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Abstract: The main aim of this research article is to define a new information measure for quantifying fuzziness in the intuitionistic

fuzzy set environment. For this purpose, we present R-norm intuitionistic fuzzy measure that quantifies the amount of vagueness or

fuzziness of a particular fuzzy set. We prove that this measure is a valid measure of intuitionistic fuzzy entropy by making it satisfy

essential properties. Also, some mathematical properties are used to check the validation of the measure. In the end, a practical example

of decision-making is illustrated in terms of Multi Criteria Decision Making problem that presents the application of the proposed

measure.
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1 Introduction

The field of fuzzy sets has offered significant applications in various areas of study. This concept, introduced by Zadeh[1],
characterised by membership function, gives the amount of vagueness/ambiguity associated with an element. In fuzzy set
theory, membership function gives the degree of belongingness of an element to the fuzzy set and it usually lies between
0 and 1. In certain situations, the degree of non-belongingness of an element cannot be calculated by subtracting the
degree of belongingness from unity. There might be some degree of hesitation to assign the degree of belongingness
and non-belongingness of the element to the fuzzy set under study. A generalization of fuzzy sets characterized by two
functions expressing belongingness and non-belongingness respectively was introduced by Atanassov [2], incorporating
the degree of hesitation associated with the element called Intuitionistic Fuzzy sets (IFs). Atanassov [3] also discussed the
application part of IFs. Further, IFs have found applications in many areas since these are flexible in handling uncertainty
and vagueness and are also a tool for defining imperfect facts that have inexact information. IFs have found applications
in medical diagnosis [4] [5], pattern recognition [6] [7] [8], market prediction [9], electoral system [10], MCDM [11],
[12], etc.

1.1 Preliminaries

Following are some basic concepts related to IFs:
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1.1.1 Definition:

Suppose Y is a non-empty fuzzy set drawn from universal set Z, then we have an ordered triplet given by:

Z = {(y,ηz(y),φz(y)) | y ∈Y}

Where ηz(y),φz(y) : Y → [0,1] denotes the degree of belongingness and non-belongingness respectively such that 0 ≤
ηz(y)+φz(y)≤ 1∀y . Also, 1−ηz(y)−φz(y) denotes the degree of hesitancy of the element y .

1.1.2 Definition

Let P & Q ε FS(y) be such that some basic relations and operations on IFs are defined as:

1.P⊆ Q if ηP(yi)≤ ηQ(yi),φP(yi)≥ φQ(yi),∀yεY

2.P⊇ Q if ηP(yi)≥ ηQ(yi),φP(yi)≤ φQ(yi),∀yεY

3.P = Q if ηP(yi) = ηQ(yi),φP(yi) = φQ(yi),∀yεY

4.P∪ Q= {(y,max(ηP(yi),ηQ(yi)) ,min(φP(yi),φQ(yi)))∀yεY}

5.P∩ Q= {(y,min(ηP(yi),ηQ(yi)) ,max(φP(yi),φQ(yi)))∀yεY}

6.Pc= {(y(φP(y,ηP(yi))))∀yεY}

2 Generalized R-Norm Intuitionistic Fuzzy Measure

WWe state the following R-norm intuitionistic fuzzy measure (RIFM):

I
α ,β
R (Z) =

R+α −β

R−β

(

n

∑
i=1

{

1−

(

η
R+α−β

α
z (yi)+φ

R+α−β
α

z (yi)+w
R+α−β

α
z (yi)

))
α

R+α−β

}

where

wz (yi) = 1−ηz (yi)−φz (yi) ,(ηz (yi)+φz (yi))≤ 1,R 6= β ,0 < (α,β )≤ 1

(1)

For convenience, we put

T =
R+α −β

α
i.e

I
α ,β
R (Z) =

R+α −β

R−β

n

∑
i=1

{

1−
(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T

}

where

wz (yi) = 1−wz (yi)−wz (yi) ,(wz (yi)+wz (yi))≤ 1,R 6= β ,0 < (α,β )≤ 1

(2)

We verify that (1) is suitable intuitionistic fuzzy measure (IFM) by making use of four important properties given by Luca
and Termini [13] viz. Sharpness, Maximality, Resolution and Symmetry.

