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Abstract: We propose a spectral technique for solving mixed nonlinear and linear Fredholm-Volterra integro-differential equations.

Our method involves transforming the problem using Simpson’s integration formula and expanding the solution as a series of sixth-

kind Chebyshev polynomials. The convergence rate and estimated chopping error are analyzed, and numerical examples are provided

to demonstrate the effectiveness and accuracy of the approach.”
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1 Introduction

A very important area of mathematics is fractional
calculus, which extends the normal integrals and
derivatives to any fractional order. Since many physical
phenomena may be explained using fractional differential
equations, recently it gained appeal in a wide range of
fields, including biomathematics, engineering,
hydrodynamics, and many more. Fractional differential
equations were numerically researched in many different
fields of research, including: [1]solving fractional
optimum control problems with variational iteration, [2]
fractional differential equations can be solved using the
Taylor collocation technique, [3] solving fractional
Riccati differential equations with ultraspherical
wavelets, [4] a nonlinear fractional evolution equation can
be worked with using a spectral element approach, [5]
when solving the time-fractional modified anomalous
sub-diffusion equation using the Legendre spectral
element system.
It is well known that solving FDEs theoretically is
challenging. Therefore, it is crucial to employ numerical
techniques in order to produce efficient and precise
solutions for the FDEs. such as: spectral methods,
differential transform method, and finite element
methods. The most crucial technique for resolving ODES,

and FDEs is the use of spectral methods. This is a result
of a number of blessings, including the ability of spectral
approaches to provide rapid convergence rate of the
solutions to differential equations and the accuracy of the
results they provide, as well as their efficient and
straightforward use.
The spectral method procedure is based on estimating the
unknown coefficient expansion in the series to satisfy the
DE and its boundary conditions after approximating the
solution for a DE by particular basis sets that are often
orthogonal. Galerkin, collocation, and tau procedures are
three popular types for determining the unknown
expansion coefficients for weighted residual techniques.
Finding an appropriate orthogonal polynomial (OP) that
satisfies the differential equation’s beginning and
boundary conditions is the first step in the Galerkin
method. Next, the residual is forced to be orthogonal to
the fundamental functions.
For instance: [6, 7] solving the time-fractional telegraph
problem and high even-order differential equations
directly using the Galerkin method. The second method,
collocation, makes sure that the differential equation’s
residual disappear at a predetermined set of sites. It is an
appropriate technique for handling non-linear equations.
For instance: [8–12]researching second-order multi-point
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BVPs, solving nonlinear FDEs, and using the spectral
collocation method to analyse nonlinear FDEs, solving
multi-term FDEs, and handling 1-D time-fractional
convection equation. The final method, tau, reduces the
DE’s residual and then applies the initial and the
boundary conditions. It is regarded as a specific kind of
spectral Petrov-Galerkin approach and is typically used to
resolve DEs with challenging conditions. For
instance: [13, 14] employing Jacobi polynomials to solve
a class of fractional optimum control problems using the
tau technique to solve a coupled system of FDEs with
modified Fibonacci polynomials.

In [15], Jamei offered two half-sin/cos orthogonal
Chebyshev polynomials (CPs), and he nominate them the
fifth-, sixth-kinds. We report here that the authors
in [16–22] offered a series of papers on the use of these
two very important kinds of CPs in the numerical analysis
of differential and integral equations.

Many areas of practical mathematics rely heavily on
the integral equations. It can be found in many practical
formulations, including the Volterra-Fredholm integral
equations. Parabolic BVPs gave rise to the
Fredholm-Volterra integral equations. and The Epidemic
Growth From Spatiotemporal Statistical Modeling.
Several techniques for solving linear and nonlinear
Fredholm-Volterra integral equations have been
developed by many researchers. for example: [23] solving
the nonlinear Fredholm and Volterra integral equations
numerically using the Bernstein’s approximation
approach, and [24] explored an collocation hp-version
technique for handling the first class of nonlinear Volterra
integral equations.

CPs are essential for mathematical analysis and its
applications. CPs can either have symmetry or not. Since
they are ultraspherical, the first and second kinds of CPs
are symmetric, whereas the third and fourth kinds are
nonsymmetric since they are not. Numerous applications
use one or more of the four different types of
CPs [25, 26].

The mixed Fredholm-Volterra integro-differential
equation is the focus of this paper’s numerical
solution. [27]

αDν u(x) + β u(x) = γ f(x) + λ

∫ x

0

κ1(x, y, u(y)) dy

+ µ

∫ 1

0

κ2(x, y, u(y)) dy.

(1)

Here, α, β, γ, λ and µ are given constants, 0 < ν ≤ 1,
0 ≤ x ≤ 1, If α 6= 0, we have the condition u(0) = u0

s.t.: f(x), κ1 and κ2 are smooth analytic functions, β and
α are constants and u(x), is a continuous well-behaved
function, is the unknown solution which is needed to be
determined.

2 A brief account on sixth-kind CPs (SKCP)

The main target of this part is to report some properties
and formulas of SKCP which will be used in this study.

