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Abstract: In this study, we presented a non linear deterministic corruption transmission dynamics using optimal control analysis

and cost effective strategies. To begin, we demonstrated that in a given set of initial conditions, the model solution is non-negative

and bounded. A basic reproductive number is calculated using the corruption-free equilibrium point via the next generation matrix. The

linearization and the Lyapunov function are then used to demonstrate how corruption-free equilibrium is both locally and globally stable.

The corruption-free equilibrium point is asymptotically stable both locally and globally if the basic reproduction number is less than

one; otherwise, an endemic corruption equilibrium emerges. Furthermore, the model’s parameters were analyzed for sensitivity, and the
model demonstrated forward bifurcation. Moreover, applying the Pontryagin minimum principle, the optimal corruption minimization

interventions are determined using two control strategies, namely prevention and punishment. Lastly, based up on numerical prediction

systems of optimality, prevention is the highest optimal and most cheapest corruption eradication strategy.

Keywords: Corruption dynamics; Optimal control; Cost-effectiveness strategies; Numerical simulation.

1 Introduction

Corrupt is derived from the Latin word ”corruptus,”
which means ”to disturb or harm.” [1]. corruption is
defined as an illegal activity committed for personal gain
and benefit through the abuse of power by private [2].
Moreover, International Transparency defines corruption
as ”the misuse of entrusted power for personal gain” [3].
Corruption can come from either the supply or demand
side [4]. It is a major issue in all countries, but
particularly in developing countries [5]. Indeed, the
majority of countries have anti-corruption strategies in
place, corruption remains a societal epidemic. In
Ethiopia, it is one of the factors that contribute to tension
and conflict [6].

Many researchers formulated a mathematical modeling
for corruption dynamics to better understand the
prevalence of corruption in populations. For example,
Aychew Wondyfraw Tesfaye and Haileyesus Tessema
Alemneh [8], developed a model of corruption
transmission dynamics and then extended it to a
stochastic model by incorporating stochastic factors.
Furthermore, they concluded that the number of corrupted
people decreases when people recover more through

education or punishment. Zerihun Kinfe Birhanu and
Abayineh Kebed Fantaye [8] investigated a model of the
dynamics of corruption using mathematical with media
coverage. Finally, they concluded that corruption is
removed faster in the presence of media coverage,
whereas less media news on the dynamics of corruption
in the population. Adeyemi Olukayode Binuyo [9]
presented a mathematical model of corruption
transmission dynamics. According to the authors’
findings, the corruption contact rate among the people has
the most role on the corruption transmission dynamics.
Finally, when the government takes the necessary and
adequate measures, it is sufficient and expedient to
minimize the dynamics of corruption among the people to
the bare minimum. Nathan and Jackob [10] formulated
deterministic modeling of corruption dynamics using the
described prevention and disengagement strategies. The
authors are used the model’s parameters values to
simulate prevention and disengagement strategies.
Finally, they concluded that the most effective
anti-corruption strategies are prevention and
disengagement initiatives. Olanegan et al., [11], studied
the dynamics of corruption among Nigerian tertiary
students. The authors use an epidemiological
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compartment model to describe mathematical modeling
of student corruption. The model’s positivity and
boundlessness were established. Furthermore, the
numerical implementation of the model reveals that
corruption will persist among Nigerian students if the root
cause is not eradicated.

