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Abstract: In this paper, we define a generalized fractional integral of order α which are the natural extension of the newly defined

k-fractional conformable integrals and they can be reduced to other fractional integrals. Later, the existence of such k-generalized

integrals is proved. Finally, discuses some future possibilities.
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1 Introduction

It is known that the fractional calculus, that is, the
calculus with integral and differential operators of
non-integer order, is as old as the classical calculus itself.
In recent times it has had a theoretical development and
its applications have increased in such a way that We have
many fractional operators, applied in various fields, from
comprehensive inequalities to epidemic modeling. In
particular, one of the operators that has had the most
development has been the Riemann-Liouville Fractional
Integral, on which we will focus our work.

Throughout the work we use the functions Γ (see [1,2,
3,4])and Γk (cf. defined by [5]):

Γ (z) =

∫ ∞

0
tz−1e−t dt, ℜ(z)> 0, (1)

Γk(z) =

∫ ∞

0
tz−1e−tk/k dt,k > 0. (2)

It is clear that if k → 1 we have Γk(z)→ Γ (z), Γk(z) =

(k)
z
k
−1Γ

(

z
k

)

and Γk(z+ k) = zΓk(z).

To facilitate understanding of the subject, we present
several definitions of fractional integrals, some very recent
(eith 0 ≤ a < t < b ≤ ∞). The first is the classic Riemann-
Liouville fractional integrals.

One of the first operators that can be called fractional
is that of Riemann-Liouville fractional derivatives of order
α ∈C,Re(α)≥ 0, defined by (see [6]).

Definition 1.Let f ∈ L1[a,b];R,(a,b) ∈ R2,a < b. The

right and life side Riemann-Liouville fractional integrals

of order α > 0 are defined by

RLJα
a+ f (t) =

1

Γ (α)

∫ t

a
(t − s)α−1

f (s)ds, t > a (3)

and

RLJα
b− f (t) =

1

Γ (α)

∫ b

t
(s− t)α−1

f (s)ds, t < b. (4)
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616 J. E. Nápoles Valdés: On a generalized fractional integral

and their corresponding differential operators are given
by

Dα
a+ f (t) =

d

dt

(

RLJ1−α
a+

f (t)
)

=
1

Γ (1−α)

d

dt

∫ t

a

f (t)

(t − s)α
ds

Dα
b− f (t) =−

d

dt

(

RLJ1−α
b−

f (t)
)

=−
1

Γ (1−α)

d

dt

∫ b

t

f (t)

(s− t)α
ds

Other definitions of fractional operators are as follows.

The left-sided and right-sided Riemann-Liouville
k-fractional integrals are given in [7].

Definition 2.Let f ∈ L1[a,b]. Then the Riemann-Liouville

k-fractional integrals of order α ∈C, ℜ(α)> 0 and k > 0
are given by the expressions:

α Ik
a+ f (x) =

1

kΓk(α)

∫ x

a
(x− t)

α
k
−1 f (t)dt, x > a, (5)

α Ik
b− f (x) =

1

kΓk(α)

∫ b

x
(t − x)

α
k
−1 f (t)dt, x < b. (6)

Another known fractional integral is as follows (see [8]
and [9]).

Definition 3.Let f ∈ L1[a,b];R,(a,b) ∈ R2,a < b. The

right and life side Hadamard fractional integrals of order

α with Re(α)> 0 are defined by

Hα
a+ f (t) =

1

Γ (α)

∫ t

a
(log

t

s
)

α−1 f (s)

s
ds, a < t < b, (7)

and

Hα
b− f (t) =

1

Γ (α)

∫ b

t
(log

s

t
)

α−1 f (s)

s
ds, a < t < b. (8)

Hadamard differential operators are given by the
following expressions.