Definition 1. [15] The SKCPs {Yi(y), i = 0, 1, 2, ...} are

a sequence of OPs on [−1, 1], that may be denoted as

Yj(y) = S̃
−5,2,−1,1
j (y),

where

S̃
m,n,p,q
k (y) =





⌊ k

2
⌋−1
∏

i=0

(2 i+ (−1)k+1 + 2) q + n

(2 i+ (−1)k+1 + 2 ⌊k
2⌋) p+m





S
m,n,p,q
k (y),

(2)

and

S
m,n,p,q
k (y) =

⌊ k

2
⌋

∑

r=0

((⌊k
2 ⌋
r

)





⌊ k

2
⌋−r−1
∏

i=0

(2 i+ (−1)k+1 + 2 ⌊k
2 ⌋) p+m

(2 i+ (−1)k+1 + 2) q + n



 yk−2 r



 ,

(3)

The SKCP satisfy the following orthogonality formula
( [17]):

1
∫

−1

y2
√

1− y2 Yi(y)Yj(y) dy = hi δi,j , (4)

where

hi =
π

22 i+3

{

1, if i even,
i+3
i+1 , if i odd,

(5)

and

δi,j =

{

1, if i = j,

0, if i 6= j.
(6)

Yi(y) may be obtained with the aid of the following
recursive/difference relation:

Yi(y) = y Yi−1(y)− αi Yi−2(y) (7)

, Y0(y) = 1, Y1(y) = y, i ≥ 2,

αi =
i (i+ 1) + (−1)i (2 i+ 1) + 1

4 i (i+ 1)
. (8)

The shifted orthogonal SKCPs Y ∗
i (t) are defined on [0, τ ]

as

Y ∗
i (y) = Yi

(

2 y

τ
− 1

)

, τ > 0. (9)

The relation of orthogonality of Y ∗
i (y) on [0, τ ] is given

by:
∫ τ

0

ω(y)Y ∗
i (y)Y

∗
j (y) dy = hτ,i δi,j , (10)
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where
ω(t) = (2 y − τ)2

√

y τ − y2, (11)

and

hτ,i =
τ4

4
hi. (12)

Now we will offer an algorithm for handling the mixed
Fredholm-Volterra integral equations.

3 Spectral collocation treatment of

Fredholm-Volterra integral equations

Here, we will construct a solution strategy for the
Fredholm-Volterra equation approximately via CPs of the
sixth-kind.
From Eq.(1), we offer the approximate semi-analytic
solution of u(x) as:

u(x) ≃
M
∑

i=0

ciY
∗
i (x), (13)

where,
Ci = [c0, c1, c2, ..., cM ]T ,

and

Φ(x) = [Y ∗
0 (x), Y

∗
1 (x), Y

∗
2 (x), ..., Y

∗
M (x)].

The residual of the Fredholm-Volterra integro-differential
equation can be paraphrased as:

R(x) = α (Dνu)(x) + β u(x)− γ f(x)

− λ

∫ x

0

κ1(x, y, u(y))dy − µ

∫ 1

0

κ2(x, y, u(y))dy.

(14)

Now, we set: y = xz.
Consequently,

R(x) = α (Dνu)(x) + β u(x)− γ f(x)−

λx

∫ 1

0

κ1(x, xz, u(xz))dz − µ

∫ 1

0

κ2(x, z, u(z))dz.

(15)

Or, in other words

R(x) = α (Dνu)(x) + βu(x) − γf(x)−
∫ 1

0

κ(x, z, u(z), u(xz))dz,
(16)

where:
κ = λxκ1 + µκ2.

Now we directly apply Romberg’s quadrature rule:

∫ 1

0

g(z)dz = Γm,n(g) + Em,n, (17)

where:

r0,0 =
g(0) + g(1)

2
,

rn,0 =
1

2
rn−1,0 + 2−n

2n−1

∑

k=1

g(
2k − 1

2n
),

rn,m(g) = rn,m−1 +
1

4m − 1
(rn,m−1 − rn−1,m),

Em,n = Φ(4−n(m+1)).

Consequently,

R(x) = α (DνuM )(x) + β uM (x)− γ f(x)− r(k)(x).
(18)

The final approximation of the Fredholm-Volterra
equation will be

α (DνuM )(xj) + β uM (xj) = γf(xj) + r(k)(xj) (19)

; 0 ≤ j ≤ M + 1.

Subject to the condition, we get uM (0) = u0.
Where:

uM (x) =

M
∑

i=0

ciY
∗
i (x). (20)

Applying typical tau method for finding the approximate
solution for u(x) we get,

∫ l

0

xν R(x)Y ∗
i (x) dx = 0; i = 0, 1, 2, ...,M − 1. (21)

Rightnow, we get a system of equations of rank M+1 that
can be solved via Newton’s method, and hence, we will
obtain the approximate semi-analytic solution of u(x).

Lemma 1. [17] The inequality is correct, for Y ∗
j (y):

|Y ∗
j (y)| <

j2

2j
, t ∈ [0, τ ], ∀ j > 1, (22)

where |Y ∗
0 (y)| = |Y ∗

1 (y)| 6 1.

