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Abstract: In this article the spectrum of a perturbed harmonic oscillator is calculated. New correctly solvable boundary value problems

are used for the corresponding harmonic oscillator on a two-dimensional punctured sphere. The eigenfunctions of the harmonic

oscillator are studied in detail and a set of elements from the obtained functionals is introduced.
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1 Introduction

The spectrum of a one-dimensional harmonic oscillator,
which represents an unbounded self-adjoint operator in
the function space L2(R), consists only of normal
eigenvalues. In any textbook on quantum mechanics, one
can find an explicit form of the eigenvalues of a
one-dimensional harmonic oscillator

λn = 2n+ 1,n= 0,1, . . .

Moreover, the resolvent of a one-dimensional harmonic
oscillator is a compact operator. It is also known that the
system of eigenfunctions of a one-dimensional harmonic
oscillator has the form

fn(x) = (π
1
2 2nn!)−

1
2 e−

x2

2 Hn(x),n = 0,1, . . .

where Hn(x) = e
x2

2 (e−
x2

2 )(n) are the Hermite polynomials.
Spectral analysis of perturbations of a one-dimensional
harmonic oscillator

L =− d2

dx2
+ x2 +W(x)

in the special case when

W (x) =
N

∑
j=1

c jδ (x− b j),N < ∞

was studied in the works [1,2,3]. Here we present the
result of [4], where the case when
W (x) = s[δ (x − b) + δ (x + b)],b 6= 0,b ∈ R,s ∈ C is
studied. In this case, the operator has a discrete spectrum
consisting of simple eigenvalues. The asymptotic formula
for the eigenvalues is proved in the work [4]

λn = (2n+ 1)+ s2 k(n)

n
+ρ(n),

where k(n) = 1
2π [(−1)n+1 sin(2b

√
2n) − 1

2
sin(4b

√
2n)],

|ρ(n)| ≤C
logn

n
3
2

.

The two-dimensional harmonic oscillator is also well
studied. In particular, the spectrum of the operator H0,
where

H0 =−∆ + x2
,x2 = x2

1 + x2
2,x ∈R

2
,

consists of eigenvalues λn = 2n+2,n≥ 0. The multiplicity
of the eigenvalue λn is equal to (n+1). The corresponding
eigenfunctions have the form

ϕ
(n)
l (x) = fl(x1) fn−l(x2), l = 0, . . . ,n.

The perturbation spectrum of a two-dimensional harmonic
oscillator is studied in the work [5]

H = H0 +W,

where W is the operator of multiplication by a bounded
measurable finite real function. In the work [5], the
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following theorem on the localization of the perturbation
spectrum of a two-dimensional harmonic oscillator is
proved.

Theorem [5]. Let n be a sufficiently large natural
number. Then the eigenvalues of the operator H lying in a
neighborhood of the point 2(n+ 1) satisfy the inequality

|2(n+ 1)− z| ≤ M2||W ||∞(
1√
n
+O(

lnn

n
)),

where ||W ||∞ is the norm in the space L∞(R
2).

Thus, regular perturbations of a two-dimensional
harmonic oscillator are studied in [5]. In this paper, we
study the spectra of some singular perturbations of a
two-dimensional harmonic oscillator. The beginning of
such research is laid in the paper [6].

2 Known facts about the harmonic oscillator

Let R2 = {x = (x1,x2)} be a Euclidean space. We choose
[6] a fixed reversible self-adjoint harmonic oscillator B0 =
B∗

0 = −∆ + x2
1 + x2

2 acting in the functional space L2(R
2).

The domain of this operator is denoted as D(B0) = {u ∈
W 2

2 (R
2) : −∆u+ x2u ∈ L2(R

2)}.
It is known [7] that the eigenvalues of the operator B0

are calculated by the formulas λn = 2n+ 2,n ≥ 0. Since
the condition λn ≥ 1 is satisfied for all λn, then there
exists an inverse operator B−1

0 , which is an integral

operator B−1
0 f (x1,x2;t1, t2) =

∫ ∫
R2 ε(x1,x2;t1, t2)·

· f (t1, t2)dt1dt2. The kernel of the integral operator
ε(x1,x2;t1, t2) defines Green’s function of the operator B0.