Many authors developed an optimal corruption control
model to describe the role of control interventions on
corruption dynamics. For examples, Haileyesus Tessema
Alemneh [12] developed an optimal corruption control
model with two controls variables, namely, media
campaigning against corruption and exposing and
punishing corrupted individuals. Furthermore, using
Pontryagin’s minimum principle, the necessary condition
of an optimal control corruption dynamics is determined.
Finally, the author concluded using the model’s analysis
that the combined control interventions is the best way to
minimize corruption. Ebenezer Bonyah [13] developed a
model for fractional optimal control of corruption
dynamics. In order to optimize the best strategy for
reducing corruption in society, the author incorporates
variable controls into the model. Finally, the numerical
results show that optimizing all controls simultaneously is
the optimal strategy for reducing corruption. Akanni et al.
[14] presented a mathematical modeling of dynamics of
corruption that includes optimum control interventions.
Then optimal control analysis is used to determine the
role of control strategies such are preventive and
corrective measures, on the corruption dynamics in a
population. In addition, a cost effective analysis is
investigated to determine the highest optimal and most
cheapest strategies. Abayneh Kebede Fantaye and
Zerihun Kinfe Birhanu [15] investigated the optimal
control corruption dynamics. Finally the authors reveal
that the combination of prevention and punishment
intervention is the best strategy to reduce the dynamics of
corruption. Saida et al. [16] proposed an optimal control
model by incorporating two controls variables, namely:
prevention corruption through the use media and effective
anti-corruption policy; attempt to encourage the
punishment of corrupt people. Lastly, authors suggested
that the corruption dynamics can be minimized using
media and punishing corrupted individuals.

However, all of these models didn’t consider the
corruption dynamics with optimal control analysis and
cost-effective strategies. In this paper, the corruption
dynamics model [7] is extended by introducing the
exposed compartment and an optimal control via two
controls interventions. Moreover, the effective strategies
of cost is performed using the increasing cost effective
ration method.

This paper is organized as follows: in section 2, we
proposed a corruption dynamics model. The model’s
analytical analysis is shown in section 3. In section 4, we
discuss the sensitive analysis of the model’s parameters.

In section 5, the corruption dynamics optimal control
model is analytically performed via the Pontryagin
minimum principle. In section 6, we determine the
analytical quantity of the numerical. The effective
strategies of cost is performed in section 7. The work’s
conclusion is mentioned in section 8.

2. Formulation of the Model

In this part, we considered the model formulation and its
description. The all people of humans at time (t),
represented by N (t), is categorized into five
compartments based on disease status: susceptible people
S(t), are human beings who are under risk to corruption,
exposed humans E(t), are human beings who have
exposed and those who are suffer from corruption but do
not commit it are exposed, while those who are commit
corruption are corrupted people C(t), recovered people
R(t) involves all groups that got temporary immunity
becomes recovered from the corruption and those who do
not commit corruption always are grouped as honest
human H(t). Hence, the total human populations is given
by

N (t) = S(t)+E(t)+C(t)+R(t)+H(t). (1)

Furthermore, people who are recruit (assumed to be under
the risk) to the susceptible human population with rate of
Ψ . Then α the rate of susceptible human become honesty
that never engages in corruption. Besides, we assume the
death rate naturally µ for all people at all times.
Susceptible people become exposed after contact rate
with corrupted people at a rate of β and then moved to
exposed humans E(t). Also τ is the rate of exposed
individuals become corrupted. Corrupted people learn the
effects of corruption in prison and migrate to the
recovered people at a rate of θ . A recovered group may
either become honest or susceptible again. The rate ω is
conversion rate of recovered human to honest or
susceptible whereas γ is the rate of recovered human
enters susceptible people. Moreover, we assumed that all
system’s parameters are non-negative. All of the
parameter descriptions are listed in Table (1) and Figure
(1) shows the diagram of corruption dynamics.

Based on a diagram depicted in Figure (1), the governs
equation of corruption dynamics model is obtain as:







dS
dt

=Ψ −β SC− (µ +α)S+ γωR

dE
dt

= β SC− (τ + µ)E,

dC
dt

= τE − (θ + µ)C,

dR
dt

= θC− (µ + γ)R,

dH
dt

= αS+(1− γ)ωR− µH,

(2)

with initial condition

S(0) = S0,E(0) = E0,C(0) = C0,R(0) = R0,H(0) = H(0).
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Fig. 1: The figure shows the schematic transmission of
Corruption

Table 1: The model’s parameters symbol and its description

(1)