2.1 Properties of the R-Norm Intuitionistic Fuzzy Measure

2.1.1 Sharpness: I
α ,β
R (Z) = 0 iff Z is a crisp set i.e either ηz(yi) = 1,φz(yi) = 0,ηz(yi) = 0,φz(yi) = 1 ∀ yεY

Proof: we assume that I
α ,β
R (Z) = 0;R,S > 0 and R 6= S Therefore, we can write
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R+α −β

R−β

n

∑
i=1

{

1−
(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T

}

= 0

=⇒
n

∑
i=1

(1)−
n

∑
i=1

{

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T

}

= 0

=⇒ n =
n

∑
i=1

{

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T

}

which is only possible when ηz(yi) = 1,φz(yi) = 0,ηz(yi) = 0,φz(yi) = 1
Conversely, let us suppose that Z is a crisp set i.e., ηz(yi) = 1,φz(yi) = 0,ηz(yi) = 0,φz(yi) = 1

R+α −β

R−β

n

∑
i=1

{

1− (1+ 0+ 0)
1
T

}

= 0

=⇒ I
α ,β
R (Z) = 0

which proves property 2.1.1.

This property is also verified mathematically as:

Table 1: Verification of Property 2.1.1

R α β ηz(yi) φz(yi) I
α ,β
R (Z) ηz(yi) φz(yi) I

α ,β
R (Z)

0.67 0.73 0.31 1 0 0 0 1 0

0.67 0.23 0.87 1 0 0 0 1 0

25 0.44 0.65 1 0 0 0 1 0

25 0.92 0.13 1 0 0 0 1 0

3 0.62 0.55 1 0 0 0 1 0

3 0.34 0.42 1 0 0 0 1 0

2.1.2 Maximality: I
α ,β
R (Z) gives the maximum value i.e, 1 iff, ηz(yi) = φz(yi) ∀ yiεY

Proof: To find the maximum value of I
α ,β
R (Z) we differentiate (1) with respect to ηz(yi) and φz(yi). The following result

is obtained:

∂ I
α ,β
R (Z)

∂ηz(yi)
=−

(

R+α −β

R−β

)

n

∑
i=1

{

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T
(

ηT−1
z (yi)+wT−1

z (yi)
)

}

&

∂ I
α ,β
R (Z)

∂φz(yi)
=−

(

R+α −β

R−β

)

n

∑
i=1

{

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T
(

φT−1
z (yi)+wT−1

z (yi)
)

}
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For verifying the convexity, we calculate the second differentiation of above functions, that is:

∂ 2I
α ,β
R (Z)

[∂ηz(yi)]2
=T

n

∑
i=1

[

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −2 (

φT−1
z (yi)−wT−1

z (yi)
)2
−

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −1 (

φT−2
z (yi)+wT−2

z (yi)
)

]

&

∂ 2I
α ,β
R (Z)

[∂ηz(yi)]2
=T

n

∑
i=1

[

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −2 (

φT−1
z (yi)−wT−1

z (yi)
)2
−

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −1 (

φT−2
z (yi)+wT−2

z (yi)
)

]

Also

∂ 2I
α ,β
R (Z)

∂ηz(yi)φz(yi)
=

∂ 2I
α ,β
R (Z)

∂φz(yi)ηz(yi)

=T
n

∑
i=1

[

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −2 (

ηT−1
z (yi)−wT−1

z (yi)
)(

φT
z (yi)−wT−1

z (yi)
)

−

(

ηT
z (yi)+φT

z (yi)+wT
z (yi)

)
1
T −1 (

wT−2
z (yi)

)

]

