

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/170402

Duality in a class of vector Köthe-Orlicz spaces

Mohamed Ahmed Sidaty

Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P. O.Box 90950, Riyadh 11623, Saudi Arabia

Received: 29 Jan. 2023, Revised: 20 Apr. 2023, Accepted: 25 Apr. 2023 Published online: 1 Jul. 2023

Abstract: We deal with a complete normed space *E*, a scalar sequence space λ , and an Orlicz mapping *M* to introduce and study some properties of the spaces $\lambda_M \{E\}$ of all *E*-valued sequences that are absolutely (λ, M) -summable. Denote by $\lambda_M \{E\}_r$ the subspace of $\lambda_M \{E\}$ whose elements are AK-sequences. We describe the continuous linear forms on this space in term of E^* -valued sequences that are absolutely (λ^*, N) -summable, where *N* is the Orlicz mapping complement of *M*.

Keywords: Duality, vector and scalar sequence spaces, normed spaces, Orlicz space

1 Introduction

The notion of absolutely and weakly λ -summable sequences in a locally convex space, for λ a perfect Köthe scalar sequence space, was first introduced by A. Pietsch [1] to characterize the nuclearity of locally convex spaces.

Since then many authors have been interested to the study of these spaces defined by a combination of a Köthe scalar sequence spaces and a linear vector space. They consider on λ , not only its normal topology, but general polar topologies. The space of absolutely λ summable sequence has been intensively studied by many authors as in [2,3]. Later, an extension to the modular function has been introduced in [4,5]. The authors in [6,7,8,9,10,11, 12] were mainly interested in the weakly λ -summability. In [12], the author involved the Orlicz mapping to define a new class of these spaces

In this note, we deal with an Orlicz mapping M and a a scalar sequence space λ , supposed to be perfect, to generalize the notion of the absolute λ -summability by defining $\lambda_M \{E\}$, the space of all absolute (λ, M) -summable ones in a complete normed space E. Notice that, for M(t) = t, the space $\lambda_M \{E\}$ is nothing else but $\lambda \{E\}$ of all E- valued sequences that are λ -summable studied in [2, 3].

In this paper, w study some of properties of $\lambda_M \{E\}$, such as the description of the topological dual.

2 Preliminaries

Throughout this paper, if *F* is a normed space then we denote by F^* , B_{F^*} and $\|\cdot\|_{F^*}$, respectively, the topological dual, the closed unit ball and the norm of *F*.

Let the symbol ω stand for the linear space of all complex sequences with respect to the standard component operations. For all $n \in \mathbb{N}$, by, e_n we mean the standard unit vector of order n in ω . A linear subspace λ of ω is said to be normal, whenever α and β are in ω , and $\alpha \leq \beta$ and $\beta \in \lambda$ then $\beta \in \lambda$.

If λ is a sequence space, its α -dual will be denoted λ^* and defined as

$$\lambda^* = \left\{ (\beta_n) \in \omega : \sum_{n=1}^{\infty} |\alpha_n \beta_n| < \infty, \ \forall (\alpha_n)_n \in \lambda
ight\}.$$

It is easy to check the inclusion $\lambda \subset \lambda^{**} = (\lambda^*)^*$. We say that λ is perfect whenever the equality $\lambda = \lambda^{**}$ hols. Everywhere it occurs in this note, λ means a complete and perfect normed sequence space such that

- (a) $\|\cdot\|_{\lambda}$ is solid, that is, whatever γ and δ in λ , if $\gamma \leq \delta$ then $\|\gamma\|_{\lambda} \leq \|\delta\|_{\lambda}$.
- (b) Every $(\beta_n)_n$ in λ is the limit of the sequence $(\beta_1, \ldots, \beta_n, 0, \ldots), n \in \mathbb{N}$, the finite sections of β with respect to the norm in $\|\cdot\|_{\lambda}$. In other words, the space λ satisfies the AK-property.

