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Abstract: We study the concept of strongly harmonically h-convex functions and some examples and properties of them. Here, we

develop few inequalities for this new class of functions, specifically these inequalities are: Hermite-Hadamard and Fejer. In addition,

we establish some applications of our results to special media of non zero and non negative real numbers.
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1 Introduction

In the last few years, many extensions and generalizations
have been studied for classical convexity, and the theory
of inequalities has made necessary contributions in
several fields of mathematics. An eminent subclass of
convex functions is that of strongly convex functions
established by B. T. Polyak [1] as follows: A function f is
said to be strongly convex if there exists a d > 0 such that

f (β u1 +(1−β )u2)

≤ β f (u1)+ (1−β ) f (u2)− dβ (1−β )|u1 − u2|2 ,

∀ β ∈ [0,1] .
Strongly convex functions are broadly used in applied

economics, nonlinear optimization and many other
branches of pure and applied mathematics. Since strong
convexity is a nourishing of the concept of convexity,
some properties of strongly convex functions are just
stronger versions of known properties of convex
functions. For more detailed information on strongly
convex functions, see [2,3,4,5,6,7] and references
therein.

In [8], Shi and Wang introduced the concept of
harmonic set using the harmonic mean and which is used

in some branches of science as electric circuits. It was
defined as: A set Î = [a1,a2] ⊆ R \ {0} is said to be
harmonic convex set if

(

u1u2

tu1 +(1− t)u2

)

∈ Î,

for all u1,u2 ∈ Î and t ∈ [0,1].
Also, with the use of weighted harmonic mean it s

possible to define the harmonic convex functions: a
function f : Î ⊂ R− {0} → R is said to be harmonic
convex function on Î, if

f

(

u1u2

tu1 +(1− t)u2

)

≤ t f (u1)+ (1− t) f (u2), (1)

for all u1,u2 ∈ Î and t ∈ [0,1].
In [9] and [10], Anderson et.al. and Iscan I. have

studied many properties of this kind of generalized
convex functions, also, Noor M.A. et.al. in [11,12,13,14]
have established the geometric significance and
characterization.

Our research are committed to the classical results
based to convex functions defined by Jaques Hadamard
[15] and Ch. Hermite [16].
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Preliminaries

Recently some articles have been published dealing with
the following definitions [11].

Definition 1.A set Î = [a1,a2] ⊆ R \ {0} is consider to be

harmonic convex set if

(

u1u2

tu1 +(1− t)u2

)

∈ Î,

∀ u1,u2 ∈ Î and t ∈ [0,1].

Definition 2.A function f : Î ⊂R−{0}→R is consider to

be harmonic convex function on Î, if

f

(

u1u2

tu1 +(1− t)u2

)

≤ t f (u1)+ (1− t) f (u2), (2)

∀ u1,u2 ∈ Î and t ∈ [0,1].

A study of properties, geometric significance and
characterizations regarding this type of functions is given
in a publication of M.A. Noor et.al. [12].

Some others publications have been generalized the
Definition 2 (See [11,13,14])

Definition 3.A function f : Î ⊂R−{0}→R is consider to

be harmonic s−convex function in the second sense on Î,

for some s ∈ (0,1] if

f

(

u1u2

tu1 +(1− t)u2

)

≤ ts f (u1)+ (1− t)s f (u2), (3)

∀ u1,u2 ∈ Î and t ∈ [0,1].

Definition 4.A function f : Î ⊂R−{0}→R is consider to

be harmonic P−convex function on Î, if

f

(

u1u2

tu1 +(1− t)u2

)

≤ f (u1)+ f (u2), (4)

∀ u1,u2 ∈ Î and t ∈ [0,1].

Definition 5.A function f : Î ⊂R−{0}→R is consider to

be harmonic MT−convex function on Î, if

f

(

u1u2

tu1 +(1− t)u2

)

≤
√

1− t

2
√

t
f (u1)+

√
t

2
√

1− t
f (u2),

(5)
∀ u1,u2 ∈ Î and t ∈ [0,1].

Definition 6(See [11]). A function f : Î ⊂ R−{0}→ R is

consider to be harmonic tgs−convex function , if

f

(

u1u2

tu1 +(1− t)u2

)

≤ t(1− t)( f (u1)+ f (u2)), (6)

∀ u1,u2 ∈ Î and t ∈ [0,1].