(HDα
a+ f )(t) = t

d

dt

(

Hα
a+ f (t)

)

=
−Γ (α + 1)

B(α,1−α)

∫ t

a
(log

t

s
)
−α−1 f (s)

s
ds, a < t < b

(HDα
b− f )(t) =−t

d

dt

(

Hα
b− f (t)

)

=−
Γ (α + 1)

B(α,1−α)

∫ b

t
(log

s

t
)
−α−1 f (s)

s
ds, a < t < b

In [10], the author introduced new fractional integral
operators, called the Katugampola fractional integrals, in
the following way (also see [11]):

Definition 4.Let 0 < a < b < +∞, f : [a,b] → R is an

integrable function, and α ∈ (0,1) and ρ > 0 two fixed

real numbers. The right and life side Katugampola

fractional integrals of order α are defined by

K
α ,ρ
a+

f (t) =
ρ1−α

Γ (α)

∫ t

a

sρ−1

(tρ − sρ)1−α
f (s)ds, a < t (9)

and

K
α ,ρ
b−

f (t) =
ρ1−α

Γ (α)

∫ b

t

tρ−1

(sρ − tρ)1−α
f (s)ds, t < b. (10)

In [12], it appeared a generalization to the
Riemann-Liouville and Hadamard fractional derivatives,
as a generalization of the n-integral, called the
Katugampola fractional derivatives:

(Dα
a+ f )(t) =

ρα

Γ (1−α)
t1−ρ d

dt

∫ t

a

sρ−1

(tρ − sρ )α
f (s)ds, a < t,

(D
α ,ρ
b−

f )(t) =
−ρα

Γ (1−α)
t1−ρ d

dt

∫ t

a

sρ−1

(sρ − tρ )α
f (s)ds, t < b.

The relation between these two fractional operators is the
following:

(D
α ,ρ
a+

f )(t) = t1−ρ d

dt
K

1−α ,ρ
a+

f (t),

(D
α ,ρ
b−

f )(t) =−t1−ρ d

dt
K

1−α ,ρ
b−

f (t).

In [13] presented the definition of fractional integral
of f with respecto to another function g of following way
(also see [9]).

Definition 5.Let g : [a,b] → R be an increasing and

positive monotone function on (a,b] having a continuous

derivative g′(t) on (a,b). The left-sided fractional integral

of a integrable function f , f : [a,b] → R, with respect to

the function g on [a,b] of order α > 0 is defined by

Iα
g,a+( f )(t) =

1

Γ (α)

∫ t

a

g′(s) f (s)

[g(t)− g(s)]1−α
ds, t > a, (11)

similarly the right lateral derivative is defined as well

Iα
g,b−( f )(t) =

1

Γ (α)

∫ b

t

g′(s) f (s)

[g(s)− g(t)]1−α
ds, t < b.

(12)

A k-analogue of above definition is defined in [14]
(also see [15]), under the same assumptions on function g.

Definition 6.Consider a certain integrable function

f : [a,b]→ R.

I
α ,k
g,a+( f )(t) =

1

Γ (α)

∫ t

a

g′(s) f (s)

[g(t)− g(s)]1−
α
k

ds, t > a,

(13)
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similarly the right lateral derivative is defined as well

I
α ,k
g,b−( f )(t) =

1

Γ (α)

∫ b

t

g′(s) f (s)

[g(s)− g(t)]1−
α
k

ds, t < b.

(14)

In [16] a new integral operator is presented as follows
(see also [17]).

Definition 7.Let’s define a function g : [0,+∞)→ [0,+∞)
satisfying the following assumptions:

∫ 1

0

g(t)

t
dt < ∞,

1

A
≤

g(s)

g(r)
≤ A,

1

2
≤

s

r
≤ 2,

g(r)

r2
≤ B

g(s)

s2
,s ≤ r,

∣

∣

∣

∣

g(r)

r2
−

g(s)

s2

∣

∣

∣

∣

≤C |r− s|
g(r)

r2
,

1

2
≤

s

r
≤ 2,

with A,B,C real constants independent of r,s > 0.

Therefore, the right and left lateral integrals of an

integrable function f : [a,b]→R are defined as

a+Ig f (x) =
∫ x

a

g(x− t)

x− t
f (t)dt,x > a (15)

b−Ig f (x) =

∫ b

x

g(t − x)

t − x
f (t)dt,b > x. (16)

Remark.If g(r)ra is increasing for some a ≥ 0 and g(r)rb

is decreasing for some b ≥ 0, then g satisfies the above
conditions (see [18]).

Starting with (15) - (16), and using an increasing and
positive monotone function h on [a,b], with continuous
derivative on (a,b), Farid in [19] generalized the above
definition in this way.

Definition 8.Let two functions f ,h be such that

f ,h : [a,b] → [0,+∞), with 0 < a < b, f positive and

integrable on [a,b] and h be differentiable and increasing.

