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1 Introduction

One of the most pressing problems of our time is the
creation of a cryptosystem that satisfies Shannon’s
conditions of perfect secrecy [1], [2]. This problem was
posed by Shannon back in 1948 and remains relevant to
this day. Advanced Encryption Standard [3], which is the
basis of the Western system, and other standards could
not solve this problem because they are probabilistic in
nature and this does not allow them to determine their
own keys for each cell of information.

Such an opportunity can be created if it is possible to
solve the equation of functions N variables, where N is
the number of information cells. There are several exactly
solvable such equations in the world, and one of the
possible applications of the problem of a perfect secret
cryptosystem is the Lieb-Liniger model [4] of statistical
mechanics.

As is known, in well-known cryptosystems, several
cells are used to express each letter of the alphabet, and
such letters have different ciphertext probabilities. This
can be easily used to break the encoded information. The
definition of a complete system of own keys for each cell
based on the Lieb-Liniger model, due to the equal
probability of letters in each cell, does not allow
information hacking. Therefore, this model allows you to
create a cryptosystem that satisfies the conditions of
perfect secrecy of information.

To solve the Shannon problem, the second chapter of
this paper considers the Lieb-Liniger model. In the third
chapter, using the Lieb-Liniger model, using the eight cell
information, information transfer based on the three-pass
protocol [5] is shown (see figure below). In the third
chapter, also, this method of information transfer is
translated into matrix language. In the fourth chapter, the
Lieb-Lineger based information transfer method is proved
to create a perfect secrecy cryptosystem. The last chapter
is devoted to the conclusion.
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2 Bethe Ansatz for Bose gas

Following [4], consider the solution of the time
independent Schrödinger equation for s particles
interacting with the potential in the form of a delta
function

δ (|xi − x j|) = {
∞, i f xi=x j ,

0 i f xi 6=x j
.

in one-dimensional space R:

−
h̄2

2m

s

∑
i=1

△iψ(x1,x2, . . . ,xs)+

2c ∑
1≤i< j≤s

δ (xi − x j)ψ(x1,x2, . . . ,xs) =

Eψ(x1,x2, . . . ,xs), (1)

where the constant c ≥ 0 and 2c is the amplitude of the
delta function, m = 1-massa of boson, h̄ = 1-Plank
constant, △-Laplasian, the domain of the problem is
defined in R: all 0 ≤ xi ≤ L and the wave function ψ
satisfies the periodicity condition in all variables. In [3], it
was proved that defining a solution ψ in R is equivalent to
defining a solution to the equation

−
s

∑
i=1

1

2m
△xi

ψ = Eψ ,

with the boundary condition

(
∂ψ

∂x j

−
∂ψ

∂xk

)|x j=xk+0
− (

∂ψ

∂x j

−
∂ψ

∂xk

)|x j=xk−0
= 2cψ |x j=xk

,

(2)
R1 : 0 < x1 < x2 < .. . < xs < L and the initial periodicity
condition is equivalent to the periodicity conditions in

ψ(0,x1, ...,xs) = ψ(x1, ...,xs,L),

∂ψ(x,x2, ...,xs)

∂x
|x=0 =

∂ψ(x2, ...,xs,x)

∂x
|x=L.

Using equation (2) we can determine the solution of
equation (1) in the form of the Bethe ansatz [4], [6], [7],
[8]:

ψ(x1, . . . ,xs) = ∑
P

a(P)Pexp

(

i
s

∑
i=1

kPi
xi

)

(3)

in the region R1 with eigenvalue Es = ∑s
i=1 k2

i where the
summation is performed over all permutations P of the

numbers {k} = k1, . . . ,ks and a(P) is a certain
coefficient depending on P:

a(Q) =−a(P)exp(iθi, j),

where θi, j = θ (ki − k j), θ (r) = −2arctan(r/c) and when
r is a real value and −π ≤ θ (r)≤ π .

For the case s = 2, one can find [4], [7], [9], [10], [11]:

a1,2(k1,k2)e
i(k1x1+k2x2)+ a2,1(k1,k2)e

i(k2x1+k1x2).

and

ik2a1,2 + ik1a2,1 − ik1a1,2 − ik2a2,1 = c(a1,2 + a2,1),

or

a2,1 =−
c− (k2 − k1)

c+(k2 − k1)
a1,2

If we choose

a1,2 = ei(k1x1+k2x2)

one gets

ei(k2x1+k1x2) =−
c− (k2− k1)

c+(k2− k1)
ei(k1x1+k2x2) =

−eiθ2,1ei(k1x1+k2x2). (4)

3 Application of Bethe ansatz in information

technology

Let’s consider how the last equation can be used for three-
stage information transfer. Let Alice encrypt information

M = ei(k1x1+k2x2+k3x3+k4x4+k5x5+k6x6+k7x7+k8x8)

using the encryption key

E1 = eiθ2,1eiθ1,2eiθ8,3eiθ5,4eiθ4,5eiθ7,6eiθ6,7eiθ3,8

and send encrypted information to Bob:

(E1,M) =iθ2,1 eiθ1,2eiθ8,3eiθ5,4eiθ4,5eiθ7,6eiθ6,7eiθ3,8×

ei(k2x1+k1x2+k8x3+k5x4+k4x5+k7x6+k6x7+k3x8) =

ei(k2x1+k1x2+k8x3+k5x4+k4x5+k7x6+k6x7+k3x8).