Parameters Parameter’s descriptions

Ψ Recruitment rate of susceptible

individuals
β Contact of corrupted human

with susceptible

γ Proportion of recovered that

becomes susceptible

µ Human population natural

death rate
ω Conversion rate of recovered to

honest or susceptible

τ Rate of exposed human

becomes corrupted

θ Rate of corrupted human

become recovered
α Rate of susceptible human

become honesty

3. Model Analysis

3.1 Invariant region

A model (1) has the total population of humans given by
N(t) = S(t) + E(t) + C(t) + R(t) + H(t). Then
differentiating N(t) and sum up all equation of system
(1), we obtain

d

dt
(S+E +C+R+H) =Ψ − µN. (3)

Then Eq. (3) can re-arrange and becomes,

dN

dt
=Ψ − µN. (4)

Then to solve equation (4), taking the integration on both

sides of the equation (4), we get that N ≤ Ψ
µ . Hence, the

feasible bounded of the model (1) is obtain as

Ω =

{

(S,E,C,R,H) ∈R
5
+ : S+E +C+R+H ≤

Ψ

µ

}

.

(5)
3.2 Positivity Solutions

For the model (1) we can state that solutions with
non-negative initial values can retain non-negative for
future times t ≥ 0.

Theorem 1. If S(0), E(0), C(0), R(0) and H(0) are all
positive, then the solutions S(t), E(t), C(t), R(t) and H(t)
of the model (1) are also positive for t ≥ 0.

Proof. Considering from system (1) equation that is given
by

dSh

dt
=Ψ −β SC− (µ +α)S+ γωR,

dSh

dt
≥−(βC+ µ +α)S. (6)

Then Eq. (6) integrated and apply the initial conditions, we
got

S(t)≥ S(0)e−(βC+µ+α)t ≥ 0. (7)

By the same procedure, the other state variables
E(t),C(t),R(t) and H(t) are positive for all time t ≥ 0.

3.3 Corruption Free Equilibrium (CFE)

In this section, we find the corruption free equilibrium
(CFE) with equating the model (1) to zero. Then consider
the compartments E = 0,C = 0 and R = 0. Then the
model’s corruption-free equilibrium (1) is denoted by E0

where

E0 =

(
Ψ

µ +α
,0,0,0,

αΨ

µ(µ +α)

)

. (8)

3.4 Basic reproductive number (ℜ0)

The basic reproductive number (R0) is the average
number of secondary cases caused by a single individual
in an entirely susceptible environment [17,18]. It is
computed using the next-generation matrix method [17].
For system (1) to get the ℜ0, we re-arrange the system (1)
started with the infected human as:

dE

dt
= β SC− (τ + µ)E, (9)

dC

dt
= τE − (θ + µ)C.

Then the equation (9) can be separated into two parts as
the form of f − v, where

f =

(
β SC

0

)

and v =

(
(τ + µ)E

(θ + µ)C− τE

)

. (10)
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The Jacobian at CFE is yield the matrices F and ϑ
respectively, where

F=

(

0
Ψβ
µ+α

0 0

)

and ϑ =

(
τ + µ 0
−τ θ + µ

)

. (11)

As a result, the ℜ0 = ρ(Fϑ−1), mean that ρ is the largest
eigenvalue of Fϑ−1. So that the ℜ0 at E0 is obtained as
given by the equation (12) as follows

ℜ0 =
τΨβ

(τ + µ)(θ + µ)(µ +α)
. (12)

3.5 Local stability of corruption free equilibrium

Theorem 2. The corruption free equilibrium of the model
(1) is locally asymptotically stable in Ω if ℜ0 < 1.

Proof. We begin by computing the linearization of model
(1), we obtain:

J(E∗) =







−βC− (µ +α) 0 −β S γω 0
βC −(µ + τ) β S 0 0
0 τ −(θ + µ) 0 0
0 0 0 −(µ +ω) 0
α 0 0 (1− γ)ω −µ







.