I
α ,β
R (Z) has maximum value when ηT

z (yi) = φT
z (yi) = wT

z (yi) =
1
3
∀i = 1,2, ...,n called the critical point of the given

IFM.
To check the concavity of any function we make use of Hessian matrix as:

[

∂ 2

∂x2
∂ 2

∂x∂y

∂ 2

∂y∂x
∂ 2

∂y2

]

and show that it is negative semi-definite i.e.,

∂ 2

∂x2
< 0,

∂ 2

∂y2
< 0 and

[

∂ 2

∂x2
∂ 2

∂y2 −

(

∂ 2

∂x∂y

)2
]

> 0

Also,
∂ 2

∂x∂y
=

∂ 2

∂y∂x

Now applying above Hessian Matrix to prove that I
α ,β
R (Z) is concave function of Z at the stationary point 1

3
as







∂ 2I
α,β
R (Z)

[∂ηz(yi)]2
∂ 2I

α,β
R (Z)

∂ηz(yi)∂φz(yi)

∂ 2I
α,β
R (Z)

∂ηz(yi)∂φz(yi)

∂ 2I
α,β
R (Z)

[∂φz(yi)]2







The Hessian Matrix is calculated as

∂ 2I
α ,β
R (Z)

[∂ηz(yi)]2
∂ 2I

α ,β
R (Z)

[∂φz(yi)]2
−

(

∂ 2I
α ,β
R (Z)

∂ηz(yi)∂φz(yi)

)2

where
∂ 2I

α ,β
R (Z)

[∂ηz(yi)]2
=

∂ 2I
α ,β
R (Z)

[∂φz(yi)]2

Here two cases arises R < 1and R > 1.

Since ∀i = 1,2, ...n, I
α ,β
R (Z) satisfies the conditions of negative semi-definite Hessian matrix showing that (1) is concave

function with global maximum at ηz(yi) = φz(yi) = wz(yi) =
1
3
. Thus I

α ,β
R (Z) gives maximum value iff Z is most fuzzy

set
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Table 2: Computation of Hessian Matrix for different values of parameters

R α β ηz(yi) φz(yi)
∂ I

α,β
R (Z)

∂ ηz(yi)
∂ I

α,β
R (Z)

∂ φz(yi)
∂ 2I

α,β
R (Z)

[∂ ηz(yi)]2
H.M

0.67 0.73 0.31 1/3 1/3 0 0 -6.232662 29.13455

0.67 0.23 0.87 1/3 1/3 0 0 -1186.733 1056251

25 0.44 0.65 1/3 1/3 0 0 -114.9006 9901.612

25 0.92 0.13 1/3 1/3 0 0 -58.30607 2549.698

3 0.62 0.55 1/3 1/3 0 0 -173.4049 22551.95

3 0.34 0.42 1/3 1/3 0 0 -313.4991 73434.92

2.1.3 Resolution: I
α ,β
R (Z)≥ I

α ,β
R (Z∗) where Z* is sharpened or crisper form of Z i.e., we have for

max Z[ηz(yi),φz(yi)]≤
1
3
,ηz∗(yi)≥ ηz(yi),φz∗(yi)≥ φz(yi), also min Z[ηz(yi),φz(yi)]≥

1
3
, if we have

ηz∗(yi)≤ ηz(yi),φz∗(yi)≥ φz(yi),

Proof: To show that the given measure in (1) is increasing function for ηz(yi)and decreasing for φ2(yi),we partially

differentiate I
α ,β
R (Z) with respect to ηz(yi) & φz(yi) respectively.

Also we have
∂ I

α,β
R (Z)

∂ηz(yi)
≥ 0 if ηz(yi) ≤ φz(yi) which means that I

α ,β
R (Z) is an increasing function. And, for

∂ I
α,β
R (Z)

∂ηz(yi)
≤ 0

with ηz(yi) ≥ φz(yi), we have I
α ,β
R (Z) is decreasing function ith respect to ηz(yi). Additionally, the same holds for

∂ I
α,β
R (Z)

∂φz(yi)
≥ 0 &

∂ I
α,β
R (Z)

∂φz(yi)
≤ 0 with ηz(yi) ≥ φz(yi) & ηz(yi) ≤ φz(yi) with respect to φz(yi). Moreover from property 2.1.2,

I
α ,β
R (Z) is a concave function of Z.