These two conditions make the continuous dual of λ coincide with λ^* . By using Hahn-Banach Theorem, the

^{*} Corresponding author e-mail: sidaty1@hotmail.com

standard norm $\|\cdot\|_{\lambda^*}$ of λ^* can then be given as

$$\|\gamma\|_{\lambda^*} = \sup\left\{\sum_{n=1}^{\infty} |\delta_n \gamma_n|, \ \delta = (\delta_n)_n \in \lambda, \ \|\delta\|_{\lambda} \le 1\right\}.$$

Moreover, it will be needed to assumed that the dual space $(\lambda^*, \|\cdot\|_{\lambda^*})$ of λ^* satisfies also the is also AK-property. In that case, λ will be a reflexive complete normed space.

An Orlicz mapping is a non-decreasing, non-negative, convex and continuous, function M defined for every $t \ge 0$, with the properties that M(0) = 0, M(x) > 0 for x > 0 and $\lim M(x) = \infty$.

It is possible to represent an Orlicz mapping M in the integral form

$$M(x) = \int_0^x m(t)dt,$$

where *m* is positive, continuous at the right for every t > 0, and m(0) = 0. Let *n* be defined by for $t \ge 0$,

$$n(t) = \sup\{u : m(u) \le t. \forall f \text{ for } \ge 0\}.$$

So, n satisfies the same conditions as m. Let N be defined by

$$N(u) = \int_0^u n(x) dx$$

Then N is also an Orlicz mapping. We say that N complements M and M complements N. They satisfy

$$ts \le M(t) + N(s), \text{ for } t, s \ge 0.$$
(1)

For an Orlicz mapping M, define the space ℓ_M by

$$\ell_M = \left\{ (\alpha_n)_n \in \omega : \exists \sigma > 0, \sum_{n=1}^{\infty} M\left(\frac{|\alpha_n|}{\sigma}\right) < \infty, \right\}.$$

Since *M* is non-decreasing, it is easy to verify that the space ℓ_M is normal. Moreover, the quantity

$$\|(\beta_n)_n\|_M = \inf\left\{\sigma > 0, \sum_{n=1}^{\infty} M\left(\frac{|\beta_n|}{\sigma}\right) \le 1\right\},\$$

is a solid norm on ℓ_M for which ℓ_M is a complete normed space.

For $M(t) = t^p$, and $1 \le p < \infty$, the space ℓ_M coincides with the classical complete normed spaces ℓ_p ,.

Because of its convexity, M satisfies always the inequality $M(tx) \le tM(x)$, for every $0 \le t \le 1$.

We will assume that there is L > 0, verifying $M(2x) \le LM(x)$, for all $x \in [0, \infty)$. This condition on *M* is known as the condition Δ_2 .

Particularly, from this condition, one derives that ℓ_M and ℓ_N are α -dual each other (Corollary 4.2 of [5]) and are then perfect reflexive normed spaces.

3 The vector sequence space $\lambda_M \{E\}$

For a complete normed space E, $\omega(E)$ will denote the vector space of all E-valued sequences, and by $\lambda_M \{E\}$ we mean the subset of $\omega(E)$ constituted by all sequences in E that are absolutely (λ, M) - summable. By this we mean

$$\lambda_M \{E\} = \{(x_n)_n \in \omega(E) : \forall (\alpha_n)_n \in \lambda^*, (\|\alpha_n x_n\|_E)_n \in \ell_M \}$$

We have

Theorem 1. With respect to the standard component operations, $\lambda_M \{E\}$, is a linear space, and the quantity

$$|x\|_{\lambda_{M}\{E\}} = \left\| \left(\alpha_{n} \|x_{n}\|\right)_{n} \right\|_{M}$$
$$= \sup_{\alpha \in B_{\lambda^{*}}} \inf \left\{ \sigma > 0 : \sum_{n=1}^{\infty} M(\|\alpha_{n}x_{n}\|/\sigma) \le 1 \right\}$$

is a norm on $\lambda_M \{E\}$.

...

Proof. It follows quickly from the subadditivity of the norm of *E* and the fact that ℓ_M is normal that

$$\ell_M(E) = \{ x = (x_n)_n \in \omega(E) : (||x_n||_E)_n \in \ell_M \}$$

is a linear subspace of $\omega(E)$. Now, for all $(\alpha_n)_n \in \lambda^*$, define $\varphi_{\alpha} : \omega(E) \to \omega(E)$ by $\varphi_{\alpha}(x) = (\alpha_n a(x_n))$. Clearly, φ_{α} is a linear mapping, and

$$\lambda_M \{E\} = \bigcap_{\alpha \in \lambda^*} \varphi_{\alpha}^{-1}(\ell_M(E)).$$

Then, $\lambda_M \{E\}$ is a linear space.