Definition 7(See [13]). Let h : [0,1] ⊂ J → R a

non-negative function. A function f : Î ⊂ R−{0}→ R is

consider to be harmonic h−convex function if

f

(

u1u2

tu1 +(1− t)u2

)

≤ g(t) f (u1)+ h(1− t) f (u2), (7)

∀ u1,u2 ∈ Î and t ∈ [0,1].

The inequality of Hermite-Hadamard and others has
been established for all these types of generalized convex
functions, as we can refer in [17,18,13].

About strongly harmonic convexity property of a
function it will be necessary to cite some basics.

Definition 8(See [19]). A function f : Î ⊂ R−{0} → R

is consider to be strongly harmonic convex function with

modulus d > 0 if

f

(

u1u2

tu1 +(1− t)u2

)

≤ t f (u1)+ (1− t) f (u2)

−dt(1− t)

∣

∣

∣

∣

u1u2

u1 + u2

∣

∣

∣

∣

2

,

(8)

∀ u1,u2 ∈ Î and t ∈ [0,1].

M.A Noor et.al. in [13] presented the following
definition.

Definition 9.A function f : Î ⊂ R−{0} → R is consider

to be strongly generalized harmonic convex function with

modulus d > 0, for some s ∈ [−1,1], if

f

(

u1u2

tu1 +(1− t)u2

)

≤ ts(1− t)s( f (u1)+ f (u2))

−dt(1− t)

∣

∣

∣

∣

u1u2

u1 + u2

∣

∣

∣

∣

2

,

(9)

∀ u1,u2 ∈ Î and t ∈ [0,1].

For our main results, we will require the following
Lemma, which is proved in [10].

Lemma 1.Let f : Î → R be a differentiable function on

int(Î) and a1,a2 ∈ Î with a1 < a2. If f ′ ∈ L([a1,a2]), then

f (a1)+ f (a2)

2
− a1a2

a2 − a1

∫ a2

a1

f (x)

x2
dx

=
a1a2(a2 − a1)

2
×

∫ 1

0

1− 2t

(ta2 +(1− t)a1)
2

f ′
(

a1a2

ta1 +(1− t)a2

)

dt
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2 On strongly harmonic h−convex functions

Now, we define the following definition.

Definition 10.Let h : [0,1]→R be a non-negative function

with h 6≡ 0. The function f : R+ → R is consider to be

strongly harmonic h−convex with modulus d > 0 if

f

(

u1u2

tu2 +(1− t)u1

)

≤ h(t) f (u1)+ h(1− t) f (u2)

−dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

,

(10)

∀ u1,u2 ∈ R+ and t ∈ [0,1].

Remark.(i)If h(t) = t, then a strongly harmonically
h−convex functions is reduces to strongly harmonically
convex function [20].

(ii)If h(t) = ts for some s ∈ (0,1], then a strongly
harmonic h−convex functions is reduces to strongly
harmonic s−convex function in the second sense [19].

The following theorems are properties of the strongly
harmonic h−convex functions.

Theorem 1.Consider h : [0,1] → R be a non-negative

function with h 6≡ 0. Let f1,g1 : R+ → R be two functions

and k ≥ 0,

1.If f1,g1 are strongly harmonic h−convex functions ,

then f1 +g1 is a strongly harmonic h−convex function

with modulus 2d.

2.If f1 is strongly harmonic h−convex function, then k f1

is a strongly harmonic h−convex function..

Proof.(1) Assume u1,u2 ∈ R+ and t ∈ [0,1],

( f1 + g1)

(

u1u2

tu2 +(1− t)u1

)

= f1

(

u1u2

tu2 +(1− t)u1

)

+g1

(

u1u2

tu2 +(1− t)u1

)

≤ h(t) f1(u1)+ h(1− t) f1(u2)

+h(t)g1(u1)+ h(1− t)g1(u2)− 2dt(1− t)

∣

∣

∣

∣

u1 − u2

xy

∣

∣

∣

∣

2

= h(t)( f1 + g1)(u1)

+h(1− t)( f1+ g1)(u2)− 2dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

.

Thus, f1 + g1 is strongly harmonic h−convex function
with mo-dulus 2d.

(2) Assume u1,u2 ∈ R+ and t ∈ [0,1],

(k f1)

(

u1u2

tu2 +(1− t)u1

)

= k f1

(

u1u2

tu2 +(1− t)u1

)

≤ h(t)(k f1)(u1)

+h(1− t)(k f1)(u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

,

so, k f1 is a strongly harmonic h−convex functions with
modulus d .

