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Abstract: The objective of this work is to improve the relationships between the solutions of neutral differential equations and their
corresponding functions in the classical case. We use these relationships to optimize the conditions that test the oscillation of solutions
to Emden-Fowler neutral differential equations. We consider both cases p < 1 and p > 1. In the case p > 1, we test the oscillation
of the solutions without imposing the conventional constraints on the delay functions. The approach adopted depends on deducing
new properties for the positive solutions of the studied equation, and these properties are of an iterative nature. The iterative nature of
properties helps to create relationships and conditions that can be used more than once. By applying the results to special cases of the
studied equation, we can clarify the importance of the new results and compare them with the relevant previous results.
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1 Introduction

Emden–Fowler equation is attributed to the astrophysicist
Jacob Emden (Swiss: 1862–1940) and astronomer Sir
Ralph Fowler (English: 1889–1944). Fowler [1] discussed
the nature of the solutions to the Emden equation

d
ds

(
s2 d

ds
x(s)

)
+ s2x(s) = 0,

and explained some of its applications in astrophysics.
Moreover, in [2], He investigated the equation to explain
many fluid mechanics phenomena. The generalization of
this equation and its use to simulate various physical
processes have since attracted increasing interest [3,4].
The Emden–Fowler with a forced term

d
ds

(
p(s)

d
ds

x(s)
)
+q(s) |x(s)|α−1 sgnx(s) = g(s) ,

where s ≥ s0, α ≥ 1, and p, q ∈ C([s0,∞)), arises from a
certain radial solution of the equation of Klein–Gordon,
which is the relativistic version of the Schrödinger
equation and used to describe spinless particles. The

oscillatory behavior of this equation on a time scale has
been studied in [5,6]. There are many physical
applications (theoretical, and chemical physics) and
engineering applications for Emden-Fowler differential
equations with delay and neutral arguments. Therefore, it
is easy to note the great interest in studying the
asymptotic and oscillatory properties of solutions to these
equations; see, for example, [7,8,9,12,13,14,15]. In
many applications, a kind of delay differential equations
appear which are called neutral differential equations
(NDE), see [10].

In this study, we investigate some monotonic
properties of positive solutions of the Emden–Fowler
NDE

d
ds

(
a(s)

[
dn−1

dsn−1 z(s)
]α
)
+q(s)xα (h(s)) = 0, (1)

where s ≥ s0, n ≥ 2 is an even integer, α > 0 is a ratio of
odd integers, and z(s) = x(s) + p(s)x(δ (s)). We use
these properties to deduce some new inequalities and
relationships, and then explain the importance of the new
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relationships by applying them in the oscillation theory.
Throughout this study, we hypothesize the following:

H1:a ∈ C1 ([s0,∞) ,(0,∞)) , a′ (s) ≥ 0, p,
q ∈ C([s0,∞) , [0,∞)) , p(s) ≤ p0, and q does not
vanish eventually;

H2:δ , h ∈ C([s0,∞) ,R) , δ (s) ≤ s, h(s) < s, h′ (s) ≥ 0,
and lims→∞ δ (s) = lims→∞ h(s) = ∞.

For a solution of (1), we mean a function
x ∈ C([sx,∞) ,R) , sx ≥ s0, which satisfies

z ∈ Cn−1 ([sx,∞)) , a ·
[
z(n−1)

]α

∈ C1 ([sx,∞)) and x

satisfies (1) on [sx,∞) . We consider only those solutions
of equation (1) which are not vanish eventually. If a
solution x of (1) is eventually positive or negative, then it
is said to be non-oscillatory; otherwise, it is said to be
oscillatory.

In the canonical case, that is,∫
∞

s0

a−1/α (ℓ)dℓ= ∞. (2)

Baculikova and Dzurina [11] presented conditions for
oscillation of the NDE

d
ds

(
a(s)

[
d
ds

z(s)
]α)

+q(s)xβ (h(s)) = 0, (3)

under the following conditions

τ ◦σ = σ ◦ τ, τ
′ (s)≥ τ0 > 0 and σ (s)≤ τ (s) . (4)

The results in [11] stand out because they test the
oscillation of (3) when p0 ≥ 1 as well as p0 < 1, unlike
most other research in the literature that only examine the
oscillation when p < 1.

For equation (1), Grace et al. [16] and Moaaz et al.
[17] used various methods, and enhanced the well-known
oscillation results that were documented in the literature.