Next, we shall show that the quantity in (2) is finite. To this purpose, let $x = (x_n)_n$ in $\lambda_M \{E\}$ fixed, and consider the operator $f_x : \lambda^* \to \ell_M$ such that $f_x(\gamma) = (\gamma_n ||x_n||)_n$. An application of the closed graph theorem yields the continuity of f_x . It follows that

$$|x\|_{\lambda_{\mathcal{M}}\{E\}} = \sup_{\gamma \in B_{\lambda^*}} \inf \left\{ \sigma > 0 : \sum_{n=1}^{\infty} M(\|\gamma_n x_n\|/\sigma) \le 1 \right\}$$
$$= \sup_{\gamma \in B_{\lambda^*}} \|(\gamma_n\|x_n\|)\|_{\mathcal{M}} = \sup_{\gamma \in B_{\lambda^*}} \|f_x(\gamma)\|_{\mathcal{M}},$$

which gives the required property. The other conditions of the norm are easily checked.

Now, we prove that the projections are continuous.

Lemma 1. If *i*, is a natural number, let P_i be the the projection from $\lambda_M \{E\}$ to *E*, given as

if
$$x = (x_n) \in \lambda_M \{E\}$$
, then $P_i(x) = x_i$

Then, P_i is a linear and continuous mapping.

Proof. Let $i \in \mathbb{N}$, and $(\gamma_n)_n \in B_{\lambda^*}$ such that $\gamma_i > 0$. Let $K = 1/(\gamma_i ||e_i||_M)$. For all $x = (x_n) \in \lambda_M \{E\}$, since the norm $|| \cdot ||_M$ is solid and $\gamma_i ||x_i||e_i \leq (||\gamma_n x_n||)_n$, we have

$$\gamma_i \|x_i\| \|e_i\|_M = \|\gamma_i x_i\| \|e_i\|_M \le \|(\|\gamma_n x_n\|)_n\|_M = \|(x_n)_n\|_{\lambda_M\{E\}}.$$

Thus,

$$\forall x = (x_n) \in \lambda_M \{E\}, \quad \|x_i\|_E \le K \|x\|_{\lambda_M \{E\}},$$

from which one derives the continuity of P_i .

Theorem 2. The space $\lambda_M \{E\}$ so normed is a complete normed space for which E and λ are closed linear subspaces.

Proof. We will show first that, if $\alpha = (\alpha_k)_k \in \lambda$ and $t \in E$, then $(\alpha_k t)_k \in \lambda_M \{E\}$,

Consider $0 \neq \alpha = (\alpha_k)_k \in \lambda$, $\beta = (\beta_k)_k \in \lambda^*$ and $0 \neq t \in E$. Let $\sigma = \sum_k \|\alpha_k \beta_k t\|$ and $\eta_k = \|\alpha_k \beta_k t\| / \sigma$, for every

k. Then,

$$\sum_{k} M(\|\alpha_k \beta_k t\|/\sigma) = \sum_{k} M(\eta_k) \leq \sum_{k} \eta_k M(1) = M(1) < \infty.$$

So, $(\alpha_k t)_k \in \lambda_M \{E\}$. Now, Let us show that for all $\alpha = (\alpha_k)_k \in \lambda$ and $t \in E$,

$$\|(\alpha_k t)_k\|_{\lambda_M\{E\}} \le (1 + M(1)) \|\alpha\|_{\lambda} \|t\|_E.$$
(2)

The assertion (2) is trivial when t = 0. Assume that $t \neq 0$. Let $\sigma_0 = (1 + M(1)) ||t||_E ||\alpha||_{\lambda}$. If $\beta = (\beta_n)_n \in \lambda^*$ with $||\beta||_{\lambda^*} \leq 1$, since *M* is convex,

$$\begin{split} \sum_{n=1}^{\infty} M\left(\frac{|\alpha_n \beta_n \|t\||}{\sigma_0}\right) &\leq \sum_{n=1}^{\infty} \frac{|\alpha_n \beta_n || \|t\||}{\sigma_0} M(1) \\ &\leq \frac{\|\alpha\|_{\lambda} \|t\|_E}{\sigma} M(1) = \frac{M(1)}{M(1)+1} \leq 1. \end{split}$$