Thus, if max Z[ηz(yi),φz(yi)] ≤ 1
3
, then ηz∗(yi) ≥ ηz(yi),φz∗(yi) ≥ φz(yi), which shows that

1
3
≥ ηz(yi)≥ ηz∗(yi),

1
3
≥ φz(yi)≥ φz∗(yi) and the same holds for wz(yi) i.e. 1

3
≥ wz(yi)≥ wz∗(yi).

We show the above results with the help of numerical data in table given below as:

Case 1: For increasing function
∂ I

α,β
R (Z)

∂ηz(yi)
≥ 0 and with max Z[ηz(yi),φz(yi)] ≤

1
3
, we have ηz(yi) ≤ φz(yi) under the

conditions ηz∗(yi)≤ ηz(yi) and φz∗(yi)≤ φz(yi)

Table 3: Verification of Resolution numerically for Case I

R α β ηz(yi) φz(yi)
∂ I

α,β
R (Z)

∂ ηz(yi)
I
α ,β
R (Z) φz∗(yi) ηz∗(yi) I

α ,β
R (Z∗)

0.67 0.73 0.31 0.03 0.13 7.91 3.19 0.01 0.12 2.42

0.67 0.43 0.82 0.24 0.29 12.99 5.74 0.23 0.29 4.73

43 0.65 0.22 0.06 0.13 5.07 1.75 0.05 0.04 1.22

43 0.99 0.50 0.20 0.30 5.11 1.77 0.10 0.10 1.23

0.08 0.27 0.07 0.20

Case 2: For decreasing function
∂ I

α,β
R (Z)

∂ηz(yi)
≤ 0 having min Z[ηz(yi),φz(yi)] ≥

1
3
, we have ηz(yi) ≥ φz(yi) under the

conditions ηz∗(yi)≥ ηz(yi) and φz∗(yi)≥ φz(yi)

Similarly
∂ I

α,β
R (Z)

∂φz(yi)
≥ 0 when x ≥ y and

∂ I
α,β
R (Z)

∂φz(yi)
≤ 0 when x ≤ y, the function is increasing and decreasing respectivily.

Therefore, I
α ,β
R (Z)≥ I

α ,β
R (Z∗)

2.1.4 Symmetry: I
α ,β
R (Z) = I

α ,β
R (Zc)∀ZεIFs(Z)

. Proof: We have from the definition of IFs Zc = [(y,φz(yi),ηz(yi))|yεY ]. Thus, it can be easily proven that

I
α ,β
R (Z) = I

α ,β
R (Zc).

As the measure given in (1) contains all the four properties of valid IFM. Thus, I
α ,β
R (Z) is a valid measure of IFs.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1314 R. Jamil et al.: R-Norm Information Measure with Applications...

Table 4: Verification of Resolution numerically for Case II

R α β ηz(yi) φz(yi)
∂ I

α,β
R (Z)

∂ ηz(yi)
I
α ,β
R (Z) ηz∗(yi) φz∗(yi) I

α ,β
R (Z∗)

0.52 0.48 0.51 0.52 0.41 -6.70 4.80 0.53 0.42 4.22

0.99 0.10 0.50 0.40 -5.80 4.09 0.52 0.46 3.62

67 0.22 0.43 0.45 0.33 -5.01 2.58 0.50 0.37 2.39

0.66 0.74 0.39 0.34 -5.04 2.60 0.46 0.49 2.41

0.56 0.37 0.57 0.39

2.2 Particular Cases of the R-Norm Intuitionistic Fuzzy Measure

1.For wz(yi) = 0∀yiεY the measure given in (1) reduces to the R-norm fuzzy information measure given by Peerzada et
al. [14] and considering utilities, tends to Sofi et al. [15]

2.If α = 1,β = 1 given RIFM (1) becomes the basic R-norm Information measure given by Boekee and Lubbe [16].
3.R → 1,α = 1andβ = 1, then the RIFM(1) tends to Shannon’s [17] measure of entropy.