Theorem 1.[16, Theorem 6] All solutions of equation (1)
oscillate if

limsup
s→∞

∫ s

s1

[
ϕ (ℓ)G(ℓ)exp

(
−
∫ ℓ

h(ℓ)

α

a1/α (l)w(l)
dl
)

−
a(ℓ)

(
ϕ ′
+ (ℓ)

)α+1

(α +1)α+1
ϕα (ℓ)

dℓ

]
= ∞,

where ϕ ∈C([s0,∞) ,(0,∞)), G(s) = (1− p(h(s)))α q(s),
ϕ ′
+ (s) := max{ϕ ′ (s) ,0}, and

w(s) : =
∫ s

s1

a−1/α (ℓ)dℓ

+
1
α

∫ s

s1

(∫ ℓ

s1

a−1/α (l)dl
)(∫ h(ℓ)

s1

a−1/α (ℓ)dℓ
)α

G(ℓ)dℓ.

Recently, Pátı́ková and Fišnarová [18] and Jadlovská
[19] used improved techniques to investigate the
oscillation of equation (1). The results were obtained in

[18] using modified Riccati technique. In [19], Jadlovská
considered both cases δ (s)≤ s and δ (s)≥ s.

All of these and other results were used by the
traditional relationship x > (1− p)z that links the solution
x and its corresponding function z, as well as the known
monotonic properties. Nevertheless, Jadlovská [19]
improved the monotonic properties of the solutions to the
equation (1) by using an iterative approach.

It is easy to notice that the difficulties of studying
oscillations for equations of the higher order are more
than those of the second order. This is due to a
fundamental issue in the theory of oscillation, which is
the classification of positive solutions. With the increase
in the order of the equation, the probabilities of the
signals of the derivatives of the solutions increase,
especially in the non-canonical case. Another interesting
problem in the study of oscillation is obtaining criteria in
the case of x = 1 without finding restrictions on the delay
functions. It is worth noting that we will address this
problem through the results in this paper.

In this paper, in the canonical case (2), we obtain new
monotonic properties of solutions to equation (1) using an
iterative approach, which is an extension of the approach
used in [16]. Moreover, we employ new properties to
obtain a suitable improvement for the relationship
x > (1− p)z. Then, we find new oscillation criteria using
improved characteristics. Through comparisons and
examples, we explain the effect of improving
characteristics on the oscillation criteria.

2 Second-order equation

In this section, we present new results that improve the
monotonic properties and oscillation criteria for solutions
of equation (1) when n = 2.

2.1 Properties of solutions

In the following, we deduce some new properties and
relationships for the positive solutions of the studied
equation. For convenience, we define

f[0] (s) = s, f[ j] (s) = f
(

f[ j−1] (s)
)

, for j = 1,2, ... ,

η0 (v,u) =
∫ v

u

1
a1/α (ℓ)

dℓ,

Bi (s,m) :=

{
p̃i (s;m) for p0 < 1,
p̂i (s;m) for p0 >

η0(s,s0)
η0(δ (s),s0)

,

µi (s,s1) = η0 (s,s1)

+
1
α

∫ s

s1

η0 (ℓ,s1)η
α
0 (h(ℓ) ,s1)q(ℓ)Bα

i (h(ℓ) ,m)dℓ,

ηi+1 (s,s1) = exp
[∫ s

s1

dℓ
µi (ℓ,s1)a1/α (ℓ)

]
,
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for i = 0,1, ..., where

p̃i (s;m) =
m

∑
k=0

2k

∏
i=0

p
(
δ[i]
)[ 1

p(δ[2k])
−1
]

ηi
(
δ[2k],s0

)
ηi (s,s0)

,

and

p̂i (s;m) =
m

∑
k=1

2k−1

∏
i=1

1

p
(

δ
−1
[i]

) [ηi

(
δ
−1
[2k−1],s0

)
ηi

(
δ
−1
[2k],s0

) − 1
p
(

δ
−1
[2k]

)
]
.

Lemma 1.[11, Lemma 3] Each corresponding function z
of an eventually positive solution x to equation (1) is
positive, increasing, and satisfies

(
a(s) [z′ (s)]α

)′ ≤ 0.