In M in binary, k1 = 0, k2 = 1, k3 = 0, k4 = 1, k5 = 0,
k6 = 0, k7 = 1, k8 = 1.

(In this case, in binary

(E1,M) = ei(1x1+0x2+1x3+0x4+1x5+1x6+0x7+0x8)).

Bob receives this information and encrypts it with his
key:

E2 = eiθ5,1eiθ4,2eiθ2,3eiθ3,4eiθ8,5eiθ7,6eiθ6,7eiθ1,8
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and sends the double-encrypted information back to Alice:

(E2(E1,M)) = eiθ5,1eiθ4,2eiθ2,3eiθ3,4eiθ8,5eiθ7,6eiθ6,7eiθ1,8×

ei(k2x1+k1x2+k8x3+k5x4+k4x5+k7x6+k6x7+k3x8) =

ei(k5x1+k4x2+k2x3+k3x4+k8x5+k7x6+k6x7+k1x8).

(In binary

(E2(E1,M)) = eiθ5,1eiθ4,2eiθ2,3eiθ3,4eiθ8,5eiθ7,6eiθ6,7eiθ1,8×

ei(1x1+0x2+1x3+0x4+1x5+1x6+0x7+0x8) =

ei(1x1+0x2+0x3+1x4+0x5+0x6+1x7+1x8)).

Having received the latest information from Bob, Alice
decrypts it with her key

D1 = eiθ2,1eiθ1,2eiθ8,3eiθ5,4eiθ4,5eiθ7,6eiθ6,7eiθ3,8 :

(D1(E2(E1,M))) = eiθ2,1eiθ1,2eiθ8,3eiθ5,4eiθ4,5eiθ7,6eiθ6,7×

eiθ3,8ei(k5x1+k4x2+k2x3+k3x4+k8x5+k7x6+k6x7+k1x8) =

= ei(k2x1+k1x2+k8x3+k5x4+k4x5+k7x6+k6x7+k3x8)

(In binary

(D1(E2(E1,M))) = eiθ2,1eiθ1,2eiθ8,3eiθ5,4eiθ4,5eiθ7,6eiθ6,7×

eiθ3,8ei(1x1+0x2+0x3+1x4+0x5+0x6+1x7+1x8) =

= ei(0x1+1x2+1x3+0x4+1x5+1x6+0x7+0x8))

and send it back to Bob. Now the information is covered
by Bob’s key just one time.

Bob, having received this information, decrypts it with
his decoder key

D2 = eiθ8,1eiθ3,2eiθ4,3eiθ2,4eiθ1,5eiθ7,6eiθ6,7eiθ5,8

(D2(D1(E2(E1,M)))) = eiθ8,1eiθ3,2eiθ4,3eiθ2,4eiθ1,5eiθ7,6×

eiθ6,7eiθ5,8ei(k2x1+k1x2+k8x3+k5x4+k4x5+k7x6+k6x7+k3x8) =

ei(k8x1+k3x2+k4x3+k2x4+k1x5+k7x6+k6x7+k5x8).

(In binary

(D2(D1(E2(E1,M)))) = eiθ8,1eiθ3,2eiθ4,3eiθ2,4eiθ1,5eiθ7,6×

eiθ6,7eiθ5,8ei(0x1+1x2+1x3+0x4+1x5+1x6+0x7+0x8) =

ei(0x1+1x2+0x3+1x4+0x5+0x6+1x7+1x8)).

Therefore
(D2(D1(E2(E1,X)))) =

ei(0x1+1x2+0x3+1x4+0x5+0x6+1x7+1x8) = M.

The latest information matches the information that
Alice wanted to send to Bob.

To adapt the results obtained in Chapter 3 for modern
computers, which are based on matrix coding, we

introduce a permutation operator P, which we denote as
follows:

ei(k2x1+k1x2) =
∞

∑
i=0

in

n!
(k2x1 + k1x2)

n =

∞

∑
i=0

in

n!
(
[

x1 x2

]

[

k2

k1

]

)n =
∞

∑
i=0

in

n!
(
[

x1 x2

]

P

[

k1

k2

]

)n.

From the last equation, after taking the logarithm, we
obtain equality:

E1=

1

1

1

1

1

1

1

1

E2=

1

1

1

1

1

1

1

1

D1=

1

1

1

1

1

1

1

1

D2=

1

1

1

1

1

1

1

1

Matrices E1 and E2 are commutative:
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E1 ×E2=

1

1

1

1

1

1

1

1

×

1

1

1

1

1

1

1

1

=

E2 ×E1=

1

1

1

1

1

1

1

1

×

1

1

1

1

1

1

1

1

=

1

1

1

1

1

1

1

1

.

We can also show that D1 = E−1
1 is inverse to E1 and:

D1 ×E1=

1

1

1

1

1

1

1

1

×

1

1

1

1

1

1

1

1

=

1

1

1

1

1

1

1

1

.