2.3 Joint Entropy

If we have two IFs P and Q defined over Y = {y1,y2, ...,yn}. We define the partition of Y as:

Y1 = {yiεY : P ⊆ Q}=
{

yiεY : ηp(yi)≤ ηq(yi),φp(yi)≥ φq(yi)
}

And

Y2 = {yiεY : P ⊇ Q}=
{

yiεY : ηp(yi)≥ ηq(yi),φp(yi)≤ φq(yi)
}

The joint entropy between P and Q is defined as:

I
α ,β
R (P∪Q) = R+α−β

R−β ∑n
i=1

[

1−
{

ηT
P∪Q (yi)+φT

P∩Q (yi)+ (1−ηT
P∪Q(yi)+φT

P∩Q(yi))
}

1
T

]

= R+α−β
R−β ∑n

yiεY1

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

) 1
T

}

+

R+α−β
R−β ∑n

yiεY2

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}

.

I
α ,β
R (P∩Q) = R+α−β

R−β ∑n
i=1

[

1−
{

ηT
P∩Q (yi)+φT

P∪Q (yi)+ (1−ηT
P∩Q(yi)+φT

P∪Q(yi))
}

1
T

]

= R+α−β
R−β ∑n

yiεY1

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}

+

R+α−β
R−β ∑n

yiεY2

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

)
1
T

}

.

Theorem 1: For a universal set Y={y1,y2, ...,yn}, if P and Q are two IFs where P =
{

yi,ηp(yi),φp(yi)|yiεY
}

and

Q =
{

yi,ηq(yi),φq(yi)|yiεY
}

such that whichever P ⊆ Q or P ⊇ Q then I
α ,β
R (P∪Q)+ I

α ,β
R (P∩Q) = I

α ,β
R (P)+ I

α ,β
R (Q)

Proof: If we have two IFs P and Q defined over Y={y1,y2, ...,yn} . We define the partition of Y as:

Y1 = {yiεY : P ⊆ Q}=
{

yiεY : ηp(yi)≤ ηq(yi),φp(yi)≥ φq(yi)
}

And

Y2 = {yiεY : P ⊇ Q}=
{

yiεY : ηp(yi)≥ ηq(yi),φp(yi)≤ φq(yi)
}
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Therefore,

I
α ,β
R (P∪Q)+ I

α ,β
R (P∩Q) =

[

R+α −β

R−β

n

∑
i=1

[

1−
{

ηT
P∪Q (yi)+φT

P∩Q (yi)+
(

1−ηT
P∪Q(yi)+φT

P∩Q(yi)
)}

1
T

]

+

n

∑
i=1

[

1−
{

ηT
P∩Q (yi)+φT

P∪Q (yi)+
(

1−ηT
P∩Q(yi)+φT

P∪Q(yi)
)}

1
T

]]

=
R+α −β

R−β

[

n

∑
yiεY1

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

)
1
T

}

+
n

∑
yiεY2

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}

+

n

∑
yiεY1

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}

+
n

∑
yiεY2

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

)
1
T

}]

.

=
R+α −β

R−β

[

n

∑
yiεY1

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

)
1
T

}

+
n

∑
yiεY2

{

1−
(

ηT
Q (yi)+φT

Q (yi)+wT
Q (yi)

)
1
T

}

+

n

∑
yiεY1

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}

+
n

∑
yiεY2

{

1−
(

ηT
P (yi)+φT

P (yi)+wT
P (yi)

)
1
T

}]

.

= I
α ,β
R (P)+ I

α ,β
R (Q)

Hence the result.