Lemma 2.[20, Lemma 1] For any eventually positive
solution x to equation (1), if p0 < 1, then

x >
m

∑
k=0

(
2k

∏
i=0

p
(
δ[i]
))[ z

(
δ[2k]

)
p
(
δ[2k]

) − z
(
δ[2k+1]

)]
, (5)

for any integer m ≥ 0.

Lemma 3.For any eventually positive solution x to
equation (1), if p0 > 1, then

x >
m

∑
k=1

(
2k−1

∏
i=1

1
p
(

δ
−1
[i]

)
)[

z
(

δ
−1
[2k−1]

)
−

z
(

δ
−1
[2k]

)
p
(

δ
−1
[2k]

)
]
,

for all ε ∈ (0,1).

Proof.From the relationship between x and z, we find that

x(s) = 1
p(δ−1)

[
z
(
δ
−1)− x

(
δ
−1)]

= 1
p(δ−1)

z
(
δ
−1)− 1

p(δ−1)

[
z
(

δ
−1
[2]

)
−x
(

δ
−1
[2]

)]
p
(

δ
−1
[2]

)
= 1

p(δ−1)
z
(
δ
−1)− 2

∏
i=1

1
p
(

δ
−1
[i]

) z
(

δ
−1
[2]

)
+

3

∏
i=1

1
p
(

δ
−1
[i]

) [z(δ
−1
[3]

)
− x
(

δ
−1
[3]

)]
,

and so

x >
m

∑
k=1

(
2k−1

∏
i=1

1
p
(

δ
−1
[i]

)
)[

z
(

δ
−1
[2k−1]

)
−

z
(

δ
−1
[2k]

)
p
(

δ
−1
[2k]

)
]
.

The proof is complete.

Lemma 4.Each corresponding function z of an eventually
positive solution x to equation (1) satisfies
(z(s)/η0 (s,s0))

′ ≤ 0.

Proof.Since
(
a(s) [z′ (s)]α

)′ ≤ 0, we have

z(s) ≥
∫ s

s0

(
a(ℓ) [z′ (ℓ)]α

)1/α

a1/α (ℓ)
dℓ

≥ η0 (s,s0)a1/α (s)z′ (s) ,

and so
d
ds

(
z(s)

η0 (s,s0)

)
≤ 0.

The proof is complete.

Lemma 5.For any eventually positive solution x to
equation (1), we have x(s)> B0 (s,m)z(s), eventually.

Proof.Using the facts that z′ (s) > 0 and
(z(s)/η0 (s,s0))

′ ≤ 0, it follows from Lemma 2 that

x >
m

∑
k=0

(
2k

∏
i=0

p
(
δ[i]
))[ z(δ[2k])

p(δ[2k])
− z
(
δ[2k]

)]

> z
m

∑
k=0

(
2k

∏
i=0

p
(
δ[i]
))[ 1

p(δ[2k])
−1
]

η0(δ[2k],s0)
η0(s,s0)

.

On the other hand, using the monotonic properties of z
with the results of Lemma 3, we get

x >
m

∑
k=1

2k−1

∏
i=1

1
p
(

δ
−1
[i]

)
[

η0

(
δ
−1
[2k−1],s0

)
η0

(
δ
−1
[2k],s0

) − 1
p
(

δ
−1
[2k]

)
]

z
(

δ
−1
[2k]

)
> z

m

∑
k=1

2k−1

∏
i=1

1
p
(

δ
−1
[i]

)
[

η0

(
δ
−1
[2k−1],s0

)
η0

(
δ
−1
[2k],s0

) − 1
p
(

δ
−1
[2k]

)
]
.

The proof is complete.

In the following results, we improve the monotonic
properties of the solutions, and then obtain an improved
relationship between x and z.

Lemma 6.For any eventually positive solution x to
equation (1), we have, eventually,

z(s)≥ µi−1 (s,s1)a1/α (s)z′ (s) , (6)

d
ds

(
z(s)

ηi (s,s1)

)
≤ 0, (7)

and
x(s)> Bi (s,m)z(s) , (8)

for i = 1,2, ... .

Proof.For convenience, we assume that w(s) =
a1/α (s)z′ (s). It follows from Lemma 5 that
x(s)> B0 (s,m)z(s) for s ≥ s1. Then, (1) becomes

[wα (s)]′ ≤−q(s)Bα
0 (h(s) ,m)zα (h(s)) .

