J. Stat. Appl. Pro. 12, No. 3, 1169-1178 (2023) %N =) 1169

Journal of Statistics Applications & Probability

An International Journal

http://dx.doi.org/10.18576/jsap/120324

On the Performance of Dirichlet Prior Mixture of
Generalized Linear Mixed Models for Zero Truncated
Count Data

0. S. Adesina', K. S. Adekeye I A. F. Adedotun **, N. O. Adeboye 3 Po. Ogundile 2 and O. A. Odetunmibi >

' Department of Mathematics and Statistics, Redeemer’s University, Osun State, Nigeria
ZDepartment of Mathematics, Covenant University, Ota, Ogun State, Nigeria
3Department of Statistics, Osun State University, Osogbo, Osun State, Nigeria

Received: 4 May 2022, Revised: 22 Aug. 2022, Accepted: 18 Sep. 2022
Published online: 1 Sep. 2023

Abstract: In this study, the performance of Dirichlet Process Mixture of Generalized Linear Mixed Models (DPMGLMMs) was
examined against some competing models for fitting zero-truncated count data. The Bayesian models such as Monte Carlo Markov
Chain GLMMs, Bayesian Discrete Weibull and the frequentists models such as Zero truncated Poisson, Zero truncated Binomial and
Zero truncated Geometric models were compared with the proposed DPMGLMMs model. Simulation and life count data from health
domain was used to compare the performance of DPMGLMM with the Bayesian and frequentist models considered in this study. The
results showed that the DPMGLMM outperformed other models considered for fitting count data that is truncated at zero.
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1 INTRODUCTION

Count data can exhibit equi-dispersion, over-dispersion, or under-dispersion. One popular model for fitting count data
is the Poisson model, but it is only suitable for equi-dispersed data due to the equal mean and variance associated with
Poisson distribution [1]. Relative to Poisson regression, negative binomial regression is suitable for over-dispersed data
because it has a parameter that takes care of over-dispersion in count data. There are models suitable to fit different types
of count data based on dispersion type, presence or absence of zeros, and other forms. Some techniques which are an
improvement on the Poisson regression model can be found in the works of [2-6]. If a count response variable contains
zero counts, a zero-inflated and hurdle model can be suitably applied such as [7, 8] who applied a zero-inflated model to
fit time series COVID-19 count data. In the same vein, zero truncated models are suitable for count data that is truncated at
zero. Models different from zero truncated models may be used such as Negative binomial or discrete Weibull, but might
give misleading results [4]. Modelling of count data has been applied in disciplines such as biological sciences [9, 10], in
insurance [6, 11], in Education [12], in medicine [13-19].

Studies such as [20] showed the strength of Monte Carlo Markov Chain of Generalized Mixed Models
(MCMCGLMMs) in fitting zero truncated count data count data. Haselimashhadi [17] showed the strength of Bayesian
discrete Weibull to fit count data that is either under- or over-dispersed. In this study, Dirichlet Prior Mixture of
(DPMGLMMs) was proposed to fit a special case of count data with no zero and compare it with competing models.

In the study by [20, 21], the zero-truncated were found to sufficiently fit zero-truncated data relative to other models
for fitting zero-truncated data. This study aims to identify the strength of zero truncated models dedicated to fitting count
data compared to Bayesian models. The DPMGLMMs, as [22] found to be robust for fitting over-or-under-dispersed count
data. Some zero truncated models considered in this study are zero truncated Poisson, zero truncated Negative Binomial,
and zero truncated Geometric; the zero truncated models are frequentist based. Another frequentist-based model is the
Generalized mixed models Template model builder. We aim to compare these models with one another to determine which
is best suited for the data.
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Studies such as [23-27] gave compelling advantages of Bayesian estimation techniques over frequentist models.
Therefore, we also considered modelling and comparing the frequentist zero truncated models with Bayesian models
such as Bayesian Discrete Weibull, Monte Carlo Markov Chain of Generalized Mixed Models, and Dirichlet Prior
Mixture of Monte Carlo Markov Chain of Generalized Mixed Models.

2 METHODOLOGY

2.1 Generalized Linear Model (GLM)

The frameworks of GLM and its extension have been useful for modelling count data. GLM operates with a link function
that links the response variable to the predictors.