3 Behaviour Of The Proposed R-Norm Intuitionistic Fuzzy Measure

We study the behaviour of RIFM proposed in (1) at different values of α,β & R by considering IFs
Z = {(0.2,0.6),(0.6,0.4),(0.5,0.2),(0.3,0.4),(0.1,0.7),(0.3,0.3)}
In figure 1,the relation between parameters is studied by fixing β and R at {0.97,13},{0.72,3}&{0.5,0.85}
respectively and varying α over its range. It is observed from the above figure that with an increase in the value of α ,
RIFM (1) also increases. This relation remains same for other values of β and R.

We have analyzed the influence of β on RIFM (1) in figure 2 by fixing α and R at {0.97,13},{0.72,3}&{0.5,0.85}
respectively. It is evident from the figure that there is a positive relation between β and RIFM (1). We also infer that for
smaller values of α and R ,the slope remains steep.

We study the relation between R and RIFM (1) by taking different values of R over its range and fix α and β at
{0.27,0.32},{0.5,0.5}&{0.92,0.21} respectively. The values of RIFM (1) obtained for these parameters are plotted in
figure 3. We conclude that RIFM (1)decreases as we increase the value of R and the same trend follows for other values
ofα and β .

4 Application Of The Proposed R-Norm Intuitionistic Fuzzy Measure

This section provides the use of decision-making method for explaining the MCDM approach in terms of IFs theory. For
this, we consider u substitutes as E1,E2, ...,Eu that are evaluated by decision maker for v diverse features as F1,F2, ...,Fv.
Also, we assume that τi j = 〈ηi j,φi j〉 be the IF number where ηi j denotes that Ei satisfies the feature Fj while as φi j

denotes that substitute Ei does not satisfy the feature Fj . Here, from the definition of IFs we have the conditions that
〈ηi j +φi j〉 ≤ 1 and ηi j,φi jε[0,1] Therefore, on the basis of result maker inclinations τi j, the values are summarized in the
form of decision matrix.

M =



















F1 F2 F3 −−− Fν

E1〈η11,φ11〉 〈η12,φ12〉 〈η13,φ13〉 −−− 〈η1ν ,φ1ν〉
E2〈η21,φ21〉 〈η22,φ22〉 〈η23,φ23〉 −−− 〈η2ν ,φ2ν〉

. . . .

. . . .

. . . .

Eu〈ηu1,φu1〉 〈ηu2,φu2〉 〈ηu3,φu3〉 −−− 〈ηuν ,φuν〉


















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Fig. 1: Graphical Representation of I
α ,β
R (Z) w.r.t α

Hence in order to find the best alternative, we use the following steps to solve the decision-matrix:

Step I: For two types of features i.e., price type and profit type the procedure is to change the rating values of price type
into profit type by using normalized form as

τi j =

{

〈ηi j ,φi j〉 for profit type feature

〈φi j ,ηi j〉 for price type feature

Hereafter, we get the normalized decision-matrix as τi j .
Step II: By making use of this normalized decision matrix,the value of (1) is calculated for different features as
F1,F2, ...,Fv as

[I
α ,β
R (F)] j =

R+α −β

R−β

n

∑
i=1

{

1−

(

η
R+α−β

α
z (yi)+φ

R+α−β
α

z (yi)+w
R+α−β

α
z (yi)

)
α

R+α−β

}

Step III:Based on Step II i.e., value of IF matrix [I
α ,β
R (F)] j the weights are calculated as

w j =
1− I

α ,β
R (Fj)

ν −∑ν
j=1 I

α ,β
R (Fj)
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Step IV:Compute the value of alternatives Ei, i = 1,2, ..,u by using score function as follows