Hence the proof is complete.

Theorem 2.Let h : [0,1] → R be a non-negative function

with h 6≡ 0.If f1, f2 : R+ → R are strongly harmonic

h−convex functions with modulus d > 0, then

f := max{ f1, f2} so is too.

Proof.Assume u1,u2 ∈ and t ∈ [0,1]. Since f1 and f2 are
harmonic h−convex function and f := max{ f1, f2}, then
we have

f1

(

u1u2

tu2 +(1− t)u1

)

≤ h(t) f1(u1)+ h(1− t) f1(u1)

−dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

≤ h(t) f (u1)+ h(1− t) f (u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

,

and

f2

(

u1u2

tu2 +(1− t)u1

)

≤ h(t) f2(u1)+ h(1− t) f2(u2)

−dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

≤ h(t) f (u1)+ h(1− t) f (u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

.

By the above we get

f

(

u1u2

tu1 +(1− t)u2

)

= max

{

f1

(

u1u2

tu2 +(1− t)u1

)

, f2

(

u1u2

tu2 +(1− t)u1

)}

≤ h(t) f (u1)+ h(1− t) f (u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

.

Thus, f is strongly harmonic h−convex functions. Hence
the proof is complete.
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Theorem 3.Let h : [0,1] → R be a non-negative function

with h 6≡ 0. If fn : R+ → R is a sequence of strongly

harmonic h−convex functions with modulus d > 0,

converging pointwise to a function f on R+, then f is

strongly harmonic h−convex function with modulus

d > 0.

Proof.Consider u1,u2 ∈ R+ and t ∈ [0,1]

f

(

u1u2

tu2 +(1− t)u1

)

= lim
n→∞

fn

(

u1u2

tu2 +(1− t)u1

)

≤ lim
n→∞

[h(t) fn(u1)+ h(1− t) fn(u2)−

dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2
]

= h(t) f (u1)+ h(1− t) f (u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

.

Hence the proof is complete.

Theorem 4.Let f :R+ →R be a harmonic convex function

with f (u1)≥ u1, and g : R+ →R be a non-decreasing and

strongly harmonic h−convex function with modulus d > 0,

such that f (R+) ⊆ R+, then g ◦ f is a strongly harmonic

h−convex function.

Proof.Since f is a harmonic convex function we have, for
any u1,u2 ∈R+ and t ∈ [0,1], we obtain,

f

(

u1u2

tu2 +(1− t)u1

)

≤ t f (u1)+ (1− t) f (u2)

In addition, g is a non-decreasing function and is a strongly
harmonic convex function, therefore

g

(

f

(

u1u2

tu2 +(1− t)u1

))

≤ g(t f (u1)+ (1− t) f (u2))

≤ h(t)g( f (u1))+ h(1− t)g( f (u2))

−dt(1− t)

∣

∣

∣

∣

f (u1)− f (u2)

f (u1) f (u2)

∣

∣

∣

∣

2

≤ h(t)(g ◦ f )(u1)+ h(1− t)(g ◦ f )(u2)

−dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

.

Thus, g ◦ f is a strongly harmonic h−convex function.
Hence the proof is complete. ⊓⊔

3 Hermite-Hadamard type inequality

Theorem 5(Hermite-Hadamard type left-inequality).
Let h : [0,1] → R be a non-negative function with h 6≡ 0.

Let f : R+ → R be a strongly harmonic h−convex with

modulus d > 0. Then

f

(

2a1a2

a1 + a2

)

≤ h(1/2)
2a1a2

a2− a1

∫ a2

a1

f (u1)

u2
1

du1

− d

12

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2
(11)

Proof.Since Let f : R+ → R is a strongly harmonic
h−convex with modulus d > 0, then

f

(

2a1 + a2

a1 + a2

)

=

f







1
1
2

1
a1a2

ta1+(1−t)a2

+ 1
2

1
a1a2

ta2+(1−t)a1







≤ h(1/2) f

(

a1a2

ta1 +(1− t)a2

)

+h(1/2) f

(

a1a2

ta2 +(1− t)a1

)

−dt(1− t)

∣

∣

∣

∣

a2 − a1

2a1a2

∣

∣

∣

∣

2

By integration over the interval [0,1], it is obtained that

f

(

2a1a2

a1 + a2

)

≤

h(1/2)

{

∫ 1

0
f

(

a1a2

ta1 +(1− t)a2

)

dt

+

∫ 1

0
f

(

a1a2

ta2 +(1− t)a1

)

dt

}

−d

∣

∣

∣

∣

a2 − a1

2a1a2

∣

∣

∣

∣

2 ∫ 1

0
t(1− t)dt.

