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Abstract: Over the past decade, Machine Learning has become a practical approach for simulating and examining social issues,

notably poverty, education, and health diseases. This study compares the performance of various machine learning methods especially

Support Vector Machines (SVM), Decision Trees (DT), and Logistic Regression (LR) in predicting poverty status. For this purpose,

the present contribution employs a micro dataset which has been extracted from the National Survey on Household Consumption and

Expenditure 2013/2014. Several evaluation metrics such as accuracy, precision, Cohen’s Kappa statistic, F1-score, and recall are used

to evaluate the models’ outputs. The R results indicate that the three algorithms achieved high accuracy scores. Therefore, the decision

trees have more improvements in terms of accuracy (99.61%) compared to LR (91.09%) and linear kernel SVM methods ( 99.24%).
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1 Introduction

Machine Learning, a subset of artificial intelligence, has
lately gained popularity for its capacity to automate
difficult procedures and make data-driven predictions.
Machine learning algorithms have been used in a variety
of industries, including financial services, healthcare, and
marketing [1,2]. The growing amount of data available
has been one of the main drivers of the success of ML [3].

The purpose of this document is to compare statistical
classical and machine learning approaches in terms of
their accuracy, interpretability, and performance on
different types of data sets. Furthermore, we aim to
provide insights into when to use each algorithm based on
the characteristics of the data and the requirements of the
problem. More specifically, we focus on comparing three
popular machine learning techniques especially the
Support Vector Machines (SVM), Decision Trees (DT),
and Logistic Regression (LR) for classification tasks.

Logistic Regression, introduced by David Cox in
1958, is a widely used algorithm for binary classification
[2]. Meanwhile, decision trees are a prominent machine
learning approach that is employed for both classification
and regression tasks. In addition, the SVM is a decision

support tool that is utilized for both classification and
regression problems [4,5]. The previous algorithms have
been used extensively in various applications, and each
has its own advantages and limitations.

Indeed, classification is a critical topic in machine
learning, with the goal of predicting the class label of an
instance based on its attributes. Logistic regression,
decision trees, and SVM are popular algorithms used for
classification tasks.

In this paper, we will compare these algorithms based
on their strengths and weaknesses and provide insights
into when each one might be more appropriate for a given
classification problem. By examining their underlying
principles, mathematical formulations, and
implementation details, we aim to provide a
comprehensive comparison for the purpose of
classification [6,7,8,9].

The rest of this work is structured as follows. We
present, in section 2, the materials and research methods
needed to conduct this work. In section 3, we describe the
database used in our paper and the tool used to
manipulate it and expose the results. Then, we discuss the
results of the comparison in section 4. In section 5, we
conclude.
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2 Materials and Methods

2.1 Logistic Regression

Logistic Regression is a well-known statistical method for
solving binary classification problems. It is used to
simulate the relationship that exists between a dependent
variable that is binary and other variables that are
independent which can either be continuous or
categorical. The logistic regression model maps the
structure of the relationship that is established by the
independent variables and the dependent variable in the
form of a logistic function, which can then be used to
make predictions [7,8,9,10,11,12].

For the mathematical reformulation. Let y be the
binary dependent variable, and x1,x2, ...,xn be
independent variables. The logistic regression is
represented as follows [13,14,15,16]:

h(y = 1|x) =
1

1+ exp
−(β0+∑n

j=1 β jx j)
(1)

Where β0,β1,β2, ...,βn represent the coefficients of the
model that are calculated based on the data and h(y = 1|x)
is the probability of y being 1 given x.

The logistic regression model is trained by optimizing
the parameters β0,β1,β2, ...,βn to maximize the likelihood
of the observed data. The likelihood function is [14,15,
16]:

L(β ) =
n

∏
j=1

h(y j|x j)
y j (1− h(y j|x j))

1−y j (2)

where n is the number of samples, y j is the observed
dependent variable, and x j is the corresponding
independent variables for each sample.

The logistic regression algorithm can be exposed as :

Algorithm 1 Logistic Regression Algorithm

1: procedure LOGISTIC REGRESSION(X ,y)

2: m← number of the training examples in X

3: n← number of the training features in X

4: Initialize the weight vector w with zeros

5: Repeat until w converge:

6: for j = 1 to m:

7: z j = wT Xi

8: h j =
1

1+e
−z j

9: w← w+α(yi−h j)X j

10: return w

11: end procedure

2.2 Decision Trees

Decision trees are a popular machine-learning method
used for classification and regression applications. The

underlying principle of decision trees is to iteratively
partition the feature space into subsets that have
characteristics as homogeneous in terms of the target
variable as possible [5,17,18].