If y; =1,2,...n is a response variable of a given set of data and it is a function of the covariates x;;,xj...xj, then a
classical linear regression can be expressed as

yi:ﬁ0+B|x,~1+ ....... kal-k+8i, i=1,2,..n (1)

where By and f; are parameters to be estimated, and € is the error term.
Equation 1 in matrix form is

Yaix1 :anpﬁpxl+8pxl (2)

A random variable has a distribution in the exponential family, if the probability mass function (pmf) of observation
is of the form,
The distribution the exponential of family of random variable y is of the form:

F010) = c(,9)exp(yd — a(6)) /¢, g(1;) = x B 3)

Eq.3 is as provided by [28] where O is the location parameter ,@ is the dispersion parameter, and c(y,@) is the
normalizing factor.
The two basic components of GLM are the link function and the canonical link. The link function is expressed as

P !
n=) xpi=xp *)
=1

To identify a model that can suitably fit zero truncated count data obtained, the following models were considered in
this study:

Zero truncated models, Bayesian estimation techniques such as Discrete Weibull of type III [29], Generalized Linear
Mixed Models (MCMCglmms), and Bayesian Dirichlet Process Mixture Prior of GLMMs (DPMglmm).

Zero Truncated Models

Let f(x; 0) be the original Poisson distribution. Then the probability density function (pdf) of zero-truncated form of f(x;
0) is given as follows

v B B f(x;0) B 6re? B 0+
f(x:8) = P(X =X >0) = 1—Py(0:0) x!(1—e9) x!(ef—1) ®)
The mean is
0
E(X)= T (6)
and the variance is
var(X) =E(X)[1+6 —E(X)] @)

The pdf for zero-truncated binomial and zero truncated Poisson can be found in [20, 30]. The study by [30] outlined the
parameter estimation for zero-tuncated models such as zero-tuncated Poisson, zero-tuncated Binomial, and zero-tuncated
geometric.

© 2023 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 12, No. 3, 1169-1178 (2023) / www.naturalspublishing.com/Journals.asp NS e 1171

Bayesian Discrete Weibull

The cumulative distribution function of the discrete Weibull of type III is given as

B
1—¢" y=0,1,2...
G(y;q,p) = ’ ’ 8
0:4.B) {0, otherwise ®
The probability mass function is given as:
B (4nf o
7 —q , y=0,1,2...

G(v:q,B) = 9
0:4:B) {O, otherwise ©)

0<g<landfB >0

Let y be a count response variable, and x1,x;...x, be p covariates, the logit link follows that

log(q/1—q) = 60+ O1x1 + ...+ 6px, (10)

qg= ex,-ﬂ/] +ex,-9

n ex,-ﬂ ¥ ex,-ﬂ (1+y)5
(6 =1|! S Era— - — 11

( 7ﬁ|x7y) iI:]log (1+ex,-6) (1+ex,~9) (11)

The Bayesian technique is widely applied in fitting data, following the specification of the prior distribution, hyper prior,
and hyper-parameters, respectively. Among other specifications necessary in Bayesian is the thinning interval, and burn-
in interval for the chain to stabilize. For Bayesian Discrete Weibull, 20,000 iterations were implemented using logit link;
Laplace prior was used to allow for shrinkage with Gamma hyper-parameter. Twenty percent burn-in was allowed at both
ends of the distribution to stabilize the chain.

2.2 Generalized Linear Mixed Models (GLMMs)

The GLMMs is formed when a random effect is added to the fixed effect model in generalized linear model. GLMMs
are robust in fitting both data sets that are normally distributed and ones that are not normally distributed. The model in a
matrix form is given as

y=XB+Zy+e (12)

The dimensions of Equation (12) are expressed as:

)’N><1:Xleﬁpxl‘FZququl‘FEle (13)

where X and Z are the fixed and random predictors, and the corresponding parameter vectors 3 and 7, and E is the
residuals.

To model the Bayesian MCMCGLMM, the Iterated Weighted Least Square prior was used and Gamma hyper prior.
The parameters of Wishart distribution were used as hyper-parameters for the scale matrix.