Thus, we have

[z(s)−η0 (s,s1)w(s)]′

= −η0 (s,s1)w′ (s)

= −η0 (s,s1)
(
[wα (s)]1/α

)′
= −η0 (s,s1)

1
α

w1−α (s) [wα (s)]′

≥ 1
α

η0 (s,s1)w1−α (s)q(s)Bα
0 (h(s) ,m)zα (h(s)) . (9)
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From Lemma 4, we note that z(s)− η0 (s,s1)w(s) ≥ 0.
Integrating (9) from s1 to s, we obtain

z(s) ≥ η0 (s,s1)w(s)

+
1
α

∫ s

s1

η0(ℓ,s1)
wα−1(ℓ)

q(ℓ)Bα
0 (h(ℓ) ,m)zα (h(ℓ))dℓ. (10)

Using the facts that (z(s)/η0 (s,s1))
′ ≤ 0 and w′ (s) ≤ 0,

we arrive at

z(h(ℓ)) ≥ η0 (h(ℓ) ,s1)w(h(ℓ))
≥ η0 (h(ℓ) ,s1)w(s) , for s ≥ ℓ,

which with (10) gives

z(s) ≥ w(s) [η0 (s,s1)

+
1
α

∫ s

s1

η0 (ℓ,s1)

η
−α

0 (h(ℓ) ,s1)
q(ℓ)Bα

0 (h(ℓ) ,m)dℓ]

= µ0 (s,s1)w(s) .

Multiplying this inequality by

exp
[
−
∫ s

s1

dℓ
µ0 (ℓ,s1)a1/α (ℓ)

]
,

we arrive at
d
ds

(
z(s)

η1 (s,s1)

)
≤ 0.

Now, as in the proof of Lemma 5, we get
x(s)> B1 (s,m)z(s).

By repeating the same approach, we get that (6), (7)
and (8) hold, for i = 1,2, ... . The proof is complete.

2.2 Oscillation results

In the following, we use the results in the previous section
to obtain an improved oscillation criteria for equation (1).
We will deduce the conditions that guarantee that there
are no positive solutions. From the fact that every
negative value of a positive solution to equation (1) is also
a solution, then by excluding positive solutions, we also
exclude negative solutions.

Theorem 2.All solutions of equation (1) oscillate if

liminf
s→∞

∫ s

h(s)
q(ℓ)Bα

r (h(ℓ) ,m)µ
α
r (h(ℓ) ,s0)dℓ >

1
e
, (11)

for some r, m ∈ N.

Proof.Assume the contrary that x is an eventually positive
solution to equation (1). From Lemma 6, we have

x(s)> Br (s,m)µr (s,s0)a1/α (s)z′ (s) ,

for r, m ∈ N. Setting H (s) := a(s) [z′ (s)]α , we have from
(1) that

H ′ (s)+q(s)Bα
r (h(s) ,m)µ

α
r (h(s) ,s0)H (h(s))≤ 0.

Using Theorem 1 in [21], we conclude that the equation

H ′ (s)+q(s)Bα
r (h(s) ,m)µ

α
r (h(s) ,s0)H (h(s)) = 0

(12)
has also a positive solution. It follows from Theorem 2 in
[22] that (12) is oscillatory under condition (11), a
contradiction. The proof is complete.

Theorem 1 used the Riccati technique, where it
assumed the Riccati substitution on the form

ω (s) = ϕ (s)a(s)
[

z′ (s)
z(s)

]α

.

Then, it utilized the relationships x(s) > (1− p(s))z(s)
and (z(s)/η0 (s))

′ ≤ 0, to compensate for
(
a(s) [z′ (s)]α

)′
and the ratio (z◦σ)(s)/z(s). The next theorem is obtained
directly from the use of relationships (7) and (8) instead
of traditional relationships in Theorem 1, and therefore its
proof is omitted.

Theorem 3.All solutions of equation (1) oscillate if there
is a ϕ ∈ C([s0,∞) ,(0,∞)) such that

limsup
s→∞

∫ s

s1

[
ϕ (ℓ)q(ℓ)Bα

r (h(ℓ) ,m)
[

ηr+1(h(ℓ),s1)
ηr+1(ℓ,s1)

]α

− a(ℓ)(ϕ ′
+(ℓ))

α+1

(α+1)α+1
ϕα (ℓ)

]
dℓ= ∞, (13)

for some r, m ∈ N.