Green’s function ε(x1,x2;t1, t2) satisfies the equality
(−∆ + x2

1 + x2
2)ε(x1,x2;t1, t2) = 0 for (x1,x2) 6= (t1, t2),

which follows from the definition of the inverse operator

B−1
0 . Derivatives ∂ε

∂ t1
(x1,x2;t1, t2),

∂ε
∂ t2

(x1,x2;t1, t2) satisfy

the equalities

(−∆ + x2
1 + x2

2)
∂ε

∂ t1
(x1,x2;t1, t2) = 0,

(−∆ + x2
1 + x2

2)
∂ε

∂ t2
(x1,x2;t1, t2) = 0

for (x1,x2) 6= (t1, t2). Thus, the functions ε(x1,x2;t1, t2),
∂ε
∂ t1

(x1,x2;t1, t2),
∂ε
∂ t2

(x1,x2;t1, t2) are solutions of the

homogeneous equation

(−∆ + x2
1 + x2

2)u(x1,x2) = 0

at (x1,x2) 6= (t1, t2).
The eigenfunctions [6] of the operator B0 are given by

the formula

fl(x1) fn−l(x2) = (2ll!
√

π)−
1
2 e−

x2
1
2 Hl(x1)·

·(2n−l(n− l)!
√

π)−
1
2 e−

x2
2
2 Hn−l(x2),

where Hl(x) represents the Hermite polynomials. We get
the following representations

fl(t) = αl{cos[t
√

2l + 1)− lπ

2
][u0(t)−

u2(t)

4(2l+ 1)
+

+O(
1

l2
)]}+ αl

2
√

2l+ 1
{sin[t

√
2l+ 1)−

− lπ

2
][u1(t)−

u3(t)

4(2l+ 1)
+O(

1

l2
)]},

where u0(t)≡ 1, ul(t) =
∫ t

0 Lul−1(t)dt, L =− d2

dt2 + t2,

αl =

√
π

2

1
4
√

2l + 1
{1− 1

32(2l+ 1)2
+O(

1

l3
)}.

Note [8] that the eigenfunctions of the operator B0 on
any compact set K ⊂ R2 have a global estimate

| fl(t)| ≤
C0

4
√

2l+ 1
. (1)

The system of eigenfunctions of the operator B0 is an
orthogonal basis in the functional space L2(R

2).
It is known [9] that Green’s function ε(x1,x2;t1, t2)

expands in terms of the eigenfunctions of the operator B0

and has the following form

ε(x1,x2;t1, t2)=
∞

∑
n=0

1

2n+ 2

n

∑
l=0

fl(x1) fn−l(x2) fl(t1) fn−l(t2).

(2)
We present a theorem proved in [6].
Theorem Let Green’s function ε(x1,x2;t1, t2) of a

two-dimensional harmonic oscillator be defined for all
x 6= ±t and be continuous function of (x1,x2;t1, t2) in the
domain. Then Green’s function ε(x1,x2;t1, t2) has the
representation

ε(x1,x2;t1, t2) =

√
2

|x− t|π ε−(x1,x2;t1, t2)+

+

√
2

|x+ t|π ε+(x1,x2;t1, t2)+ k(x1,x2;t1, t2),

Note that ε−(x1,x2;t1, t2), ε+(x1,x2;t1, t2), k(x1,x2;t1, t2)
are continuous functions of two pairs of variables
(x1,x2;t1, t2).

3 Delta-shaped perturbations of a harmonic

oscillator

In this section, we formulate new correctly solvable
problems for the operator (−∆ + x2

1 + x2
2) on the

punctured plane R2
0 = R2\{x0

1,x
0
2}. Here x0

1 6= 0,x0
2 6= 0

are fixed points in R2. Through Q0
+(δ ),Q

0
−(δ ) we denote
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two open circles of radius δ centered at the points x0
1,x

0
2,

respectively, i.e. Q0
+(δ ) = {x ∈ R2 : |x − x0

1| <

δ},Q0
−(δ ) = {x ∈ R2 : |x− x0

2|< δ}.
Let h(x) be a function such that there are finite values

of the functionals γ1, . . . ,γ6. The linear functionals
γ1(h), . . . ,γ6(h) are given by the formulas:

γ1(h) =− lim
δ→0

∫

∂Q0
+(δ )

∂

∂vt
h(t)dst ,

γ2(h) =− lim
δ→0

∫

∂Q0
−(δ )

∂

∂vt

h(t)dst ,

γ3(h) = lim
δ→0

∫

∂Q0
+(δ )

(h(t)
t1 + x0

1

δ
)dst ,

γ4(h) = lim
δ→0

∫

∂Q0
+(δ )

(h(t)
t2 − x0

2

δ
)dst ,

γ5(h) = lim
δ→0

∫

∂Q0
−(δ )

(h(t)
t1 + x0

1

δ
)dst ,

γ6(h) = lim
δ→0

∫

∂Q0
−(δ )

(h(t)
t2 − x0

2

δ
)dst ,

where vt is the outward normal to ∂Q0
±(δ ).