2.3 Dirichlet Process Mixture Models

If a sample space is represented by €2, the Dirichlet process is made up of partitions of the sample space 2. If a distribution
of G is drawn from the Dirichlet process, then Q will have partition (By, B, .. Bi), [12]. The @; and p; are the parameters

of Dirichlet distribution, where ¢; the concentration parameter.
(x.
c=Y 0and E(p) = El = q

i

! ! . .
Then the base measure, G, = (¢,..., @) the association can be expressed as

(G(By),...,G(By) ~ (aGo(By),...,aG(By)) (14)

© 2023 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

1172 NS ¥ 0. S. Adesina et al.: On the Performance of Dirichlet Prior Mixture of...

Let y1,...,y; be taken from unidentified distribution, and y; is multivariate real-valued [31], and modelling y; takes
the distribution of the form F(6), with the mixing distribution over 6 taken as G. The Diritchlet mixing process is of the
form.

G ~ DP(|G,, )
0|G ~ G

yi|6; ~ F(0) (15)

From Eq. 15, aGy is the mean of the dirichlet process. The Iterated weighed Least Square (IWLS) proposal discussed
by [32] was used to sample from the posterior distribution.

If the prior for B is represented by N(a,R), then following Eq. 3, the posterior distribution for the fixed effect model
is of the form:

n<ﬁ|y,~>o<exp{—§<ﬁ—a>’R1<ﬁ—a>+i“"iTW} 16)
i=1 1

Wishart distribution prior was used, if R! — 0, but a non-informative prior would be used.

3 RESULTS

3.1 Simulation Study

One thousand samples of over- and under-dispersed zero-truncated count data response variable from Poisson distribution
were randomly generated. The parameters of over-dispersed count response is =20, lower truncation =1 and upper
truncation =60, and two predictors from the uniform distribution in the interval (0,1), and (1,1.5) respectively. For under-
dispersed, two predictors were simulated from the uniform distribution in the interval (0,1), and (1,1.5) respectively, the
parameters of the count response variable is 6 = 20, lower truncation =2, and upper truncation =10. Function in the
package “extraDistr” by [33] was used to carry out the zero-truncated models. In the estimation stage of DPMglmm,
response variable was controlled for in the random part of the model. The mean of the simulated over-dispersed count
response 19.976, and variance is 21.020, while the mean of the simulated under-dispersed count response is 9.212, and
variance is 1.076

Wishart distribution prior, suitable for DPMglmm, was used based on hyper-parameters. Twenty-thousand (20000)
iterations were initiated, with 100 thinning intervals and 200 burn-in. The software package by [34] was used to implement
the analysis. R package such as “MuMIn” by [35], “glmmTMB” by [36], “MCMCglmm” [37], “DPpackage” by [38, 39],
“BDWreg” by [40], “AER” by [41], and “countreg” by [42].

Models such as zero truncated Poisson (ZTP), zero truncated Binomial (ZTB), zero truncated Geometric (ZTG),
Template model Builder of GLMMs (glmmTMB), Bayesian discrete Weibull (BDW), Dirichlet process mixture of
GLMMs (DPMglmm), Monte Carlo Markov Chain of GLMMs (MCMCglmm) were used to model the data, both for
simulation and real-life data. Model selection criteria such as AIC and BIC were used to select the best model(s).
Simulation of under-dispersed zero-truncated data for both Frequentist and Bayesian estimation techniques is presented
in Table 1 and Table 2 respectively following the procedure parameter and the truncation condition outlined in first
paragraph of this section. While the results for frequentist and Bayesian models for real-life application is presented in
Table 3. Considering both frequentist and Bayesian is justified by the last two paragraphs in the introductory part of this
paper. The result for the Bayesian regression model is presented in Table 4, Table 5 and Table 6.

Table 1: Simulated Under-dispersed Zero-truncated data

Frequentist Bayesion
Model | ZTP Z1B Z1G glmmTMB | BDWV MCMCglmm | DPMglnm
AIC | 418233 | 418433 | 519336 | 41823 4225.66 | 4181.76 3522.10*
BIC | 4197.05 |4203.96 |5208.08 | 4197.1 424529 | 4201.39 3524.20*
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From Table 1, the results of simulated under-dispersed zero-truncated data using AIC and BIC, showed that
DPMglmm outperformed BDW, MCMCglmm, ZTP, ZTB, ZTG, glmmTMB. Also, ZTP and glmmTMB outperformed
ZTB and ZTG among the frequentist models.