The decision trees algorithm builds a tree model
where each internal node symbolizes a test on a feature
and each leaf node symbolizes a predicted class label or
target value. The algorithm works by selecting the feature
that best splits the data based on some criterion, and then
recursively applying the same process to each subset of
data defined by the split until some stopping criterion is
met (e.g., maximum tree depth, minimum number of
samples per leaf) [19,20].

Hence, let X denotes the feature space, and Y the
target space [6,7,21,22,23] :

S = (xi,yi)
n
i=1, where xi ∈X and yi ∈ Y (3)

Each internal node j is associated with a feature f j and
a split point s j , and the test at node j is defined as [6,7,21,
22,23]:

[ f j < s j] (4)

We can formulate the decision trees learning problem
as finding a tree T that minimizes the empirical risk:

R(T ) =
1

n

n

∑
i=1

E(yi, ŷi) (5)

where the loss function E(y, ŷ) calculates the difference at
a leaf node between the real target value y and the
anticipated target value ŷ. The squared error loss is a
popular option for regression issues.

E(y, ŷ) = (y− ŷ)2 (6)

While for classification problems, a common choice is
the loss 0-1

E(y, ŷ) = [y 6= ŷ] (7)

To learn the decision trees, we can use a recursive
algorithm that selects the best feature and split point at
each internal node based on some splitting criterion and
stops when some stopping criterion is met. One common
splitting criterion for classification problems is
information gain, which measures the reduction in
entropy of the target variable due to the split, defined as
[6,7,21,22,23]:

IG(S, f ) = G(S)− ∑
v∈values of( f )

|Sv|

|S|
G(Sv) (8)

where S stands for the present set of training samples,
f stands for the feature under test, values of( f ) stands for
the set of potential feature values, and Sv stands for the
subset of samples with feature value v.
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With :

G(S) =− ∑
y∈Y

p(y|S) log p(y|S) (9)

is the entropy of the target variable in set S, and p(y|S)
is the proportion of samples in set S that have target value
y. The best feature and split point are selected as those that
maximize information gain [6,7,21,22,23].

Once, the decision trees are learned, By moving
through the tree from the root to a leaf node depending on
the results of the tests at each internal node and returning
the anticipated target value at the leaf node, we can use it
to predict the target value for a new input feature vector x

[6,7,21,22,23].
The Decision Trees algorithm could be expressed as

follows:

Algorithm 2 Decision Trees Algorithm

1: procedure BUILDTREE(X ,y)

2: Initialize an empty tree T

3: if stopping criterion is met then

4: Assign the majority class label or target value to the

leaf node

5: else

6: Select the best feature f and split point s that

maximizes some criterion (like information gain, Gini

impurity)

7: Add a new internal node to T with test f < s

8: Partition the data into two subsets based on the test

9: Recursively call BuildTree() on each subset,

appending the resulting subtree to the internal node

10: end if

11: return T

12: end procedure

2.3 Support Vector Machines

SVM is a learning algorithm for classification, regression
data, and identification the outliers [24]. The theoretical
framework of SVM can be divided into three main
components:

1.Maximizing the Margin: Finding the hyperplane that
divides the classes in the feature space with the largest
margin is the basic objective of SVM. The margin is
determined by the separation between the nearest
support vectors (also known as data points) and the
hyperplane [24,25,26,27,28].

2.Finding the Optimal Hyperplane: SVM solves a
quadratic optimization model with restrictions to
determine the best hyperplane. The constraints ensure
that the hyperplane is separated from the closest data
points, while the objective is to maximize the margin
[24,25,26,27,28].

3.Handling Non-Linearities: If the data cannot be
separated linearly, SVM uses a kernel function to map

the data into a space with increased dimensions. The
data is changed by the kernel function into a space
that allows for linear separability. SVM determines
the ideal hyperplane in the original feature space by
maximizing the margin in the transformed space [24,
25,26,27,28].

The optimization issue can be expressed numerically
as follows:

min
w,b

1

2
|w|2 (10)

subject to

yi(w
T xi + b)≥ 1 for i = 1,2, . . . ,N (11)

Where w is the normal vector to the hyperplane, b is
the bias, xi is the ith sample in the feature space, yi is the
corresponding class label, and N is the number of samples
[29,30,31].