(13)

Then computing the Jacobian matrix of model (1) at CFE,
we obtain:

J(E∗) =









−(µ +α) 0 − βΨ
µ+α γω 0

0 −(µ + τ) βΨ
µ+α 0 0

0 τ −(θ + µ) 0 0
0 0 0 −(µ +ω) 0
α 0 0 (1− γ)ω −µ









.

(14)
From Eq. (14) the linearization of the model is the
polynomial function that given

(−λ − (µ +α))(−λ − µ)

(−λ − (µ +ω))(λ 2 + d1λ + d2) = 0
(15)

where,

d1 = τ + 2µ +θ , (16)

d2 = (µ + τ)+ (µ +θ )−
τβΨ

(µ +α)
.

Then from equation (15), we obtain

λ1 =−(µ +α)< 0, λ2 =−µ < 0, λ3 =−(µ +ω)< 0,
(17)

Moreover, using the final characteristic equation (15) we
got,

λ 2 + d1λ + d2 = 0. (18)

Lastly, using the stability criteria [18,19], the equation
(18) has a non-positive solution if d1 > 0 and d2 > 0. As
a result, we can observed that d1 > 0 since expressed as
all parameters are positive and d2 is given by

d2 = (µ + τ)+ (µ +θ )−
τβΨ

(µ +α)
= 1−ℜ0.

But d2 to be positive, 1−ℜ0 could be non-negative that
shows to ℜ0 < 1. So that the CFE is locally
asymptotically stable if ℜ0 < 1.

3.6 Global stability of corruption free equilibrium

Theorem 3. If ℜ0 < 1, then the CFE of the model (1) is
globally asymptotically stable in Ω .

Proof. Using Lyapunov concept [20], begin consider the
following function Lyapunov defined as

L= z1E + z2C. (19)

By differentiate the function of Lyapunov at time (t) gives,

dL

dt
= z1

dE

dt
+ z2

dC

dt
(20)

Substituting dE
dt

and dC
dt

from the model (1), we get

dL

dt
= z1 [β SC− (τ + µ)E)]+ z2[τE − (θ + µ)C],

= z1β SC− z2(θ + µ)C− z1(τ + µ)E + z2τE,

= z1β SC− z2(θ + µ)C− z1(τ + µ)E + z2τE,

=
τ

τ + µ
β SC− (θ + µ)C,

By taking z1 =
τ

τ+µ z2 and z2 = 1

dL

dt
≤

[
τ

τ + µ

βΨ

(µ +α)
− (θ + µ)

]

C,

=

[

(θ + µ)[
τβΨ

(τ + µ)(θ + µ)(µ +α)
− 1]

]

C,

= [(θ + µ)[ℜ0 − 1]]C. (21)

Hence, we obtain dL
dt

< 0 if ℜ0 < 1 and dL
dt

= 0 iff C = 0.
Thus, the DFE in Ω is the most powerful compact set in
(S,E,C,R,H) : dL

dt
= 0. Because of LaSalle invariant

principle [21] if ℜ0 < 1, then the CFE is globally
asymptotically stable in Ω .

3.7 Corruption present equilibrium

A equilibrium point said to be corruption endemic if the
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corruption is exist in the populations. The endemic
corruption equilibrium is denoted by
E∗ = (S∗,E∗,C∗,R∗

,H∗) and can be computed setting the
model (1) to zero. Hence, the corruption present
equilibrium for the model (1), is given by







S∗ = Ψ+ωγR∗

βC∗(µ+α)
,

E∗ = β S∗C∗

τ+µ ,

R∗ = θC∗

µ+γ ,

H∗ =
αS∗+(1−γ)ωH∗

µ .