Since

∫ 1

0
f

(

a1a2

ta1 +(1− t)a2

)

dt =

∫ 1

0
f

(

a1a2

ta2 +(1− t)a1

)

dt

(12)

=
a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

and
∫ 1

0
t(1− t)dt =

1

6
(13)

then we get our desired result.

Theorem 6(Hermite-Hadamard type right-inequality).
Let h : [0,1] → R be a non-negative function with h 6≡ 0.
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Let f : R+ → R be a strongly harmonic h−convex with

modulus d > 0. Then

a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ max
{

f (a1)I1(h)+ f (a2)I2(h), f (a2)I1(h)

+ f (a1)I2(h)
}

− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

where

I1(h) =

∫ 1

0
h(t)dt and I2(h) =

∫ 1

0
h(1− t)dt.

Proof.Since f is a strongly harmonic h−convex function
for all u1,u2 ∈R+ then we have

f

(

u1u2

tu1 +(1− t)u2

)

≤ h(t) f (u1)+ h(1− t) f (u2)− dt(1− t)

∣

∣

∣

∣

u1 − u2

u1u2

∣

∣

∣

∣

2

In particular, if u1 = a1 and u2 = a2 then

f

(

a1a2

ta1 +(1− t)a2

)

≤ h(t) f (a1)+ h(1− t) f (a2)− dt(1− t)

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

.

Integrating over t ∈ [0,1] it is obtained

∫ 1

0
f

(

a1a2

ta1 +(1− t)a2

)

dt

≤ f (a1)

∫ 1

0
h(t)dt

+ f (a2)
∫ 1

0
h(1− t)dt− d

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2 ∫ 1

0
t(1− t)dt

Similarly

∫ 1

0
f

(

a1a2

ta2 +(1− t)a1

)

dt

≤ f (a2)
∫ 1

0
h(t)dt

+ f (a1)

∫ 1

0
h(1− t)dt− d

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2 ∫ 1

0
t(1− t)dt

As it was mentioned in (12) and (13) we can write

a1a2

a1 + a2

∫ a2

a1

f (u1)

u2
1

du1 ≤ f (a1)I1(h)

+ f (a2)I2(h)−
d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

and

a1a2

a1 + a2

∫ b

a

f (u1)

u2
1

du1 ≤ f (a2)I1(h)

+ f (a1)I2(h)−
d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

,

where

I1(h) =

∫ 1

0
h(t)dt and I2(h) =

∫ 1

0
h(1− t)dt.

Hence we easily deduced the desired result.

Corollary 1.Let f : R+ → R be a strongly harmonic

convex function with modulus d > 0. Then

f

(

2a1a2

a1 + a2

)

+
d

12

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

2
− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

.

(14)

Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = t, for all t ∈ [0,1], then it is attained the desired
result. ⊓⊔

This last result coincides with Theorem 2.2 in [20].

Corollary 2.Let f : R+ → R be a strongly harmonic

s−convex function in the second sense. Then

2s−1 f

(

2a1a2

a1 + a2

)

+
d

12

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

s+ 1
− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

.

Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = ts, for all t ∈ [0,1] and some s ∈ (0,1] then it is
attained the desired result.

Corollary 3.Let f : R+ → R be a strongly harmonic

P−convex function. Then

1

2
f

(

2a1a2

a1 + a2

)

+
d

24

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1 ≤ f (a1)

+ f (a2)−
d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

(15)
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Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = 1, for all t ∈ [0,1], then it is attained the desired
result.

Corollary 4.Let f : R+ → R be a strongly harmonic

MT−convex function. Then

1

2
f

(

2a1a2

a1 + a2

)

+
d

24

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ π( f (a1)+ f (a2))

4
− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

.

Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = 1, for all t ∈ [0,1], then it is attained the desired
result. ⊓⊔

Corollary 5.Let f :R+ →R be a harmonic tgs−harmonic

convex function. Then

2 f

(

2a1a2

a1 + a2

)

+
d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

(a2 − a1)

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

6
− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

.

Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = t(1 − t), for all t ∈ [0,1], then it is attained the
desired result. ⊓⊔

Corollary 6.Let f : R+ → R be a generalized harmonic

tgs−harmonic convex function. Then

21−2s f

(

2a1a2

a1 + a2

)

+
2−2sd

3

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

≤ a1a2

(a2 − a1)

∫ a2

a1

f (u1)

u2
1

du1

≤ ( f (a1)+ f (a2))B(s+ 1,s+ 1)− d

6

∣

∣

∣

∣

a2 − a1

a1a2

∣

∣

∣

∣

2

,

where B(x,y) is the Beta function.

Proof.Using Theorem 5 and Theorem 6 with the function
h(t) = ts(1− t)s, for all t ∈ [0,1], then it is attained the
desired result.

Remark.If in Corollaries 1-5 we make d = 0 it follows the
following results:

1.for harmonic convex functions

f

(

2a1a2

a1 + a2

)

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

2

(16)

making coincidence with a result found in [10].
2.for harmonic s−convex function in the second sense

2s−1 f

(

2a1a2

a1 + a2

)

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

s+ 1
(17)

making coincidence with a result presented in [21].
3.for P−harmonic convex functions

1

2
f

(

2a1a2

a1 + a2

)

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1 ≤ f (a1)+ f (a2)

(18)

making coincidence with Corollary 3.4 in [13].
4.for harmonic MT− convex functions

1

2
f

(

2a1a2

a1 + a2

)

≤ a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

du1 ≤
π( f (a1)+ f (a2))

4

5.for harmonic tgs− convex functions

2 f

(

2a1a2

a1 + a2

)

≤ a1a2

(a2 − a1)

∫ a2

a1

f (u1)

u2
1

du1

≤ f (a1)+ f (a2)

6

(19)

6.for harmonic generalized harmonic tgs−functions

21−2s f

(

2a1a2

a1 + a2

)

≤ a1a2

(a2 − a1)

∫ a2

a1

f (u1)

u2
1

du1

≤ ( f (a1)+ f (a2))B(s+ 1,s+ 1).

Now we discuss the right side of the
Hermite-Hadamard inequality for the product of two
strongly harmonic h−convex functions with modulus
d > 0.
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Theorem 7.Let f ,g : Î → R
+ be two strongly harmonic

h−convex functions with modulus d > 0, a1,a2 ∈ Î with

a1 < a2. If f g ∈ L([a1,a2]) then

a1a2

(a2 − a1)

∫ a2

a1

f (u1)g(u1)

u2
1

du1

≤ M(a1,a2)
∫ 1

0
(h(t))2

dt

+N(a1,a2)

∫ 1

0
h(t)h(1− t)dt

−d

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2{

L(a1,a2)
∫ 1

0
t(1− t)h(t)dt

−d

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

B(3,3)

}

where

M(a1,a2) = f (a1)g(a1)+ f (a2)g(a2),

N(a1,a2) = f (a1)g(a2)+ f (a2)g(a1),

L(a1,a2) = f (a1)+ f (a2)+ g(a1)+ g(a2)

and B(·, ·) is the Beta function.

Proof.Note that

a1a2

(a2 − a1)

∫ a2

a1

f (u1)g(u1)

u2
1

du1

=

∫ 1

0
f

(

a1a2

ta1 +(1− t)a2

)

g

(

a1a2

ta1 +(1− t)a2

)

,

and since f and g are strongly harmonic h−convex
functions, we have

f

(

a1a2

ta1 +(1− t)a2

)

≤ h(t) f (a1)+ h(1− t) f (a2)− dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

and

g

(

a1a2

ta1 +(1− t)a2

)

≤ h(t)g(a1)+ h(1− t)g(a2)− dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

;

so

f

(

a1a2

ta1 +(1− t)a2

)

g

(

a1a2

ta1 +(1− t)a2

)

≤ h(t)h(t) f (a1)g(a1)

+h(t)h(1− t) f (a1)g(a2)− h(t) f (a1)dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

+h(1− t)h(t) f (a2)g(a1)+ h(1− t)h(1− t) f (a2)g(a2)

−h(1− t) f (a2)dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

−h(t)g(a1)dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

−h(1− t)g(a2)dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

+d2t2(1− t)2

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

4

Integrating over t ∈ [0,1]

∫ 1

0
f

(

a1a2

ta1 +(1− t)a2

)

g

(

a1a2

ta1 +(1− t)a2

)

≤ ( f (a1)g(a1)+ f (a2)g(a2))

∫ 1

0
(h(t))2

dt

+( f (a1)g(a2)+ f (a2)g(a1))

∫ 1

0
h(t)h(1− t)dt

−( f (a1)+ g(a1)+ f (a2)

+g(a2))d

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2 ∫ 1

0
t(1− t)h(t)dt

+d2

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

4 ∫ 1

0
t2(1− t)2dt.