The kernel function is a crucial component in Support
Vector Machines (SVM), which allows the algorithm to
handle non-linearly separable data. The kernel function
turns the data into a space which is characterized by a
higher dimension and where it can be separated linearly
[32,33,34,35].

The kernel function to be used is determined by the
characteristics of the data and the type of problem to be
solved. It is common to try different kernel functions and
choose the one that gives the best results.

A kernel function can be defined as a function that
transforms the data input into a space that is characterized
by a higher dimension, where the data becomes linearly
separable. The mathematical representation of a kernel
function can be defined as follows [32,33,34,35]:

Ker(x,x′) = φ(x)T φ(x′) (12)

where Ker(x,x′) is the kernel function that converts the
data input x and x′ in a universe that is characterized by a
larger dimension, and φ(x)is the function of mapping that
turns the data input in a universe that is characterized by a
larger dimension [32,33,34,35].

The linear kernel is defined as [32,33,34,35]:

Ker(x,x′) = xT x′ (13)

The polynomial kernel is defined as [32,33,34,35] :

Ker(x,x′) = (xT x′+ c)d (14)

with c is a constant and d is the polynomial’s degree.
The RBF kernel (radial basis function) is defined as

[32,33,34,35]:

Ker(x,x′) = e−γ|x−x′|
2

(15)
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γ : is a positive constant.
The sigmoid kernel is defined as follows [32,33,34,

35]:

Ker(x,x′) = tanh(γxT x′+ r) (16)

where γ is a scalar parameter and r is a bias term.
The SVM Algorithm can be structured as:

Algorithm 3 SVM Algorithm with Kernel

1: procedure THE(X ,y,C,kernel)

2: m← number of training examples in X

3: Initialize the Lagrange multipliers α1,α2, . . . ,αm

4: Solve the quadratic optimization problem to find the

optimal α
5: Use the α values to find the support vectors S

6: Use the support vectors to find the hyperplane parameters

w and b

7: For a new sample x, evaluate the prediction as

sign( f (x)) = sign(∑i∈S αiyikernel(x,xi)+b)
8: return hyperplane parameters w and b

9: end procedure

2.4 Confusion Matrix And metrics

Confusion Matrix: A table that summarizes a
classification model’s performance. It includes
information about the True Positives (TrPo), False
Positives (FaPo), True Negatives (TrNe), and False
Negatives (FaNe) [32,33,34,35].

Confusion Matrix
Predicted(P) Predicted(N)

Actual Positives(P) TrPo FaNe
Actual Negatives(N) FaPo TrNe

Accuracy: The model’s percentage of true predictions.
It is computed as follows: (TrPo + TrNe) / Total [32,33,
34,35].

Accuracy =
TrPo+TrNe

TrPo+TrNe+FaPo+FaNe
(17)

Precision: The proportion of True Positives among the
cases predicted as positive [32,33,34,35]. It is calculated
as TrPo / (TrPo + FaPo).

Precision =
TrPo

TrPo+FaPo
(18)

Recall (Sensitivity): The percentage of True Positives
successfully detected by the model [32,33,34,35]. It is
computed as TrPo / (TrPo + FaNe).

Recall =
TrPo

TrPo+FaNe
(19)

F1-Score: Precision and recall are balanced by the
harmonic mean. When such classes are imbalanced, it is a
good sign of the model’s overall performance [32,33,34,
35].

F1− Score= 2×
Precisionl×Recall

Precision+Recall
(20)

The ROC curve (receiver operating characteristic)
graphically represents the efficiency of a binary
classification method by comparing the proportion of real
positives to the proportion of false positives [32,33,34,
35].

T PR =
TrPo

TrPo+FaNe
(21)

FPR =
FaPo

TrNe+FaPo
(22)

3 Data and Tools

3.1 Data

The data used in this study is from Morocco’s National
Household Living Standards Survey (2013/2014), This is
carried out by the High Commission for Planning’s
household survey section. We started with a
pre-processing step, such as cleansing the data, filtering it,
and so on, in order to carry out our experiment and
analysis of the prediction and classification of the
phenomenon. For the 2014 survey year, we picked all
relevant data from 12 Moroccan regions. There are 11969
valid data (observations) and 784 variables in total.