Let g be a positive function satisfying
g(z)

z
is increasing on

[a,+∞). So, the left and right-sided Farid generalized

fractional integral of a function f on [a,b] may be given

as follows respectively:

F
g,h
a+ f (x) =

∫ x

a

g(h(x)− h(t))

h(x)− h(t)
g′(t) f (t)dt,x > a (17)

F
g,h
b− f (x) =

∫ b

x

g(h(t)− h(x))

h(t)− h(x)
g′(t) f (t)dt,b > x. (18)

2 A new integral operator with general

kernel

In [20] a generalized fractional derivative was defined in
the following way (see also [21,22] and [23]).

Definition 9.Given a function f : [0,+∞) → R. Then the

N-derivative of f of order α is defined by

Nα
T f (t) = lim

ε→0

f (t + εT (t,α))− f (t)

ε
(19)

for all t > 0, α ∈ (0,1) being T (α, t) is some function.

Here we will use some cases of T defined in function of

Ea,b(.) the classic definition of Mittag-Leffler function with

Re(a),Re(b) > 0. Also we consider Ea,b(.)k is the k-nth

term of Ea,b(.).
If f is α−differentiable in some (0,α), and

lim
t→0+

Nα
T f (t) exists, then define Nα

T f (0) = lim
t→0+

Nα
T f (t),

note that if f is differentiable, then Nα
T f (t) = F(t,α) f ′(t)

where f ′(t) is the ordinary derivative.

Now, we give the definition of a general fractional
integral right and left sided. Throughout the work we will
consider that the integral operator kernel T defined below
is an absolutely continuous function.

Definition 10.Let I be an interval I ⊆R, a, t ∈ I and α ∈R.

The integral operator Jα
T,a+, right and left, is defined for

every locally integrable function f on I as

Jα
T,a+( f )(t) =

∫ t

a

f (s)

T (t − s,α)
ds, t > a. (20)

Jα
T,b−( f )(t) =

∫ b

t

f (s)

T (s− t,α)
ds,b > t. (21)

Remark.It is easy to see that the case of the Jα
T operator

defined above contains, as particular cases, the integral
operators obtained from conformable and
non-conformable local derivatives. However, we will see
that it goes much further by containing the cases listed at
the beginning of the work. So, we have

1.Putting T (t,α) = t1−α , T (t,α) = Γ (α)F(t − s,α),
from (20) we have the right side Riemann-Liouville
fractional integrals (Rα

a+ f )(t), similarly from (21) we
obtain the left derivative of Riemann-Liouville. Then
its corresponding right differential operator is
(RLDα

a+
f )(t) = d

dt
(R1−α

a+ f )(t), analogously we obtain
the left.

2.With
T (t,α) = t1−α , T (t − s,α) = Γ (α)F(lnt − lns,α)t,
we obtain the right Hadamard integral from (20), the
left Hadamard integral is obtained similarly from
(21). The right derivative is

(HDα
a+ f )(t) = t

d

dt
(H1−α

a+ f )(t),

in a similar way we can obtain the left.
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3.The right Katugampola integral is obtained from (20)
making

T (t,α) = t1−α , e(t) = tρ , T (t,α)

=
Γ (α)

F(ρ ,α)

F(e(t)− e(s),α)

e′(s)
,

analogously for the left fractional integral. In this case,
the right derivative is

(KD
α ,ρ
a+

f )(t) = t1−ρ d

dt
K

1−α ,ρ
a+

f (t)

= F(t,ρ)
d

dt
K

1−α ,ρ
a+

f (t),

and we can obtain the left derivative in the same way.

4.The solution of equation (−∆)−
α
2 φ(u) = − f (u)

called Riesz potential, is given by the expression

φ = Cα
n

∫

Rn
f (v)

|u−v|n−α dv, where Cα
n is a constant (see

[24,25,26]). Obviously, this solution can be expressed
in terms of the operator (20) very easily.

5.Obviously, we can define the lateral derivative
operators (right and left) in the case of our generalized
derivative, for this it is sufficient to consider them
from the corresponding integral operator. To do this,
just make use of the fact that if f is differentiable,
then Nα

T f (t) = T (t,α) f ′(t) where f ′(t) is the
ordinary derivative. For the right derivative we have
(

Nα
T,a+ f

)

(t) = Nα
T

[

Jα
T,a+( f )(t)

]

=

d
dx

[

Jα
T,a+( f )(t)

]

T (x,α), similarly to the left.