Thus,

$$\|(\alpha_n t)_n\|_{\lambda_M\{E\}} = \|(\alpha_n \|t\|)_n\|_M \le \sigma_0 = (M(1)+1)\|\alpha\|_{\lambda} \|t\|_E.$$

For a nonzero $\tau = (\tau_n)_n$ fixed in λ , the well defined mapping f_{τ} from E to $\lambda_M \{E\}$ with $f_{\tau}(t) = (\tau_n t)_n$ is linear and one to one ; its continuity holds by (2).

Suppose that $(t_k)_k$ is any sequence of members of E that satisfies the convergence of $(\tau t_k)_k$ in $\lambda_M \{E\}$ to $y = (x_n)_n$. For any natural number m such that $\tau_m \neq 0$, we conclude from Lemma 1 the convergence of the sequence $(t_k)_k$ to $\frac{1}{\tau_m} x_m$. Suppose then that $(t_k)_k$ tends to t as $k \to \infty$.. Thus, when $\tau_n \neq 0$, $x_n = t$ and $x_n = 0$ for $\tau_n = 0$. Then, $y = \tau t$, which means that E can be assimilated as a closed subspace of $\lambda_M \{E\}$. The same argument applies to prove that λ can also be assimilated with a closed subspace of $\lambda_M \{E\}$. Consider a Cauchy sequence $x^k = (x_n^k), k = 1, 2, ...,$ in $\lambda_M \{E\}$. Let *i* be a natural number. Thanks to the continuity of the mapping P_i stated and proved in the lemma 1, the projected sequence $x_i^k, k = 1, 2, ...,$ is , in fact, in *E* ; a Cauchy sequence, denote its limit by $x_i \in E$.

We clam that $x = (x_i)_i \in \lambda_M \{E\}$ and that $(x^k)_k$ tends to x as $k \to \infty$. For a fixed $\alpha = (\alpha_n) \in \lambda^*$, We will verify that the mapping $\varphi_{\alpha} : y = (y_n) \in \lambda_M \{E\} \to (\alpha_n ||y_n||) \in \ell_M$ is uniformly continuous. Since the norm $|| \cdot ||_M$ of ℓ_M is solid, for all $y = (y_n)$ and $z = (z_n) \in \lambda_M \{E\}$, we can write

$$\begin{split} \|\varphi_{\alpha}(y) - \varphi_{\alpha}(z)\|_{M} &= \|(\alpha_{n} \|y_{n}\|)_{n} - (\alpha_{n} \|z_{n}\|)_{n}\|_{M} \\ &= \|(\alpha_{n}(\|y_{n}\| - \|z_{n}\|))_{n}\|_{M} \\ &\leq \|(\alpha_{n} \|y_{n}\| - \|z_{n}\||)_{n}\|_{M} \\ &\leq \|(\alpha_{n} \|y_{n} - z_{n}\|)_{n}\|_{M} = \|\varphi_{\alpha}(y - z)\|_{M}. \end{split}$$

So, $\varphi_{\alpha}(x^{k}) = \{\alpha_{n} || x_{n}^{k} || \}_{k=1}^{\infty}$. Since ℓ_{M} is a complete normed space, this sequence converges to a limit that we denote by $\beta = (\beta_{n})$ in ℓ_{M} . Let *k* be a natural number. Then

$$egin{aligned} lpha_k \|_E &= lpha_k \|\lim_{p o \infty} x_k^p\|_E \ &= \lim_{p o \infty} lpha_k \|x_k^p\| = eta_k. \end{aligned}$$

So, $(\alpha_n ||x_n||)_n = \beta \in \ell_M$. By what we proved that $x \in \lambda_M \{E\}$.

A more difficult task is to prove the convergence of $\{x^k\}_{k=1}^{\infty}$ to *x*. Consider a positive real number ε .