[H(E)]i = (
ν

∑
j=1

ηi j ×w j)− (
ν

∑
j=1

φi j ×w j)∀i = 1,2, ...,u
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Step V: Rank all the alternatives [H(E)]i in ascending orderand choose the alternative with the highest rank.
Now, making use of above procedure, we solve the decision making problem in terms of the proposed measure given in
(1)
Example: Let us take into account a decision-making problem in a recruitment drive where a project assistant is to be
hired. For this, advertisement is given in the newspaper where different options are available for the selection procedure as
F1 (Required Qualification), F2 (Academic Record), F3 (Past Experience), F4 (Technical Ability), F5 (Personal Interview).
The main aim of the company is to choose the best candidate for the available post among the given alternatives. Based on
the above advertisement only five candidates E1,E2,E3,E4 and E5 are nominated for this post by the panel of interviewers.
Following data describes the uncertainties and ambiguity in the IFs environment:

M =















F1 F2 F3 F4 F5

E1〈0.1,0.6〉 〈0.3,0.5〉 〈0.7,0.2〉 〈0.5,0.3〉 〈0.2,0.1〉
E2〈0.7,0.2〉 〈0.4,0.3〉 〈0.5,0.1〉 〈0.2,0.6〉 〈0.3,0.1〉
E3〈0.3,0.6〉 〈0.7,0.1〉 〈0.2,0.5〉 〈0.8,0.1〉 〈0.2,0.7〉
E4〈0.4,0.1〉 〈0.6,0.3〉 〈0.1,0.4〉 〈0.5,0.2〉 〈0.3,0.5〉
E5〈0.6,0.3〉 〈0.1,0.6〉 〈0.5,0.4〉 〈0.3,0.7〉 〈0.8,0.1〉















The aforementioned procedure is used to solve the MCDM problem as:

Step I: As all the attributes are same, the procedure for normalization is not required.

Step II: For different values of R α and β the value for different features i.e., F1,F2,F3,F4,F5 , with the help of equation
(1), is obtained in the below table:

Table 5: Values of [I
α ,β
R (F)] j ,j=1,2,...,5

R α β [I
α ,β
R (F)] j

1.6248

1.6188

0.5 0.2 0.8 1.6215

1.6283

1.6257

Step III: Using [I
α ,β
R (F)] j, the weights are calculated as:

w1 w2 w3 w4 w5

0.2003 0.1983 0.1992 0.2014 0.2006

Step IV: The values of alternatives [H(E)] j after computation are given as:

[H(E)]1 [H(E)]2 [H(E)]3 [H(E)]4 [H(E)]5
0.0201 0.1592 0.0397 0.0801 0.0407

Step V: The highest to lowest ranking of alternatives is given as: [H(E)]2 > [H(E)]4 > [H(E)]5 > [H(E)]3 > [H(E)]1
which inturn gives E2 > E4 > E5 > E3 > E1 i.e E2 is best of all alternatives.
On the other hand, to monitor the impact of parameters, same procedure is applied with different values of parameters
within their range. With this examination of parameters, the decision maker can have different choices of alternatives and
thus help him to reach the goal. These values and ranking are given in the following table:
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Table 6: Calculation of [H(E)] j for different values of parameters

R α β [H(E)]1 [H(E)]2 [H(E)]3 [H(E)]4 [H(E)]5 Ranking

7 0.9 0.1 0.0289 0.1779 0.0585 0.0789 -0.0024 E2 > E4 > E3 > E1 > E5

10 0.7 0.4 0.0305 0.1788 0.0597 0.0786 -0.0049 E2 > E4 > E3 > E1 > E5

55 0.5 0.5 0.0312 0.1251 0.0606 0.0784 -0.0074 E2 > E4 > E3 > E1 > E5

We observe from table 6 that the ranking order remains same for different parametric values and thus gives the same
alternative as the best choice.

5 CONCLUSION

In this work, we have developed a new intuitionistic fuzzy measure for R-norm entropy function. The proposed measure
has two parameters that can be applied in more complex situations where one parameter gives bounded results. Also, the
influence of parameters on the given measure is checked by substituting different values of parameters and observed how
this measure behaves in their range. In the end, we have taken real life data and observed the application of the proposed
measure with the help of MCDM technique.
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