In particular, the following functions can be chosen as
h(x):

ψ1(x) = ε(x1,x2;x0
1,x

0
2),

ψ2(x) = ε(x1,x2;−x0
1,−x0

2),

ψ3(x) =
∂

∂ t1
ε(x1,x2;x0

1,x
0
2),

ψ4(x) =
∂

∂ t2
ε(x1,x2;x0

1,x
0
2),

ψ5(x) =
∂

∂ t1
ε(x1,x2;−x0

1,−x0
2),

ψ6(x) =
∂

∂ t2
ε(x1,x2;−x0

1,−x0
2).

Lemma 3.1 For j,k = 1,2,3,4,5,6 the biorthogonal
relations are valid

γ j(ψk) = δ jk, (3)

where δ jk is the Kronecker symbol.

Using the chosen potentials, we introduce the class of
functions:

Ŵ 2
2 (R

2
0) = {h(x) = B−1

0 f (x)+
6

∑
j=1

α jψ j(x),

∀ f ∈ L2(R
2),∀α j ∈ C, j = 1,6}.

Therefore, the following assertion plays an important
role.

Lemma 3.2 Let h be an arbitrary element of the class

Ŵ 2
2 (R

2
0). Then there exists a smooth function g(x) such

that h can be represented as

h(x) = g(x)−
6

∑
k=1

γk(h)ψk(x), (4)

where g(x) is some smooth function of the space W 2
2 (R

2),
γ j(h), j = 1, ...,6 are the linear functionals defined above.
The specified representation 4 is unique.

Note that Lemma 3.1 and Lemma 3.2 are proved in [6].
According to Lemma 3.2, we introduce the operator J.

The operator J maps an arbitrary element h ∈ Ŵ 2
2 (R

2
0) into

an element g ∈W 2
2 (R

2), where the element g is from the 4
representation.

The following theorem is proved in the work [10].
Theorem 3.1. Let α1,α2,α3,α4,α5,α6 be an arbitrary

set of linear functionals on the space L2(R
2). Then for any

f ∈ L2(R
2) the following problem

B0Jh(x)= f (x), x∈R
2
0, γk(h)=αk(B0Jh), k = 1, ...,6

(5)
has a unique solution of class Ŵ 2

2 (R
2
0). The operator

corresponding to the problem 5 will be denoted as Bα .
In the next section, we study the spectrum of the

operator Bα .

4 Spectrum of a perturbed harmonic

oscillator

According to Theorem 3.1, the operator Bα is introduced.
In this section, we study the eigenvalue problem B0Ju =
λ Ju, γk(u) = λ ·αk(Ju),k = 1, . . . ,6.

To calculate the eigenvalues, we use the equation
B0Ju = λ Ju, which assumes that the equation B0g = λ g.

is satisfied. The eigenvalues of the operator B0 are known

and written as λn = 2n+ 2. The function ϕ
(n)
l (x) is an

eigenfunction ϕ
(n)
l (x) = fl(x1) fn−l(x2), l = 0, ...,n.

Denote by g(x) = Ju(x). Then B0g = λ g(x). Since the
eigenvalues of the operator B0 are known, then λn = 2n+

2, n ≥ 0. The functions Junl(x) = ϕ
(n)
l (x), l = 0,1, ...,n.

Then for k = 1,6 we have

γk(unl) = λnαk(ϕ
(n)
l ).

As a result, the eigenfunction of the operator Bα takes
the form

unl(x) = ϕ
(n)
l (x)−λn

6

∑
k=1

αk(ϕ
(n)
l ) ·ψk(x), (6)

l = 0, ...,n; n ≥ 0.

Thus, the assertion is proved.
Theorem 4.1. Let α1, ...,α6 be arbitrary linear

continuous functionals from L2(R
2). Then the spectrum
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of the operator Bα coincides with the spectrum of the
operator B0, i.e.

λn(Bα) = λn(B0).

The system of eigenfunctions of the operator Bα is
given by the formulas 6.

Finally, let’s consider an example.

Example 1. As α2,α3,α4,α5,α6 we take zero
functionals, and as the functional α1( f ) we choose the
following functional α1( f ) =

∫ ∫
R2 ψ1(x) f (x)dx. In this

case, the eigenfunctions of the operator Bα100000 will take
the form

unl(x) = ϕ
(n)
l

(x)+ϕ
(n)
l

(x0) ·ψ1(x).

where l = 0,1, . . .

5 Conclusion

In this article, we have studied the eigenfunctions of a
perturbed harmonic oscillator. Descriptions of linear
functionals for an arbitrary point are given. The
relationship between eigenvalues and eigenfunctions of
the operator, perturbed and unperturbed operators is
shown. The property of discreteness of the spectrum of a
harmonic oscillator on the straight axis is proved in the
work. An example is also given where the first functional
is defined through the integral, and the other five are equal
to zero. The example is an explicit use of a theorem
whose proof used previously obtained results for a
perturbed operator.
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