(22)

The corruption endemic equilibrium can determined by
the polynomial function from equation (22), and C∗ is
calculated from the equation:

D1(C
∗)2 +D2(C

∗) = 0 (23)

where,

D1 = τβΨ(µ +α),

D2 = (τ + µ)(θ + µ)(α + µ)(1−ℜ0)]. (24)

Hence, D1 > 0 and D2 ≥ 0 if ℜ01 ≥ 1. Solving for C∗ , we
got C∗ = −D2

D1
≤ 0. As a result, whenever ℜ0 < 1, the

model has no positive corruption present equilibrium.
This lends support to the forward bifurcation depicted in
Figure (5).

3.8 Global stability of corruption endemic
equilibrium

Theorem 4. If ℜ0 > 1, then the corruption endemic
equilibrium of system (1) is globally asymptotically
stable in Ω .

Proof. In order to prove the theorem, we consider the
Lyapunov function constructed as follows:
Let A1 = (S − S∗),A2 = (E − E∗),A3 = (C −C∗),A4 =
(R−R∗) and A5 = (H −H∗). Then

Q=
1

2
[(A1 +A2 +A3 +A4 +A5)]

2
. (25)

By computing the derivative of Eq. (25) with respect to
time, we obtain as:

dQ

dt
= [(A1 +A2 +A3 +A4 +A5)]

d

dt
[S+E+C+R+H],

= [(A1 +A2 +A3 +A4 +A5)]
dN

dt
. (26)

Moreover, from equations (4), we have,

dN

dt
=

d

dt
[S+E+C+R+H]≤Ψ − µN, (27)

By substituting Eq. (27) into the Eq. (26)and simplify the
expression, we get

dQ

dt
= [(A1 +A2 +A3 +A4 +A5)]

dN

dt
,

≤ [(A1 +A2 +A3 +A4 +A5)]
dN

dt
[Ψ − µN],

(28)

≤

[

N−
Ψ

µ

]

[Ψ − µN]. (29)

By rearranging and simplifying the equation (28), we get
the following result:

dQ

dt
≤−

1

µ
[Ψ − µN]2 (30)

Therefore, ( dQ
dt
)(S,E,C,R,H) ≤ 0 and dQ

dt
= 0, iff

S = S∗,E = E∗,C = C∗,R = R∗,H = H∗. As a result, the

dominant invariant was established in Ω : dQ
dt

= 0 is one
set E∗. Using the LaSalle’s principle [21], the corruption
endemic equilibrium E∗ is globally asymptotically stable
in Ω .

4. Sensitivity analysis

A purpose of the model’s parameter sensitivity analysis is
to show which parameters affect the corruption dynamics.
To identify the most effective corruption-control
strategies, we must first understand the parameters that
influence the basic reproductive number (ℜ0). The
sensitivity analysis was carried out using the method
described in [22].

Definition 4.1 (see [22]). The forward sensitivity index of
ℜ0 with respect to a given basic parameter Q is defined as

Π
ℜ0
Q =

∂ℜ0

∂Q
×

Q

ℜ0
. (31)

As example, the sensitivity of ℜ0 in relation to the
parameter β is calculated as

Π ℜ0

β
=

∂ℜ0

∂β
×

β

ℜ0
=

Ψ

(τ + µ)(θ + µ)(µ +α)
×

β

ℜ0
= 1 > 0.

(32)

Taking the same approach as with rest parameters,

Π ℜ0
Ψ , Π ℜ0

α , Π ℜ0
µ , Π ℜ0

τ , Π ℜ0
θ

are mentioned as written in Table 2:
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Table 2: Sensitivity index of the parameters

Symbol of parameters Index of sensitivity

Ψ 1

β 1

α -0.005

τ -0.045

µ -1

θ -0.028

The sensitivity index of the basic reproductive number
(ℜ0) regarding to seven parameters were shown in Table
(2). The results depicted that some parameters having a
positive sensitivity index increased the value of (ℜ0) as
their values added, whereas increasing the values of the
parameters having negative indices will reduces the value
of (ℜ0) while keeping the values of the other parameters
remain not changed.