6.We can define the function space L
p
α [a,b] as the set of

functions over [a,b] such that (Jα
T,a+[ f (t)]

p(b))<+∞.

Remark.We will also use the ”central” integral operator
defined by (see [27] and [23])

Jα
T,a( f )(b) =

∫ b

a

f (t)

T (t,α)
dt,b > a. (22)

The following statement is analogous to the one known
from the Ordinary Calculus (see [27], and [23]).

Theorem 1.Let f be N-differentiable function in (t0,∞)
with α ∈ (0,1]. Then for all t > t0 we have

a)Jα
T,t0

(Nα
T f (t)) = f (t)− f (t0).

b)Nα
T

(

Jα
T,t0

f (t)
)

= f (t).

An important property, and necessary, in our work is
that established in the following result .

Theorem 2.(Integration by parts) Let u and v be

N-differentiable function in (t0,∞) with α ∈ (0,1]. Then

for all t > t0 we have

Jα
T,t0

((uNα
T v)(t)) = [uv(t)− uv(t0)]− Jα

T,t0
((vNα

T u)(t))
(23)

One of the current characteristics of classical
Fractional Calculus is the appearance of a great variety of
integral operators that can be considered successive
generalizations of the Riemann-Liouville Fractional
Integral knowledge. This work, which can be considered
a continuation of [28], aims to provide a certain order in
this multiplicity of “versions”, providing a particular
integral operator, which contains as a particular case,
these operators defined in recent years.

3 Aditional results and methodological

remarks

Although the general operator defined in the previous
section is a generalization of the known fractional integral
operators, we would like to give more details in two new
directions.

From Definition 7, we are now in a position to define
the First Generalized Riemann-Liouville integral.

Definition 11.Let f ∈ L1[a,b], g an increasing and

derivable function on [a,b] and T a positive, decreasing

and absolut continuous function. Then the k-generalized

Riemann-Liouville fractional integrals of order α ∈ C,

ℜ(α)> 0 and k > 0 are given by the expressions:

a+I
α
k

T,g f (x) =
1

Γ (α)

∫ x

a

g′(t) f (t)

T
(

g(x− t), α
k

)dt, x > a, (24)

b−I
α
k

T,g f (x) =
1

Γ (α)

∫ b

x

g′(t) f (t)

T
(

g(t − x), α
k

)dt, x < b. (25)

Remark.If k = 1, g(u) = u and T (z,α) = z1−α we have
the classic Riemann-Liouville of Definition 1. By other
hand, if T (z) = z

g(z) we obtain the operator integral of

[17]. Similarly, other fractional integral operators
reported in the literature can be obtained.

Taking into account the Definition 8 we can present the
Second Generalized Riemann-Liouville integral.

Definition 12.Let f : [a,b]→ R be an integrable function

and T is an absolutely continuous, positive and

increasing function. Also let g be an increasing and

positive function on (a,b], having a continuous derivative

g′ on (a,b). The left-sided and right-sided k-generalized

fractional integrals of a function f with respect to another

function g on [a,b] of order α > 0 are defined as:

I
T, α

k
g,a+( f )(x) =

1

Γ (α)

∫ x

a

g′(s) f (s)

T
(

g(x)− g(s), α
k

)ds, x > a,

(26)
and

I
T, α

k

g,b−( f )(x) =
1

Γ (α)

∫ b

x

g′(s) f (s)

T
(

g(x)− g(s), α
k

)ds, x < b.

(27)
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Remark.The essential difference, and that distinguishes,
the Definitions 12, 11 and the previous one, is the fact of
the composition of the functions T and z = g(s)− g(t)
(z=g(s-t)),orz=g(t)-g(s)(z = g(t − s)). Unless the g

function is additive, both definitions give us different
integral operators.

Remark.There is little problem in including other integral
operators in the above definitions. For example, in [29]
the authors define a generalized integral operator, with a
non-singular kernel that can also be included, without
difficulty, in Definition 11.

The following is an essential property to talk about the
correction of the operators defined above.

Theorem 3.Let f ,T ∈ L1[a,b] positive functions, g an

increasing and derivable function on [a,b] and T a

decreasing and absolut continuous function. Then, for

x ∈ [a,b], we have

∣

∣

∣a+I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ x

a

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[a,x].

(28)

Similarly

∣

∣

∣b−I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ b

x

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[x,b].