3.2 Tools

To handle and analyze the data, we used the R
programming language. As a result, all of our
mathematical and statistical prediction and classification
results were generated using the R software.

4 Results and Discussion

4.1 Result of Logistic Regression

The binary classification model’s performance is
indicated by an area under the ROC curve (AUC) of 96.07
%. The ROC (Receiver Operating Characteristic) curve
plots the true positive rate (TPR) versus the false positive
rate (FPR) for different classification thresholds to reflect
the model’s performance. The AUC calculates the area
under the ROC curve to assess the general efficiency of
the model. An AUC value of 96.07% indicates that the
model is able to accurately differentiate between positive
and negative classifications.
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Fig. 1: ROC curve of the Logistic Regression.

Fig. 2: confusion matrix of the Logistic Regression

Table 1: Metrics of the Logistic Regression

Metrics Value%

Accuracy 91.09

Specificity 97.78

Precision 46.59

F1-score 38.31

Cohen’s Kappa statistic 12.36

In the given confusion matrix, the number of true
positives (TP) is 7816, which means that the model
correctly identified 7816 people as poor. False positives
(FP) are 168, which indicates that the model incorrectly
classified 168 non-poor individuals as poor. False
negatives (FN) are 265, which represents the number of
actual poor individuals who were misclassified as
non-poor. The number of true negatives (TN) is 129,

which indicates that the model correctly classified 129
non-poor individuals as non-poor.

The accuracy of the model is 91.09 % which means
that it correctly classifies 91.09% of the instances in the
dataset. The precision of the model is 46.59% which
means that out of all the positive instances predicted by
the model, 46.59% of them are actually positive. The
recall of the model is 32.80% which means that out of all
the actual positive instances, the model was able to
correctly identify 32.80% of them.A Kappa value of
0.1236 suggests that there is only a slight agreement
between the true and predicted class labels, indicating that
the classification model is not performing well. The
interpretation of the Kappa value varies between 0 and 1,
where 0 indicates no agreement between the true and
predicted class labels and 1 indicates perfect agreement.
The F1-score of the model is 38.31% which is the
harmonic mean of precision and recall and gives a single
score that balances both the precision and recall. A higher
F1-score indicates a better balance between precision and
recall.

4.2 Result of Decision Trees

Fig. 3: ROC curve of the Logistic Regression.

The AUC (Area Under the Curve) of 0.9623 indicates
a high level of predicting poverty. An AUC of 1.0
represents a perfect prediction, while an AUC of 0.5
represents a model that performs no better than random
guessing. Therefore, an AUC of 0.9623 indicates that the
model has a high level of discrimination power in
distinguishing between individuals who are living in
poverty and those who are not. In other words, the model
properly classifies 96.23 % of the cases, which is a good
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indication of the model’s performance in predicting
poverty.

Fig. 4: confusion matrix of the Decision Trees

The confusion matrix for the prediction and
classification of household poverty indicates that out of
8,378 households, 275 were correctly classified as living
in poverty (true positives), while 11 were incorrectly
classified as not living in poverty (false negatives). In
addition, 8,070 households were correctly classified as
not living in poverty (true negatives), while 22 were
incorrectly classified as living in poverty (false positives).
Overall, the decision trees model achieved high accuracy
in predicting household poverty status, with a relatively
low number of false positives and false negatives [12].

Table 2: Metrics of the Decision Trees

Metrics Value%

Accuracy 99.61

Specificity 92.59

Precision 99.86

F1-score 99.79

Cohen’s Kappa statistic 94.14

The accuracy of the model is 0.9961, which means
that 99.61% of the classifications were correct. The model
has a sensitivity of 0.9986, meaning that it correctly
identifies 99.86% of households that are living in poverty.
The model has a specificity of 0.9259, which means that
it correctly identifies 92.59% of households that are not
living in poverty. The positive predictive value (PPV) of
the model is 0.9973, which means that when the model
predicts that a household is living in poverty, there is a
99.73% chance that it is correct. The negative predictive
value (NPV) of the model is 0.9615, which means that

when the model predicts that a household is not living in
poverty, there is a 96.15% chance that it is correct.
Finally, the Kappa coefficient of the model is 0.9414,
indicating that the model has a strong agreement with the
actual classifications.