Similarly, D2 = E−1
2 and

D2 ×E2=

1

1

1

1

1

1

1

1

×

1

1

1

1

1

1

1

1

=
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1

1

1

1

1

1

1

1

.

Let the initial information in a binary representation
have the form:

M=

0

1

0

1

0

0

1

1

.

Then

E1M=

1

1

1

1

1

1

1

1

×

×

0

1

0

1

0

0

1

1

=

1

0

1

0

1

1

0

0

,

E2E1M =

1

1

1

1

1

1

1

1

×

×

1

0

1

0

1

1

0

0

=

1

0

0

1

0

0

1

1

,

D1E2E1M =

1

1

1

1

1

1

1

1

×

1

0

0

1

0

0

1

1

=

0

1

1

0

1

1

0

0

D2D1E2E1M =

1

1

1

1

1

1

1

1

×

0

1

1

0

1

1

0

0

=

0

1

0

1

0

0

1

1

=M.

4 Shannon’s perfect secrecy cryptosystem

The proposed permutations in chapter 2 (4) provide the
perfect secrecy of information.

As is known, the necessary and sufficient conditions
for the system to be perfectly secret can be formulated in
the form of Bayes’ theorem:
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Theorem A necessary and sufficient condition for

perfect secrecy is that

pM(C) = p(C)

for all M and C, i.e. pM(C) should not depend on M.

Indeed, according to the Shannon formula:

pC(M) =
p(M)× pM(C)

p(C)
, (5)

where p(M) - prior probability of message M;
pM(C) - the conditional probability of the cryptogram

C, provided that the message M is selected, i.e. the sum of
the probabilities of all those keys that translate the message
M into a cryptogram C;

p(C) - probability of receiving a cryptogram C;
pC(M) - posterior probability of the message M,

provided that the cryptogram C is intercepted.
For the system to be perfect secrecy [12], [13] the

values pC(M) and p(M) must be equal for all C and M.
Therefore, one of the equalities must be satisfied:

either p(M) = 0 this the solution must be discarded, since
it is required that the equality be carried out for any value
of p(M)), or

pM(C) = p(C)

for any M and C.
Conversely, if pM(C) = p(C), then pC(M) = p(M),

and the system is perfect secrecy.
Indeed, let us have plaintext M with N = 8 letters

ki ∈ M with equal probabilities p(ki) =
1
8
. Suppose we

have plaintext cell ki, (1 ≤ i ≤ 8) and suppose these
plaintext cells appear in the text with frequencies
p(ki) =

1
8

and consequently, p(M) = ∑1≤i≤8 pi = 1.
In our system for each plaintext cell, ki and ciphertext

cell k j ∈C there is exactly one key, such as K(ki, j)ki = k j.
The probabilities of these keys are equal and pK(ki, j)=

1
8

consequently pM(C) = ∑1≤i≤8 K(ki, j) = 1.
If we have the probabilities p(ki) and of keys

pK(ki, j) = 1
8

, we provide to find the probability of
ciphertext p(k j) using the formula

p(k j) = ∑
1≤i≤8

p(ki)pK(ki, j).

When all keys are independent, each key has an equal
probability of 1/8, so we can replace pK(ki, j) = 1

8
.

Accordingly, we can obtain

p(k j) =
1

8
∑

1≤i≤8

p(ki). (6)

In our system for each plaintext cell, ki and ciphertext
cell k j there is exactly one key like that, K(ki, j). Therefore,
each occurs exactly once in the last sum (6), so we have
1
8 ∑1≤i≤8 p(ki) for probability of cell of ciperhtext.

But the sum of the probabilities of all possible
plaintexts cells ki is 1, so we obtain p(k j) = 1

8
and

p(C) = ∑1≤ j≤8 p(k j) = 1. Hence, every ciphertext occurs
with an equal probability and

pM(C) = p(C).

Therefore, from Shannon equality (5) when
p(M) = p(C) = 1, we get

pM(C) = p(C).

This proves that our system has perfect secrecy.

5 Conclusion

This work proposes a new encryption method based on
the Lieb-Liniger model, which allows the translation to
provide for each cell its own encryption transformation.
For this purpose, we use the solutions of the Schrödinger
equation for the boson system interacting with the
potential in the form of a delta function.

The advantages of this algorithm and information
transfer method:

1.Complete diffusion of component bits at each stage of
information transfer.

2.The cost-effectiveness of the algorithm, since good
diffusion is provided by a small number of bits. If
modern programs require 5 cells to express letters,
then in our approach it is possible to express letters in
one cell.

3.Since each information cell has its own
transformation, it follows that the prior probabilities
and posterior probabilities of each cell are 1/N (where
N is the number of information cells), which means
that the system satisfies the Shannon perfect secrecy
condition.

4.Equality of zero correlation between plaintext and
ciphertext, which is a condition for perfect encryption.

5.The lack of a key transfer process between partners is
the most dangerous part of information transfer.

6.Possibility of programming the direction of
propagation of bosons in one-dimensional space.
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