(29)

So

∣

∣

∣a+I
α
k

T,g f (x)+b− I
α
k

T,g f (x)
∣

∣

∣

≤
2

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[a,b].

(30)

Proof.Using the properties of functions g and T , we have
g′(t) f (t)

T(g(x−t), α
k )

≤ g′(t) f (t)

T(g(x−a), α
k )

for t ∈ [a,x] and x ∈ [a,b]. From

this and Definition 11 we obtain

∣

∣

∣a+I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ x

a

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[a,x].

(31)

Analogously, we have

∣

∣

∣b−I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ b

x

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[x,b].

(32)

From

∣

∣

∣a+I
α
k

T,g f (x)+b− I
α
k

T,g f (x)
∣

∣

∣
, using the triangular

inequality, equations (31) and (32), we have the general
bound of (35).

This completes the proof.

Remark.The following theorem, can be obtained without
difficulty, and is a similar result for the integral operators
defined in the Definition 12.

Theorem 4.Let f ,T ∈ L1[a,b] positive functions, g an

increasing and derivable function on [a,b] and T a

decreasing and absolut continuous function. Then, for

x ∈ [a,b], we have

∣

∣

∣a+I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ x

a

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[a,x].

(33)
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Similarly

∣

∣

∣b−I
α
k

T,g f (x)
∣

∣

∣

=
1

Γ (α)

∣

∣

∣

∣

∣

∫ b

x

g′(t) f (t)

T
(

g(x− t), α
k

)dt

∣

∣

∣

∣

∣

≤
1

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[x,b].

(34)

So

∣

∣

∣a+I
α
k

T,g f (x)+b− I
α
k

T,g f (x)
∣

∣

∣
≤

2

Γ (α)

g(b)− g(a)

T
(

g(b− a), α
k

)‖ f‖[a,b].

(35)

Remark.If T is additive, then the semigroup law is satisfied
as can be easily verified, for the particular cases presented
in the Definitions (11 and 12). Due to the generality of
the T function, of course, there may be cases of integral
operators that do not satisfy this property.

A more complete idea of the place that the previous
definitions occupy can be seen in the following scheme,
in which we have symbolized the presented integral
operators, as follows:

–RL, Riemann-Liouville classic (Definition 1)
–k-RL, k-Riemann-Liouville integral (Definition 2)
–H, Hadamard integral (Definition 3)
–K, Latugampola integral (Definition 4)
–SE, Sarikaya-Ertugral integral (Definition 7)
–gRL, Integral with respect another function (Definition
5)

–k-gRL, k-Integral with respect another function
(Definition 6)

–F, Farid integral (Definition 8)
–Tg-RL(I), First Generalized Riemann-Liouville
integral (Definition 11)

–Tg-RL(II), Second Generalized Riemann-Liouville
integral (Definition 12)

H k−RL K

RL

SE gRL

F k−gRL

T g−RL(I) T g−RL(II)

4 Conclusion

Integral inequalities is an area that is gaining more and
more followers every day, it is clear then, taking into
account the previous diagram, that results obtained within
the framework of some of these operators can be
generalized using the general formulation of Definitions
11 and 12.

Finally, we would like to draw readers’ attention to the
following question.

Before making a more general observation, let’s return
to the operator of the equation (22). In [20] we present
said integral operator (independently of [23]) and its study
was formalized in [27]. Now we will present a generalized
derivative as follows.

Definition 13.Given a function f : [0,+∞)→ R. Then the

generalized derivative of f of order α is defined by

Dα
T f (t) = Dα

T

[

Jα
T,a( f )

]

(t) =
d

dt

[

∫ t

a

f (s)

T (s,α)
ds

]

, t > a.

(36)
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for all t > 0, α ∈ (0,1) being T (α, t) is the kernel

function. If f is α−differentiable in some (0,α), and

lim
t→0+

Dα
T f (t) exists, then define Dα

T f (0) = lim
t→0+

Dα
T f (t).

Therefore, the question naturally arises: What
relationship exists between the derivative defined by (36)
and the derivative (19)? This is not a minor issue, the first
is a fractional derivative of the Riemann-Liouville type
and the second a local derivative, that is, non-fractional.

Could it be that in the end, the differential operators
will admit a single representation?
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[20] J.E. Nápoles, P.M. Guzmán, L.M. Lugo, A. Kashuri, The

local generalized derivative and Mittag Leffler function,

Sigma J Eng & Nat Sci, to appear.
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