4.3 Result of SVM

4.3.1 SVM using a Linear kernel

Fig. 5: Confusion Matrix of SVM using a Linear kernel

Table 3: Metrics of SVM using a Linear kernel

Metrics Value%

Accuracy 99.24

Precision 95.42

Recall 99.67

F1-score 89.08

Specificity 87.54

Cohen’s Kappa statistic 88.65

The values in the matrix show the number of instances
that were correctly and incorrectly classified. The number
8054 in the top left cell indicates that 8054 instances of
non-poor were correctly classified. The number 260 in the
bottom right cell indicates that 260 instances of poor were
correctly classified. The accuracy metric, which is 0.9924,
indicates that 99.24 % of the instances were correctly
classified. Precision, which is 0.8748, measures the
proportion of positive instances that are correctly
classified. Recall, which is 0.9967, measures the
proportion of actual positive instances that are correctly
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classified. The F1-score, which is 0.8908, is the harmonic
mean of precision and recall, and provides a balanced
view of the performance of the classifier.

The specificity metric, which is 0.8754, indicates the
proportion of negative instances that are correctly
classified. Cohen’s Kappa statistic, which is 0.8865, is a
measure of the agreement between the predicted classes
and the actual classes, adjusted for chance agreement
[12].

4.3.2 SVM using a Radial kernel

Fig. 6: Confusion Matrix of SVM with Radial kernel

Table 4: Metrics of SVM using a Radial kernel

Metrics Value%

Accuracy 96.46

Precision 0

Recall -

F1-score -

Specificity 96.49

Cohen’s Kappa statistic 0

The results of the Support Vector Machine (SVM)
approach with a radial kernel for the prediction and
classification of households as poor and non-poor are
evaluated using the confusion matrix. The matrix shows
that the SVM approach had 8081 true positive predictions
and 297 false positive predictions, while there were no
false negatives and 0 true negatives.

Based on the given confusion matrix, the classifier
achieved an accuracy of 0.9646 or 96.46 %, indicating
that it correctly classified most of the samples. However,

the precision for the positive class is 0, which means that
the classifier did not correctly identify any of the positive
samples.

Since there were no true positive predictions, it is not
possible to calculate recall or F1-score for the positive
class. The specificity for the negative class is 0.9649,
which means that the classifier correctly identified a large
majority of the negative samples.

Finally, the Cohen’s Kappa statistic for this classifier
and dataset is 0, indicating no agreement beyond chance
between the classifier and the true labels. This suggests
that the classifier may not be performing well on this
particular dataset, and further investigation and
improvement may be needed to achieve better
classification results [12].

4.3.3 SVM using a sigmoid kernel

Fig. 7: Confusion Matrix of SVM using a sigmoid kernel

Table 5: Metrics of SVM using a sigmoid kernel

Metrics Value%

Accuracy 96.46

Precision 0

Recall -

F1-score -

Specificity 96.49

Cohen’s Kappa statistic 0

The confusion matrix for the prediction SVM sigmoid
model shows that there were 8081 instances of class 0 and
297 instances of class 1. Out of all the instances of class
0, the model correctly predicted 8081 as class 0, while it
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incorrectly predicted 297 instances of class 1 as class 0.
There were no instances of class 1 that were correctly
predicted by the model.

On what concerns SVM with the sigmoid kernel, we
manage to find the same result as the different metrics we
compare ourselves with SVM with the radial kernel.

4.3.4 SVM using a polynomial kernel

Fig. 8: Confusion Matrix SVM using a polynomial kernel .

Table 6: Metrics of SVM using a polynomial kernel

Metrics Value%

Accuracy 98.82

Precision 84.12

Recall 99.36

F1-score 83.45

Specificity 84.18

Cohen’s Kappa statistic 82.86

The confusion matrix for the prediction polynomial
SVM model shows that there are 8029 instances of class 0
(non-poor) and 52 instances of class 1(poor). Out of all
the instances of class 0, the model correctly predicted
8029 as class 0, while it incorrectly predicted 47 instances
of class 0 as class 1. On the other hand, the model
correctly predicted 52 instances of class 1, and 250
instances were incorrectly predicted as class 0.

The prediction results for poor and non-poor
Modeling with SVM using a polynomial kernel have
achieved an accuracy of 0.9882. This means that the
model correctly predicted the poor and non-poor status
for approximately 98.82 % of the individuals.

The precision score of 0.8412 implies that 84.12
percent of the people the model predicted to be poor
actually were poor. On the other hand, recall assesses how
well the model can identify every poor person, and it has
a score of 0.9936, suggesting that 99.36 % of the poor
people were accurately recognized by the model.