We can select a natural number N for which, if $\alpha = (\alpha_n)$ is laying in B_{λ^*} and p and q are natural numbers greater than N, there exists $0 < \sigma < \varepsilon$ that satisfies

$$\sup_{X \in \mathbb{N}} \sum_{n=1}^{K} M\left(\frac{\|\alpha_n(x_n^p - x_n^q)\|}{\sigma}\right) = \sum_{n=1}^{\infty} M\left(\frac{\|\alpha_n(x_n^q - x_n^p)\|}{\sigma}\right) \le 1.$$

Thanks to the is continuity of M, letting $p \to \infty$, we find $\sum_{n=1}^{K} M\left(\frac{\|\alpha_n(x_n^q - x_n)\|}{\varepsilon}\right) \le 1$ for every natural number K greater than N. One can then conclude that

$$\begin{split} \|x^p - x\|_{\lambda_M\{E\}} &= \sup_{\alpha \in B^*_{\lambda}} \inf \\ \left\{ \sigma > 0 : \sum_{n=1}^{\infty} M\left(\frac{|\alpha_n(x_n^p - x_n)|}{\sigma}\right) \le 1 \right\} \le \varepsilon, \end{split}$$

whenever p is greater than N. The proof is over.

4 On the continuous dual of $\lambda_M \{E\}$

For $x = (x_n) \in \omega(E)$, let $\{x^{(k)}\}_{k=1}^{\infty}$ denote the sequence of the finite sections of *x*. That is

$$x^{(k)} = (x_1, x_2, \dots, x_k, 0 \dots) = \sum_{n=1}^k x_n e_n.$$

It is immediately seen that $\lambda_M \{E\}$ contains the finite sections of all its elements. In other words, if $y = (y_n) \in \lambda_M \{E\}$, then $\{y^{(k)}\}_{k=1}^{\infty} \subset \lambda_M \{E\}$. Using the Σ notation for $y^{(k)}$, we see that if y is an AK-sequence, that is $\{y^{(k)}\}_{k=1}^{\infty}$ converges to y, in $\lambda_M \{E\}$, then

$$y = \lim_{k \to \infty} y^{(k)} = \sum_{n=1}^{\infty} y_n e_n.$$
(3)

Let $\lambda_M \{E\}_r$ denote the subspace of elements of $\lambda_M \{E\}$ satisfying the equation (3). The vector sequence space $\lambda_M \{E\}$ is said to have the AK-property, if it coincides with $\lambda_M \{E\}_r$.

The following result relates topologically these two spaces.

Theorem 3. $\lambda_M \{E\}_r$ is a closed subspace of $\lambda_M \{E\}$.

Proof. Since the norm $\|\cdot\|_M$ of ℓ_M is solid, the definition of the norm $\|\cdot\|_{\lambda_M\{E\}}$ of $\lambda_M\{E\}$ reveals that it is monotonic ; in particular, if $y = (y_n) \in \lambda_M\{E\}$ then $\|y^{(k)}\|_{\lambda_M\{E\}} \le \|y\|_{\lambda_M\{E\}}$. Consider an element $y \in \lambda_M\{E\}$ then which is laying in the closure $\overline{\lambda_M\{E\}_r}$ of $\lambda_M\{E\}_r$ and a positive number δ . One has $z \in \lambda_M\{E\}_r$ and $K \in \mathbb{N}$ for which $\|y - z\|_{\lambda_M\{E\}} < \delta/3$ and $\|z^{(k)} - z\|_{\lambda_M\{E\}} < \delta/3$ if $k \ge K$. So, since $\|\cdot\|_{\lambda_M\{E\}}$ is monotonic,

$$\begin{aligned} \|y^{(k)} - y\|_{\lambda_{\mathcal{M}}\{E\}} &\leq \|y^{(k)} - z^{(k)}\|_{\lambda_{\mathcal{M}}\{E\}} + \|z - z^{(k)}\|_{\lambda_{\mathcal{M}}\{E\}} \\ &+ \|y - z\|_{\lambda_{\mathcal{M}}\{E\}} \\ &< 2\|y - z\|_{\lambda_{\mathcal{M}}\{E\}} \\ &+ \delta/3 < \delta, \end{aligned}$$

if $k \ge K$. This means that $y \in \lambda_M \{E\}_r$ and $\lambda_M \{E\}_r$ is indeed closed in $\lambda_M \{E\}$.