Table 3: Parameter symbol and its descriptions for model (1)

Parameter Descriptions of

Parameter

Values References

Ψ Recruitment rate

of susceptible
individuals

85.000 [12]

β Contact of

corrupted human

with susceptible

0.024 [12]

γ Rate of recovered

human become
honesty

0.350 [6]

τ Rate of exposed

people become

corrupted

0.007 [12]

θ Rate of corrupted

human become
recovered

0.010 [6]

µ Human population

natural death rate

0.0160 [15]

ω Rate at recovered

human become

susceptible

0.0021 [15]

α The rate at which

susceptible human

becomes honesty

0.030 [12]

5. Optimal control model

An optimal control model, which includes a mathematical
model of biological situations, is used to design control
strategy decisions [23]. Here, the corruption dynamics
model (1) was extended to an optimal control model. The
state equations obtained by included the controls
variables into the corruption dynamics model (1) is given

as:






dS
dt

=Ψ − (1− u1)β SC− (µ +α)S+ γωR,

dE
dt

= (1− u1)β SC− (τ + µ)E,

dC
dt

= τE − (θ + µ + u2)C,

dR
dt

= (θ + u2)C− (µ +ω)R,

dH
dt

= αS+(1− γ)ωR− µH,

(33)

where the control functions u1(t) represents prevent
individuals away from the corrupted populations, u2(t)
deals develop powerful laws regarding the corruption.
The optimal control model’s objective functional (33) is
given as

J(u1,u2) = min
︸︷︷︸

u1,u2,

∫ t f

0

(

AE +BC+
1

2
(Cu2

1 +Du2
2)

)

dt,

(34)
where t f is the terminal time, the expression 1

2Ciu
2
i

represents the cost of functions for the controls ui(t) [24,
25]. The objective functional (34) is to minimize the
corrupted people and control costs ui(t). The target is to
find an optimum controls u∗1 and u∗2 satisfies

J(u∗1,u
∗
2) = min{J(u1,u2) : u1,u2 ∈ ϑ} (35)

where ϑ = (u1,u2) : ui(t) are Lebesgue integrable on t ∈
[0, t f ].
The Hamiltonian function of an optimal control model is
the combination of equations (33) and (34) is given as

H = [AE +BC+
1

2
(Cu2

1 +Du2
2]+λ1

dS

dt
+λ2

dE

dt
+

λ3
dC

dt
+λ4

dR

dt
+λ5

dH1

dt
.

(36)

From equation (36) the minimize Hamiltonian regarding
the controls to u1,u2 is given by

H = [AE +BC+
1

2
(Cu2

1 +Du2
2)]

+λ1[Ψ − (1− u1)β SC− (µ +α)S+ γωR]

+λ2[(1− u1)β SC− (τ + µ)E]

+λ3[τE − (θ + µ + u2)C]

+λ4[(θ + u2)C− (µ +ω)R] (37)

+λ5[αS+(1− γ)ωR− µH]

where λi, for i = 1,2,3,4,5 are adjoint variables. The
adjoint equations are computed via Pontryagin’s
minimum principle [25], with the evidence of [26], we
stated the theorem as follow:

Theorem 5. Suppose that the control variables u∗1,u
∗
2 and

a solution S∗,E∗,C∗,R∗,H∗ of the corresponding state
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equations that minimize J(u1,u2) over ϑ subject to the
equation (33), then there exist co-state variables λi, for
i = 1,2,3,4,5 a hold the co-state systems







dλ1
dt

= (1− u1)(λ1 −λ2)βC+(µh +α)λ1 −αλ5,
dλ2
dt

= (λ2 −λ3)τ + µλ2 −A,
dλ3
dt

= (1− u1)(λ1 −λ2)β S+(λ3 −λ4)(θ + u2)+
λ3µ −B,
dλ4
dt

= λ4(ω + µ)−λ5(1− γ)ω −λ1γω ,
dλ5
dt

= λ5µ ,
(38)

with transversality conditions

λi(t f ) = 0, f or i = 1,2,3,4,5. (39)

Furthermore, the optimal controls u∗1 and u∗2 are denoted as

u∗1 = min

{

1,max

{

0,
(λ2 −λ1)β SC

C

}}

, (40)

u∗2 = min

{

1,max

{

0,
(λ3 −λ4)C

D

}}

.

