategy
E. There is an additional $1.064 per infection averted as
we move from strategy B to E. The small value ICER for
strategy B indicates that strategy E is ”strongly
dominated”. That is, strategy E is more costly and less
effective than strategy B. Therefore, strategy E, the
strongly dominated is excluded. Exclude strategy E, we

(7a)

(7b)

Fig. 7: Simulation of Mastitis model with screening and

treatment

Table 3: Total number of infections averted and total cost with
their ICER

Strategies Total
infectious
averted

Total
cost ($)

ICER

Strategy B 6179.065 49.4943 0.008

Strategy E 6225.565 98.9841 1.064

Strategy A 6775.486 49.49 -0.8999

Strategy D 6808.605 98.99 1.4944

Strategy C 6833.069 98.99 0

Strategy F 6865.195 148.485 1.54

now compare strategy B with A, D, C, and F. From the
numerical results we have

The comparison between ICER(B) and ICER(A)
shows a cost saving of $0.0000011736 for strategy A over
strategy B. There is an additional $0.008 per infection
averted as we move from strategy B to A. That is, strategy
B is more costly and less effective than strategy A.
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(8a)

(8b)

Fig. 8: Simulation of Mastitis model with prevention, screening

and treatment

Table 4: Total number of infections averted and total cost with

their ICER

Strategies Total
infectious
averted

Total
cost ($)

ICER

Strategy B 6179.065 49.4943 0.008

Strategy A 6775.486 49.49 0.0000011736

Strategy D 6808.605 98.99 1.4944

Strategy C 6833.069 98.99 0

Strategy F 6865.195 148.485 1.54

Therefore, strategy B, the strongly dominated is excluded
from the set of alternatives so it does not consume limited
resources. We exclude strategy B and compare strategy A
with D, C, and F. From the numerical results we have;

The comparison between ICER(A) and ICER(D)
shows a cost saving of $0.0073 for strategy A over
strategy D. There is an additional $1.4944 per infection
averted as we move from strategy A to D. The small value
ICER for strategy A indicates that strategy D is ”strongly

Table 5: Total number of infections averted and total cost with
their ICER

Strategies Total
infectious
averted

Total
cost ($)

ICER

Strategy A 6775.486 49.49 0.0073

Strategy D 6808.605 98.99 1.4944

Strategy C 6833.069 98.99 0

Strategy F 6865.195 148.485 1.54

Table 7: Total number of infections averted and total cost with
their ICER

Strategies Total
infectious
averted

Total
cost ($)

ICER

Strategy A 6775.486 49.49 0.0073

Strategy F 6865.195 148.485 1.1034

dominated”. That is, strategy D is more costly and less
effective than strategy A. Therefore, strategy D, the
strongly dominated is excluded. Exclude strategy D, we
now compare strategy A with C and F. From the
numerical results we have;

Table 6: Total number of infections averted and total cost with

their ICER

Strategies Total
infectious
averted

Total
cost ($)

ICER

Strategy A 6775.486 49.49 0.0073

Strategy C 6833.069 98.99 0.85954

Strategy F 6865.195 148.485 1.54

The comparison between ICER(A) and ICER(C)
shows a cost saving of $0.0073 for strategy A over
strategy C. There is an additional $0.85954 per infection
averted as we move from strategy A to C. The small value
ICER for strategy A indicates that strategy C is ”strongly
dominated”. That is, strategy C is more costly and less
effective than strategy A. Therefore, strategy C, the
strongly dominated is excluded. Exclude strategy C, we
now compare strategy A with F. From the numerical
results we have; The comparison between ICER(A) and
ICER(F) shows a cost saving of $0.0073 for strategy A
over strategy F. There is an additional $1.1034 per
infection averted as we move from strategy A to F.
Similarly, the small value ICER for strategy A indicates
the strategy F is ”strongly dominated”. That is, strategy F
is more costly and less effective than strategy A.
Therefore, strategy F, the strongly dominated is excluded.
With this result, therefore, it is found that strategy A
(prevention) is the best strategy to reduce mastitis disease
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Fig. 9: Total infectious averted plots indicating the effect of
control strategies A, B, C, D, E, and F.

Fig. 10: The objective functional plots indicating the effect of
control strategies A, B, C, D, E, and F.

in cattle. This result agrees with the results obtained in
Figures 9, 10, and 11.

8 Conclusion

In this study, a mathematical model of mastitis with an
optimal control strategy was formulated and analyzed
using the stability theory of differential equations. First,
we analyzed the invariant region and the positivity
solution of the model.The primary reproduction range
representing the epidemic indicator is obtained the use of
the next-generation matrix. Both local and global stability
of the disease-free equilibrium and endemic equilibrium
point of the model equation was established. The results

Fig. 11: Incremental cost-effective ration (ICER) plots indicating
the effect of control strategies A, B, C, D, E, and F.

show that, if the basic reproduction number is less than
one, then the solution converges to the disease-free
steady-state, and the disease-free equilibrium is
asymptotically stable. A sensitivity analysis of the model
equation was performed on the key parameters in order to
determine their impact on the disease transmission
dynamics. Second, we apply optimal control theory to
describe the model that incorporates three controls,
namely using prevention of mastitis, screening of
subclinical individuals, and treatment of clinical
individuals. Pontryagin’s maximum principle is
introduced to obtain the necessary condition for the
optimal control problem. Finally, the simulation result of
the optimal control problem and analysis of
cost-effectiveness show that using the prevention strategy
is the most effective and least-cost strategy to prevent
mastitis disease.
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