Theorem 4. Suppose that φ is a mapping which is linear and continuous on $\lambda_M \{E\}$. Define, for every natural number n, the mapping x_n^* on E by setting $x_n^*(t) = \varphi(te_n)$. Then, $(x_n^*)_n \in \lambda_N^* \{E^*\}$. In other words, $(x_n^*)_n$ is absolutely (λ^*, N) -summable in the dual space E^* of E.

Proof. The continuity of φ provides a positive constant *K* with the property that

$$|\varphi(y)| \le K ||y||_{\lambda_M \{E\}}$$
, whenever $y = (y_n)_n \in \lambda_M \{E\}$.

Now, for a natural number n and a vector z in E, the inequality (2) yields

$$|x_n^*(z)| = |\varphi(ze_n)| \le K ||ze_n||_{\lambda_M\{E\}} \le K(M(1)+1) ||e_n||_{\lambda} ||z||_E.$$
(4)

By the inequality (4), one has $(x_n^*)_n \in \omega(E^*)$. The proof that $(x_n^*)_n \in \lambda^*(E^*, N)$ is the only what is remaining. To do so, consider $\alpha = (\alpha_n) \in \lambda$. We will prove that $(\alpha_n ||x_n^*||)_n \in \ell_N = \ell_M^*$. Let $\gamma = (\gamma_n) \in \ell_M$.

Since
$$\|\gamma_n \alpha_n x_n^*\| = \sup\{|x_n^*(\gamma_n \alpha_n t)| : t \in B_E\}$$
, if $\delta > 0$, one

can find, for every natural number n, a vector t_n in the closed unit ball B_E of E satisfying

$$\|\gamma_n\alpha_nx_n^*\|\leq |x_n^*(\gamma_n\alpha_nt_n)|+\frac{\delta}{2^n}.$$

Let $(\varepsilon_n)_n \in \omega$ be such that $|\varphi(\gamma_n \alpha_n t_n e_n)| = \varepsilon_n \varphi(\gamma_n \alpha_n t_n e_n)$. For every $k \in \mathbb{N}$, we have,

$$\begin{split} \sum_{n}^{k} \|\gamma_{n}\alpha_{n}x_{n}^{*}\| &\leq \sum_{n}^{k} |x_{n}^{*}(\gamma_{n}\alpha_{n}t_{n})| + \sum_{n}^{k} \frac{\varepsilon}{2^{n}} = \sum_{n}^{k} |\varphi(\gamma_{n}\alpha_{n}t_{n}e_{n})| \\ &+ \delta = |\sum_{n}^{k} \varphi(\varepsilon_{n}\gamma_{n}\alpha_{n}t_{n}e_{n})| + \delta \\ &= \left|\varphi\left(\sum_{n}^{k} \varepsilon_{n}\gamma_{n}\alpha_{n}t_{n}e_{n}\right)\right| + \delta \\ &\leq K \left\|\sum_{n}^{k} \varepsilon_{n}\gamma_{n}\alpha_{n}t_{n}e_{n}\right\|_{\lambda_{M}\{E\}} + \delta. \end{split}$$

Let $(\beta_n)_n \in B_{\lambda^*}$. Then,

$$\left\|\sum_{n}^{k}\varepsilon_{n}\gamma_{n}\alpha_{n}\beta_{n}\|t_{n}\|e_{n}\right\|_{M}\leq\left\|\sum_{n}^{k}\alpha_{n}\beta_{n}\gamma_{n}e_{n}\right\|_{M}\leq\|\alpha\|\|\gamma\|.$$

Thus, $\left\|\sum_{n=1}^{k} \varepsilon_{n} \gamma_{n} \alpha_{n} t_{n} e_{n}\right\|_{\lambda_{M}\{E\}} \leq \|\alpha\| \|\gamma\|$, which proves that the series $\sum_{n=1}^{\infty} |\gamma_{n}| \|\alpha_{n} x_{n}^{*}\|$ converges. So, $(x_{n}^{*})_{n} \in \lambda_{N}^{*}\{E^{*}\}$.

For the α -duality, we prove what follows.