Proof. The co-state equations can be computed by the
derivative of the Hamiltonian Eq. (36), respectively, with
S∗,E∗,C∗,R∗ and H∗. Hence, the co-state equations
obtained are given by







dλ1
dt

=− ∂H

∂S
= (1− u1)(λ1 −λ2)βC+(µ +α)λ1 −αλ5,

dλ2
dt

=− ∂H

∂E
= (λ2 −λ3)τ + µλ2 −A,

dλ3
dt

=− ∂H

∂C
= (1− u1)(λ1 −λ2)β S+(λ3 −λ4)(θ + u2)

+λ3µ −B,
dλ4
dt

=− ∂H

∂R
= λ4(ω + µ)−λ5(1− γ)ω −λ1γω ,

dλ5
dt

=− ∂H

∂H
= λ5µ ,

(41)
with transversality conditions

λi(t f ) = 0, f or i = 1,2,3,4,5. (42)

Then using the optimality conditions, we obtain the values
of the control controls, as given as:

u∗1 =
(λ2 −λ1)β SC

C
,

u∗2 =
(λ3 −λ4)C

D
. (43)

Using the boundary conditions of the controls and
rearranging the solution of (43), we got:

u∗1 = min

{

1,max

{

0,
(λ2 −λ1)β SC

C

}}

, (44)

u∗2 = min

{

1,max

{

0,
(λ3 −λ4)C

D

}}

.

The simulation of an optimality system will then be used
to determine the best intervention for minimizing

corruption dynamics.

6. Numerical simulation

In this part, to find the best strategy, we applied the
iterative method to solve the states and co-state variables.
Because of the initial values of the state variables, via the
forward fourth-order Runge-Kutta method, we computed
the state equations. Besides, via backward fourth-order
Runge Kutta method the adjoint equations were obtained.
In the optimality system, the initial values for the state
variables are
S(0) = 300,E(0) = 60,C(0) = 40,R(0) = 20,H(0) = 40.
Moreover, we assigned the weight constant values as
follows: A = 60,B = 80,C = 100 and D = 90. We used
the following three strategies to design the intervention
for the minimization of corruption dynamics.

6.1 Strategy A: using prevent individuals away from
the corrupted human (u1)

In this subsection, we minimized the Eq. (34) using the
prevent of corruption u1 and without developing laws to
punish corrupted humans (u2). In Figure 2(a), if the
controls are applied, the exposed people E reduces while
the number of exposed people increases if the controls are
omitted. The corrupted humans C decreases as the control
strategy is included in Figure 2(b), whereas it rapidly
growths if no controls are applied. The control u1

remained its maximum level (100%) for 120 days as in
Figure 2(c).

6.2 Strategy B: using powerful laws to punish the
corrupted human (u2).

This strategy used the develop laws to punish the
corrupted human u2 when using the prevent of corruption
u1 was not included. Figure 3(a) shows that exposed
human E with controls is minimized whereas if there are
no controls the exposed human increases. Figure 3(b)
indicates that corrupted human C decreases in the control
strategy whereas corrupted human growth rapidly if no
control. Figure 3(c), the punishment u2 kept its high
(100%) with 25 days.

6.3 Strategy C: Integrating of prevention (u1) and
punishment of corrupted human (u2).

In this study, we apply a combination prevention u1 and
punishment u2 to minimize all infected populations.
Figure 4(a) indicates exposed human E minimized if we
apply the control strategy, whereas if there are no controls
the exposed human increases. Figure 4(b) indicates the
corrupted human C decreases if the control strategy is
used, whereas in the no controls, the corrupted human
increases. Figure 4(c) shows that prevention controls u1
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(a) (b)

(c)

Fig. 2: Numerical simulation with prevent individuals away from

the corrupted human (u1).

maintain a high level (100 %) for 120 days, while
punishment controls u2 maintain a high level for 25 days.