Theorem 1. [17] Let

f(t) ∈ L2
w[0, τ ], w = (2 y − τ)2

√

y τ − y2, with

|f (3)(y)| ≤ L, L > 0 and suppose it has the following

infinite series expansion:

f(y) =

∞
∑

i=0

ai Y
∗
i (y), (23)

this series absolutely converges to f(y) and the unknown

coefficients in (23) holds

|ai| .
1

i3
, ∀ i > 3. (24)

Theorem 2.If u(z) is smooth enough, and if

uM (z) =

M
∑

i=0

ci Y
∗
j (z), afterwards, the subsequent

truncation error estimate is met:

|u− uM | . 1

2M
. (25)

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


628 M. M. Mokhtar: Sixth-Kind Chebyshev Collocation ...

4 Numerical Results and Comparisons

Here, we debug our algorithm for numerically handling
some numerical examples with comparisons to [23,24,28–
35]. All of the numerical evaluation were performed via
Mathematica 9.

Example 1. [28] We start with the underlying integral
problem:

x2

∫ 1

0

u(t) sin(x t) dt− sin(x) + x cos(x) = 0. (26)

with exact solution u(x) = x.
we applied our method with n=1,we get

c0 + 0.330854 c1 = 0.665427

c0 + 0.323298 c1 = 0.661649

and by solving this system we get

c0 = 0.5 , c1 = 0.5

consequently

u(x) = x,

which is the exact solution.

Example 2. [23] Now, we handle the underlying integral
problem:

∫ x

0

1√
x− t

u(t) dt = f(x), x ∈ [0, 1], (27)

where

f(x) =
2

105

√
x (105− 56x2 + 48x3) .

With exact solution u(x) = x3 − x2 + 1.
In Table (1) we compare our results and results in [28].
We discovered that the absolute errors are better than those
obtained by the other methods. In Figure (1) we illustrate
the absolute error when N = 6.

Table 1: Comparison GFTM with [23] for Example (2)

M 2 3 4 6

E 8 .10−14 4 .10−16 2.5 .10−13 4 .10−16

[23] 1 .10−3 1.9 .10−4 2 .10−4 1 .10−5

x

Absolue Error

0.0 0.2 0.4 0.6 0.8 1.0

0

1.´ 10
-16

2.´ 10
-16

3.´ 10
-16

4.´ 10
-16

Fig. 1: Absolute Error of Example (2) for N = 6

Example 3. [24] Consider the underlying nonlinear
integral problem:

∫ x

0

(1+x−t)2 (u(t)−u3(t)) dt = x2, x ∈ [0, 1]. (28)

The exact smooth solution for this equation is hard to
achieve. We do our best to try to get the exact solution via
series method.
We suggest the solution u(x) be a smooth function and
apply numerical Taylor method at x = 0 as

u(x) =

∞
∑

i=0

aix
i . (29)

Then put in the Eq. (32) as

∫ x

0

(1+x−t)2





∞
∑

i=0

ait
i −

(

∞
∑

i=0

ait
i

)3


 dt = T [x2 ],

(30)
and T [x2 ] is the Taylor series for x2 .
Now we obtain,

u(x) =
2

5
− 2

5
x

In Table (2) we list the MAE for different values of M. In
Figure (2) we illustrate the absolute error when N = 6.

Table 2: MAE for Example 3

M 1 2 3 4 6

E 6 .10−16 1 .10−15 2 .10−15 1 .10−14 6 .10−16
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x

Absolute Error

0.0 0.2 0.4 0.6 0.8 1.0

0

1.´ 10
-16

2.´ 10
-16

3.´ 10
-16

4.´ 10
-16

5.´ 10
-16

6.´ 10
-16

Fig. 2: Absolute Error of Example (3) for N = 6

Example 4. [29] We end with the following the underlying
nonlinear mixed integral equation problem:

u(x) + 3

∫ x

0

sin(t− x)u2(t) dt−

6

7− 6 cos(1)

∫ 1

0

(1− t) cos2(x) (t + u(t)) dt = f(x),

(31)

where f(x) is chosen to be compatible with the smooth
solution u(x) = cos(x).
In Table (3) we compare our results with the results in [28].
We discovered that the absolute errors (AE) are better than
obtained by the other methods, while, Table (3) report the
(MAE) of Eq. for numerous values of M .

Table 3: Comparison GFTM with [29] for Example (4)

M 2 4 6 8

E 5 .10−4 5 .10−8 2 .10−9 2.5 .10−11

Results in [29] 2 .10−5 – – 1.4 .10−8

5 Conclusions

Herein, we developed an accurate numerical scheme for
handling Fredholm-Volterra integro-differential equation.
The offered numerical scheme is based on using the use
of the sixth-kind CPs and a suitable spectral method to
transform Fredholm-Volterra equation into a system of
equations that can be handled by Mathematica software.
We also discussed the convergence and error analysis of
the sixth-kind CPs.
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