The harmonic mean of recall and precision, also
known as the F1-score, shows the equilibrium efficacy of
the model’s predictions in terms of accuracy and recall
with a value of 0.8345. The specificity score, which has a
quantity of 0.8418 and indicates how well the model can
identify non-poor people, indicates that 84.18 % of
non-poor people were properly recognized by the model.

Finally, the model’s predictions and the ground truth
have a good agreement, as shown by Cohen’s Kappa, a
statistic that measures inter-annotator agreement, which
has a value of 0.8286.

Subsection: Comparison between DT, LR, and SVM

The comparison between the DT, LR, and SVM for
the prediction of poor and non-poor households is
presented. All models were evaluated using a confusion
matrix as well as different metrics for evaluation such as
precision, recall, accuracy, F1-score, specificity, and
Cohen’s Kappa. Most of these algorithms gave us good
results based on comparing metrics for DT, LR, and SVM
with polynomial and linear kernels.

5 Conclusion

This manuscript compares the results of the prediction
and classification of households as poor and non-poor
using three machine-learning approaches namely DT, LR,
and SVM. The evaluation was performed using confusion
matrices and various metrics, such as Cohen’s Kappa
statistic, F1-score, recall, accuracy, and precision.

The results show that DT, LR, and SVM with
polynomial and linear kernels performed well in
classifying households as poor and non-poor. In addition,
the F1-score, which is a balance between precision and
recall, indicates that good performance is observed in
logistic regression and SVM models in classifying
households.

In conclusion, DT, LR, and SVM are effective
methods for classifying households. The choice between
the models will be determined by the problem’s specific
requirements, and the trade-off between precision and
accuracy desired. In our case, we can say that we were
able to identify the poor and non-poor with excellent
classification and decision tree metrics.
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to kernel-based learning algorithms. Journal of Machine

Learning Research, 14(Jan), 1-48, (2013).

[29] B.Scholkopf, A. J.Smola, and K. R. Müller, Input space

vs feature space in kernel-based methods, Proceedings

of the Sixteenth International Conference on Machine

Learning,320-327, Morgan Kaufmann, (1999).

[30] I. Steinwart, and A. Christmann, Support vector machines.

Springer Science and Business Media, (2008).

[31] Od. Maimon and L. Rokach, Data Mining and

Knowledge Discovery Handbook, Section 5.2, Evaluation of

Classification Models, Springer, (2010).

[32] H. Chen, N. Petropulu, and P.S.P. Wang, Handbook

of Pattern Recognition and Computer Vision, e. World

Scientific, Chapter 5, Evaluation and Comparison of

Classifiers, (2000).

[33] M. Steinbach, and V. Kumar, Introduction to Data Mining,

by Pang-Ning Tan, Addison-Wesley. Chapter 5, ”Evaluation,

(2006),

[34] McGraw-Hill, Machine Learning by Tom Mitchell, Chapter

3, Evaluating Hypotheses: The Strategy of Experimental

Design, (1997).

[35] R. Duda and P. Hart, Pattern Classification. John Wiley and

Sons, Chapter 4, Evaluation of the Classifier,(1973).

El aachab Yassine
Researcher in mathematics,
at the Faculty of Sciences,
Ibn Tofail University,
Kenitra, Morocco. His
research areas are applied
mathematics, statistical
modeling and its applications,
artificial intelligence, applied
econometrics, optimization,

and data science.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


598 Y. El aachab et al.: Binary Classification with Supervised Machine...

Kaicer Mohammed
Professor researcher
in mathematics at the
Faculty of Sciences,
Ibn Tofail University,
Kenitra, Morocco. All these
research works are about
mathematical modeling,
the new approaches in
statistics, probabilities, and

optimization. He has many publications and books.

Jouilil Youness
Researcher in econometrics
and applied mathematics,
Faculty of Economics
and Social Sciences of
Mohammedia, Hassan
II University of Casablanca,
Morocco. His research
areas focus on applied
econometrics, public policy

evaluation, development economics, artificial intelligence,
and data science. He has many publications in national
and international scientific journals and has contributed to
several collective studies. y.jouilil@gmail.com

c© 2023 NSP

Natural Sciences Publishing Cor.


	Introduction
	Materials and Methods
	Data and Tools 
	Results and Discussion 
	Conclusion