Figure (5) shows that the bifurcation diagram for
corruption dynamics model that shows forward
bifurcation. This implies that if ℜ0 < 1 then

(a) (b)

(c)

Fig. 3: Numerical simulation using powerful laws to punish the

corrupted human.

automatically implies that DFE exists and stable whereas
if ℜ0 > 1 endemic equilibrium is exist and stable.
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(a) (b)

(c)

Fig. 4: Numerical simulations with prevention (u1) and

punishment of corrupted (u2).

7. Cost effective strategies

In this subsection, we should devise the best optimal and
most cost-effective strategies for minimizing the

Fig. 5: Figure shows bifurcation diagram corruption dynamics

model (1).

corruption dynamics. This strategy was created via the
incremental cost effective technique(ICER). Furthermore,
ICER can be expressed as the division of the change in
difference costs between two interventions to the change
in the number with the corrupted averted [27,28,29,30].
Total infected saved and cost avoided for three strategy is
shown in Table (4).

Table 4: Total infected saved and cost avoided for three strategy

Strategy Description Total of

infected people

Dollars ($)

A Prevention

individuals

4744.74 2421.32

B Develop

powerful laws

4892.56 3258.42

C Prevention and

laws

6216.48 4276.64

Based on the data obtained in Table (4) we can
compute the ICRE and obtain as:

ICER(A) =
2421.32

4744.74
= 0.51

ICER(B) =
3258.42− 2421.32

4892.56− 4744.74
= 5.66

ICER(C) =
4276.64− 3258.42

6216.48− 4892.56
= 0.76

Table (5) shows the number of infected averted with ICER
for all strategy based on the results in Table (4).
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Table 5: Total infected averts and costs incurred as a result of
using ICER

Strategy Total of infected people Dollars ($) ICER

A 4744.74 2421.32 0.51

B 4892.56 3258.42 5.66

C 6216.48 4276.64 0.76

The table (5) compares the interventions A and B. The
table shows that ICER(B) is higher than ICER(A). It
implies strategy B is expensive and unlikely to save lives.
Thus, strategies A averts people than B. Then, we
removed B among the interventions. The ICER of
strategy A and C is then calculated, as shown in Table (6).

Table 6: Total infected averted and costs incurred as a result of
using ICER

Strategies Total of infected people Dollars ($) ICER

A 4744.74 2421.32 0.51

C 6216.48 4276.64 0.76

The table (6) calculates the interventions A and C.
The table shows ICER(C) is higher than ICER(A). It
shows intervention C is higher expensive. Consequently,
we suggested that strategy A, which involves educating
individuals to keep them away from the corrupted
population, is the optimal and highest cheap intervention
to minimize the corruption dynamics.

8. Conclusion

In this study, to describe the corruption dynamics, we
used nonlinear differential equations. The solution of the
model is bounded and non-negative, via the analytical
analysis of the model. The basic reproductive number in
relation to the corrupted free equilibrium is calculated via
the next generation matrix technique. Then to depict the
local and global stability of corruption equilibriums, the
linearization and the Lyapunov method are used. Besides,
if the basic reproductive number is smaller than unity, the
corruption free-equilibrium is asymptotically stable both
locally and globally; otherwise, a corruption endemic
equilibrium exists. The model’s parameter sensitivity was
described, and also forward bifurcation has been
observed. Moreover, the corruption dynamics model is
extended to an optimal control model by incorporating
two time-dependent controls, namely the corrupted
individual’s personal deterrence and the development of
strong anti-corruption laws. To determine the optimal
control conditions, the Pontraygin minimum principle is
applied, and a cost-effective intervention is described to
design the strategies with the lowest cost. As a result of
the analysis, we came to the conclusion that personal
prevention away from the corrupted individual is the most

effective strategy for reducing corruption dynamics.
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