Letting

M(a1,a2) = f (a1)g(a1)+ f (a2)g(a2),

N(a1,a2) = f (a1)g(a2)+ f (a2)g(a1)

and

L(a1,a2) = f (a1)+ f (a2)+ g(a1)+ g(a2)

then we achieve with the desired result.

The following results are established with the use of
Lemma 1 .

Theorem 8.Consider f : Î →R be a differentiable function

on int(Î) , a1,a2 ∈ Î with a1 < a2, and f ′ ∈ L([a1,a2]). If
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| f ′|v ,v≥ 1. is a strongly harmonic h−convex function then

∣

∣

∣

∣

f (a1)+ f (a2)

2
− a1a2

a2 − a1

∫ a2

a1

f (u1)

u2
1

dx

∣

∣

∣

∣

≤ a1a2(a2 − a1)

2

(

1

u+ 1

)1/u

×
{

∣

∣ f ′(a1)
∣

∣

v
I1(h)+

∣

∣ f ′(a2)
∣

∣

v
I2(h)

−d

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2

C (a1,a2)

}1/v

.

where

I1(h) =
∫ 1

0

h(t)

(ta2 +(1− t)a1)
2v

dt,

I2(h) =

∫ 1

0

h(1− t)

(ta2 +(1− t)a1)
2v

dt,

and

C (a1,a2) =
1

(a2 − a1)3
×

{

1

2(2v2 − 5v+ 3)

(

b3−2v− a3−2v
)

+
(4v− 5)

4v2 − 10v+ 6

(

a1a2−2v
2 − a2−2va2

)

}

. .

Proof.Using Lemma 1, Hölder’s inequality and the
strongly harmonic h−convexity of | f ′|v then we have

∣

∣

∣

∣

f (a1)+ f (a2)

2
− a1a2

(a2 − a1)

∫ a2

a1

f (u1)

u1
2

du1

∣

∣

∣

∣

≤ a1a2(a2 − a1)

2
×

∫ 1

0

∣

∣

∣

∣

∣

1− 2t

(ta2 +(1− t)a1)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

f ′
(

a1a2

ta1 +(1− t)a2

)∣

∣

∣

∣

dt

≤ a1a2(a2 − a1)

2

{

∫ 1

0
|1− 2t|u dt

}1/u

×

{

∫ 1

0

1

(ta2 +(1− t)a1)
2v

∣

∣

∣

∣

f ′
(

a1a2

ta1 +(1− t)a2

)∣

∣

∣

∣

q

dt

}1/v

≤ a1a2(a2 − a1)

2

(

1

u+ 1

)1/u

×

(

∫ 1

0

1

(ta2 +(1− t)a1)
2v

)

.

{{

h(t)
∣

∣ f ′(a1)
∣

∣

v

+h(1− t)
∣

∣ f ′(a2)
∣

∣

v − dt(1− t)

∣

∣

∣

∣

a1 − a2

a1a2

∣

∣

∣

∣

2}

dt

}1/v

=
a1a2(a2 − a1)

2

(

1

u+ 1

)1/v

×

{

∣

∣ f ′(a1)
∣

∣

v
∫ 1

0

h(t)

(ta2 +(1− t)a1)
2v

dt

+
∣

∣ f ′(a2)
∣

∣

v
∫ 1

0

h(1− t)

(ta2 +(1− t)a1)
2v

dt

}

.

−d

∣

∣

∣

∣

a1 − a2

a1 + a2

∣

∣

∣

∣

2 ∫ 1

0

t(1− t)

(ta2 +(1− t)a1)
2v

dt

}1/v

.

Letting

I1(h) =

∫ 1

0

h(t)

(ta2 +(1− t)a1)
2v

dt, , I2(h)

=

∫ 1

0

h(1− t)

(ta2 +(1− t)a1)
2v

dt,

and

C (a1,a2)

=
∫ 1

0

t(1− t)

(ta2 +(1− t)a1)
2v

dt

=
1

(a2 − a1)3

[

1

2(2v2 − 5v+ 3)

(

a3−2v
2 − a3−2v

1

)

+
(4v− 5)

4v2 − 10v+ 6

(

a1 + a
2−2q
2 − a2−2v

1 a2

)

]

Hence we get the desired result.
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