Lemma 2. Denote by $(\lambda_M \{E\})^{\times}$ the α -dual of $\lambda_M \{E\}$:

$$(\lambda_M \{E\})^{\times} = \{(a_n)_n \subset E^* : \sum_{n=1}^{\infty} |a_n(x_n)| < \infty, \forall (x_n)_n \in \lambda_M \{E\}\}.$$

Then one has the double inclusion $(\lambda_M \{E\}_r)^* \subset (\lambda_M \{E\})^{\times} \subset (\lambda_N^* \{E^*\}).$

Proof. We first show the inclusion $(\lambda_M \{E\})^* \subset (\lambda_M \{E\})^{\times}$. As in the proof of the theorem 4, let φ be in $(\lambda_M \{E\})^*$. For every natural number *n* and vector $z \in E$, define

 $b_n(z) = \varphi(ze_n)$. By the continuity of φ one has $\rho > 0$ such that

 $|\varphi(y)| \le \rho ||y||_{\lambda_M \{E\}}$, whenever $y = (y_n)_n$ belongs to $\lambda_M \{E\}$.

In particular, we get, by (2),

$$|b_n(z)| = |\varphi(ze_n)| \le \rho ||te_n||_{\lambda_M\{E\}} \le \rho (M(1)+1) ||e_n||_{\lambda} ||z||_{E_1}$$

for all $n \in \mathbb{N}$ and $z \in E$. This means that $(b_n)_n \in \omega(E^*)$. Now, we are ready to prove that $(b_n)_n \in (\lambda_M \{E\}_r)^{\times}$. Let $x = (x_n)_n \in \lambda_M \{E\}_r$. By the equation (3), $x = \lim_{k \to \infty} x^{(k)} = \sum_{n=1}^{\infty} x_n e_n$. Since φ is continuous on $\lambda_M \{E\}_r$, we can write

$$\varphi(x) = \varphi(\lim_{k \to \infty} x^{(k)}) = \lim_{k \to \infty} \varphi(x^{(k)})$$
(5)

$$= \lim_{k \to \infty} \sum_{n=1}^{k} \varphi(x_n e_n) = \sum_{n=1}^{\infty} \varphi(x_n e_n)$$
$$= \sum_{n=1}^{\infty} b_n(x_n).$$
(6)

Then, the series $\sum_{n=1}^{\infty} a_n(x_n)$ converges. Actually, it converges absolutely. In fact, let $(\varepsilon_n)_n$ a sequence of real numbers such that

$$|a_n(x_n)| = \varepsilon_n a_n(x_n)$$
, for every $n \in \mathbb{N}$.

It is not hard to verify that $y = (\varepsilon_n x_n)_n$ belongs to $\lambda_M \{E\}_r$ and that

$$\sum_{n=1}^{\infty} |a_n(x_n)| = \varphi(y)$$

Now, let $a = (a_n)_n \in (\lambda_M \{E\})^{\times}$. We have to prove that for all $\alpha = (\alpha_n)_n \in \lambda$, $(\alpha_n ||a_n||_{E^*}) \in \ell_N$. As in the second part of the proof of (4), since $\ell_N = \ell_M^*$, it is enough to prove that the series $\sum_{n=1}^{\infty} |\gamma_n \alpha_n| ||a_n||$ converges, for all $(\gamma_n)_n \in \ell_M$. For every $n \in \mathbb{N}$, since

$$\|\gamma_n \alpha_n a_n\| = \sup\{|a_n(\gamma_n \alpha_n t)| : t \in B_E\},\$$

there exists $t_n \in B_E$ such that

$$|\gamma_n \alpha_n a_n|| \leq |a_n(\gamma_n \alpha_n t_n)| + \frac{1}{2^n}.$$

But, $(\gamma_n \alpha_n t_n)_n \in (\lambda_M \{E\})$. Indeed, if $\beta = (\beta_n)_n \in \lambda^*$ then $(\gamma_n \alpha_n ||t_n||)_n \le ||\alpha|| ||\beta|| (\gamma_n)_n$ and ℓ_M is normal.

Now, $\sum_{n=1}^{\infty} |a_n(\gamma_n \alpha_n t_n)| < \infty$ since $a \in (\lambda_M \{E\})^{\times}$ and $(\gamma_n \alpha_n t_n)_n \in \lambda_M \{E\}$, and then $\sum_{n=1}^{\infty} |\gamma_n| |\alpha_n a_n|| \le \sum_{n=1}^{\infty} |a_n(\gamma_n \alpha_n t_n)| + 1$ is finite too. This completes the proof.