Table 2: Simulated Over-dispersed Zero-truncated data

Frequentist Bayesian
Model | ZTP ZTB ZTG ginmTMB | BDW | MCMCglmm | DPMglmm
AIC 581832 | 5820.34 | 7938.64 | 58183 594028 | 5814.467 4860.93*
BIC 5833.04 | 5839.97 | 7953.37 | 5833.0 595991 | 5834.098 4862 .90*

From Table 2, the results of simulated over-dispersed zero-truncated data are similar to that of over-dispersed. The
AIC and BIC showed that DPMglmm outperformed BDW, MCMCglmm, ZTP, ZTB, ZTG, glmmTMB, while ZTP and
glmmTMB outperformed ZTB and ZTG among the frequentist models.

3.2 Life Data

The life data used is on one hundred and eighty-one (181) patients with high and low Blood Pressure diagnosis. The data
consists of visits to the doctor between the periods of July 2020 to July 2021. The variables include visit to doctor (Count
Response); while the predictor variables are: Age, Sex coded as (male=1, female=0), Hypertensive Follow-up
(HFollowp, F=1, N/F=0), Hypertensive Heart Disease (HHeartD, HHD=1, N/HHD=0), Poor Blood pressure control
(Poor.BPC, PBPC=1, N/PBPC=0) and Hypotension (Hypo=1, Hyper=0). For the period observed, a patient must have
been diagnosed with either high blood pressure or low blood pressure. If a patient’s condition is not suffering from
hypotension (Low BP), then it is a case of hypertension (High BP). Hypertensive Heart Disease, Poor BPC, HFollowup
were captured as cases associated with patients diagnosed for blood pressure.

The mean is 2.801, and the variance is 4.616, by implication, the data is over-dispersed. The model performance of
Frequentist and Bayesian Models for the Blood pressure data are presented in Table 3. The AIC and BIC were used as
model selection criteria in this study. The results in Table 3 are for the Zero-truncated Poisson (ZTP), Zero-truncated
Binomial(ZTB), Zero-truncated Geometric (ZTG), and GLMMs Template model Builder (glmmTMB).

Table 3: Model performance of Frequentist and Bayesian Models for life data

Frequentist Bayesian

Model ZTP ZTB ZTG gllhimTMB BDW MCMCglmm DPMglmm
AIC 673.228 638.808 638.095 673.200 722970 665.083 518.920*
BIC 695.628 663.809 660.485 695.600 748.558 590.671 520.466*

The results in Table 3 showed that DPMglmm outperformed all the Bayesian and Frequentist models, while Truncated
Geometric distribution outperformed ZTP, ZTB, ZTG, and glmmTMB on BIC value. Table 4 contains the results of
Bayesian Discrete Weibull regression. Laplace prior was used, with 0.25 percent of the 30,000 iteratins was allowed in
the burn-in stage to allow stability in the chain.

From Table 4, 6 is the intercept, 6, is sex, 6, is Age, 63 is HFollowup, 6, is HHearthD, 65 is Poor.BPC, and 6y is
Hypotension. The results show that 6y, 6, 6,, and 6,4 are zero included. While 63, 65, 66, and 3 are not zero included, so,
65 (Hypertensive Heart disease), 05 (Poor BP control), and 6 (Hypotension), and 8 significantly impact on the number of
visits of Blood pressure cases to the health facility. The results in Table 4 are demonstrated in Fig 1. Significant parameters
are in red.
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Table 4: Estimation Based on Bayesian Discrete Weibull

Lower 95% C.I Est. Upper 95% C.I | Zero included
Gy -0.759347556 0.05002992 0.65494640 1
a, -0.246840583 0.02670931 0.16596849 1
a5 -0.005641076 0.00302040 0.01224607 1
5 1.467312059 2.09087814 2.56173419 0
4, -0.087748405 0.49959647 0.64701083 1
8 0.167552583 0.40216317 0.65487801 0
a, -1.137656979 -0.68623147 -0.43758300 0
5 1.618411188 1.75327856 192859125 0
O -

!

95 % HPD interval

Fig. 1: Plots showing the significance of the parameters.

Table S represents the results of the MCMCGLMMs. 3000 iterations was conducted and 10%, that is, 300 iterations
were allowed in the burn-in stage to allow stability in the chain.

Table 5 shows that HFolloup (hypertensive follow-up) and Poor.BPC account for number of visits of hypertensive
patients to the doctor at the health facility. Figure ?? shows the iterations (left) and the density (right).
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Table 5: Estimation Based on MCMCGLMMs

From

post.mean | 1-95% CI | u-95% CI | eff.samp pMCMC
(Intercept) 0.86328 -1.33389 3.18522 270.0 0.430
Sex 0.05110 -0.55864 0.63536 410.9 0.933
Age -0.01695 | -0.05286 0.01983 270.0 0.370
HFollowup 2.56122 1.26253 3.88199 270.0 <0.004 **
HHearthD 0.48288 -1.74972 2.28932 270.0 0.593
Poor.BPC 1.28210 0.50173 2.08830 270.0 <0.004 **
Hypotension |-0.04898 | -3.14676 | 2.19763 270.0 0.933
Trace of (interce pt) Density of (Interce pt)
= | WW.I = g i . : - i I[
Trace of Sex Density of Sex
=3 H‘:’WWWMWII = = ] . . . i |
Trace of Age Density of Age
S N o e T L e . e 11
Trace of HFollowp Density of HFollowp
e T e sd ——]

Trace of HHearthD

awwﬁ}mwll

So0 1500 2000

1000 2500 3000

rRerations

Trace of Poor.BPC

QMWWWI[

so0

1000 1500 2000 2S00 3000

Rerations

Trace of Hypotension

EMTWW.[

So0

1000 1500 2000 2500 3000

terations

00

00

000

Density of HHearthD

T T T T
-2 o 2 4

N =270 Bandwidth = 0.3244

Density of Poor.BPC

T T T T T
0.5 1.0 1.5 2.0 2.5

N =270 Bandwidth = 0.1289

Density of Hypotension

& -2 o 2 4

N =270 Bandwidth = 0.4451

Fig. 2: shows the iterations and the density.

Fig. 2, stability in the chain is observed.
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Table 6: Regression coefficients for Bayesian DPMglmm

Mean 05%CI-Low 95%CI-Upp
(Intercept) 1.50665 0.60864 2.38700
Gender -0.01902 -0.20523 -0.15896
Age -0.00097 -0.01050 -0.00916
HFollowup -0.02985 -0.65587 -0.55055
HHearthD -0.07292 -0.06082 0.42892
Poor.BPC -0.01407 -0.01075 0.20875

Table 6 shows the results of fitting the blood pressure count data using Bayesian DPMglmm. The posterior mean for
gender was (-0.019), which shows that less males diagnosed for blood pressure cases visit the doctor as compared to their
female counterparts. Posterior mean for Age is (-0.00096) which implies that the patients that have more visits to the
doctor were not necessarily the older people. The posterior mean for HFollowup was (-0.0298) which implies that blood
pressure patients being followed significantly account for the number of visits to the doctor.

The results from zero truncated geometric show that bad blood pressure control is highly significant with a coefficient
0.6337, z-value=2.872 and p-value =0.004 1. Indicating that amongst other reasons, ’bad blood pressure control” accounts
for visits of patients diagnosed with pressure cases to the doctor. This result agrees with that of the study by [43] that
hypertensive patients do not always feel sick; hence do not see reasons why they should pay special attention to their
blood pressure.

4 CONCLUSION

In this study, truncated models, glmmTMB, and Bayesian models have been used to fit count data that is truncated at zero.
Models that have been proposed for fitting count data in the past were either suitable for fitting under-dispersed count data
or for over-dispersed count data. Recent studies have proposed robust models for either under-dispersed or over-dispersed
count data. The results in the simulation study show that glmmTMB and zero truncated Poisson outperformed both zero-
truncated binomial and zero-truncated Geometric in the under-dispersed and over-dispersed count data. The comparison
between Bayesian and frequentist is further to establish the superior strength of Bayesian techniques over the frequents as
identified [23-26] which has been demonstrated with the performance of DPMGImms.

The findings in this study, based on simulated data, show that the Bayesian DPMGIlmm is a better model for fitting
zero truncated count data for under-or over-dispersed count data; while zero truncated Poisson regression may be used
when considering frequentist models for modelling zero truncated data. The result of the life data also shows that Bayesian
DPMglmm is superior to all the competing models for both under-dispersed and over-dispersed count data. DPMglmm
also outperformed all the frequentist models dedicated to fitting zero-truncated count data.
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