Theorem 5. Let ψ be the correspondence from $(\lambda_M \{E\}_r)^*$ to $(\lambda^*\{E^*,N\})$ which assigns to every continuous linear form on $\lambda_M \{E\}_r$ the element of $(\lambda^*\{E^*,N\})$ defined by the sequence $b = (b_n)_n$ given in the theorem 4. Then, ψ defines a one- to- one continuous mapping, when these two spaces are endowed with their standard respective norms.

Proof. If $\varphi \in (\lambda_M \{E\}_r)^*$ the sequence $a = (a_n)_n$ represents φ as seen in (5). So, ψ is well defined. Moreover, using (5), one can see that ψ is linear and one to one. Now, let us prove that ψ is continuous.

Let $a = (a_n)_n$ be an element of $\in \lambda_N^* \{E^*\}$, and $\alpha = (\alpha_n)_n \in B_\lambda$. Since $\ell_N = \ell_M^*$, the norm of $\|(\alpha_n \|a_n\|)_n\|_N$ is defined by,

$$\|(\alpha_n\|a_n\|)_n\|_N = \sup\left\{\sum_{n=1}^{\infty} |\gamma_n|\alpha_n\|a_n\|)_n : \gamma = (\gamma_n) \in B_{\ell_M}\right\}$$

For $\varepsilon > 0$, a sequence $(t_n)_n \subset B_E$ can be found such that, for every $n \in \mathbb{N}$,

551

$$\gamma_n \alpha_n \|a_n\| \leq a_n (\gamma_n \alpha_n t_n) + \frac{\varepsilon}{2^n}.$$

But, as can be easily seen, $y = (\gamma_n \alpha_n t_n)_n \in \lambda_M \{E\}_r$, and then, if φ is represented by the sequence $(a_n)_n$, we have

$$\sum_{n=1}^{\infty} |\gamma_n|\alpha_n ||a_n|| \le |\varphi(y)| \le \varepsilon + ||\varphi||_{(\lambda_M \{E\}_r)^*} ||y|$$
$$\le \varepsilon + ||\alpha|| ||\gamma||.$$

Conflict of Interest

The authors declare that there is no conflict regarding the publication of this paper.

References

- E. Pietsch, Nuclear locally convex spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1972.
- [2] M. Florencio, P. J. Paúl, Barrelledness conditions on vector valued sequence spaces, Arch. Math., 48 1987, 153-164.
- [3] R. C. Rosier, Dual space of certain vector sequence spaces, *Pacific J. Math.*, 46, 1973, 487-501.
- [4] D. Ghos, P. D. Srivastava, On some vector valued sequence space using Orlicz function, *Glansik Matematički*, 34 1999, 253-261
- [5] M. Gupta, S. Pradhan, On Certain Type of Modular Sequence Spaces, *Turk J. Math.*, **32** 2008, 293-303.
- [6] M. Florencio, P. J. Paúl, Una representacione de cietros εproductos tensoriales, Actas de las Jornadas Matematicas Hispano-Lusas. Murcia, 1985; 191-203.
- [7] M. Florencio, P. J. Paúl, La propiedad AK en cietros espacios de suecsiones vectoriales. Proc. Eleventh Spanish-Portuguese Conference on Mathematics, *Dep. Mat. Univ. Extremadura*, 18, 1987, 197-203.
- [8] L. Oubbi, M. A. O. Sidaty, Reflexivity of spaces of weakly summable sequences, *Rev. R. Acad. Cien. Serie A. Mat.*, 101, 2007, 51-62.
- [9] L. Oubbi, M. A. O. Sidaty, Dual space of certain locally convex spaces, *Revista de la Real Academia de Ciencias de Zargoza.*, 59, 2004, 79-88.
- [10] M. A. O. Sidaty, Nuclearity of certain vector-valued sequence spaces, *Revista de la Real Academia de Ciencias de Zargoza*, 62, 2007, 81-89.
- [11] M. A. O. Sidaty, Reflexivity and AK-property of certain vector sequence spaces, *Bull. Belg. Math. Soc.*, **10**, 2003, 579-583.
- [12] M. A. O. Sidaty, Reflexivity of vector-valued Kothe-Orlicz sequence spaces, *Turk J Math*, 42, 2018, 911-923.