Remark.It is easy to note that Theorem 1 is a special case
of Theorem 3, where it is obtained by setting r = 0 and
m = 0.

Example 1.Consider the NDE of Euler type

d2

ds2 [x(s)+ p0x(δ0s)]+
q0

s2 x(h0s) = 0, (14)

where p0, q0 are positive and δ0, h0 ∈ (0,1). It is easy to
check that

B0 =

{
[1− p0]∑

m
k=0 p2k

0 δ 2k
0 for p0 < 1,

[δ0 p0 −1]∑m
k=1 p−2k

0 for p0 >
1
δ0
,

and the sequences of functions (µi), (ηi), and (Bi+1) are
defined as the following, respectively:

µi (s,s1) =
1
λi

s,

ηi+1 (s,s1) = sλi ,
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and

Bi+1 =

{
[1− p0]∑

m
k=0 p2k

0
[
δ 2k

0
]λi for p0 < 1,[

p0δ
λi
0 −1

]
∑

m
k=1 p−2k

0 for p0 >
1
δ0
,

for i = 0,1, ..., where

λi :=
1

1+h0q0Bi
, for i = 1,2, ... .

Condition (11) reduces to

1
λr

h0q0Br ln
1
h0

>
1
e
. (15)

On the other hand, by choosing ϕ (s) = s, condition (13)
becomes

limsup
s→∞

∫ s

s1

(
hλr

0 Brq0 −
1
4

)
1
ℓ

dℓ= ∞,

which is satisfied if

hλr
0 Brq0 >

1
4
. (16)

From Theorems 2 and 3, all solutions of equation (1)
oscillate if either (15) or (16) holds.

Remark.Consider the following special case of equation
(14):

d2

ds2

[
x(s)+

4
5

x
(

9
10

s
)]

+
q0

s2 x
(

1
2

s
)
= 0. (17)

We have B0 = 0.415282 and

λ0 =
1

1+(0.20764)q0
.

Condition (15) and (16) reduce, respectively, to
q0 ⪆ 1.84739 and q0 ⪆ 1.0623.
Corollary 1 in [18] confirms that all solutions of equation
(17) oscillate if q0 > 2.5. While Theorem 1 ensures that
all solutions of equation (17) oscillate if q0 ⪆ 2.2057.
Accordingly, our results improve results in [16,18].

Remark.Consider the following special case of equation
(14):

d2

ds2

[
x(s)+5x

(
4
5

s
)]

+
q0

s2 x
(

1
10

s
)
= 0. (18)

We have B0 = 0.125 and

λ0 =
1

1+(0.1)(0.125)q0
.

Condition (15) and (16) reduce, respectively, to q0 ⪆ 11.21
and q0 ⪆ 14.150.
Theorem 2.2 in [9] confirms that all solutions of equation
(18) oscillate if q0 ⪆ 18.125. While Corollary 2 in [11]
ensures that all solutions of equation (17) oscillate if q0 ⪆
12.826. Accordingly, our results complement results in [9,
11].

Remark.It should also be noted that results in [9,11]
considered all cases of p0, but required constraints in (4)
and h(s) ≤ δ (s). While our results do not require these
constraints.

Remark.To illustrate the importance of criteria of an
iterative nature, we consider the special case of (14) when
δ0 = 0.8, h0 = 0.5, p = 0.71555, and q = 1. Table 1
shows the values of quantity hλr

0 Brq0 when r = 0,1,2,3.
Therefore, condition (13) is satisfied when r = 3, while
fails when r = 0,1,2.

r 0 1 2 3
hλr

0 Brq0 0.238763 0.249598 0.249996 0.25001

3 Higher-order equation

In this section, we present new results that improve the
monotonic properties and oscillation criteria for solutions
of equation (1) when n ≥ 4. For convenience, we define
β = (α +1)α+1 ,

φ0 (v,u) : = η0 (v,u)

φ j+1 (v,u) : =
∫ v

u
φ j (ℓ,u)dℓ,

for j = 0,1, ...,n−3,

Pk (s;m) =

{
P1 (s;k,m) for p0 < 1,
P2 (s;k,m) for p0 >

s
δ (s) ,

for i = 0,1, ..., where

P1 (s;κ,m) =
m

∑
l=0

2l

∏
i=0

p
(
δ[i]
)( 1

p(δ[2l])
−1
)[

δ[2l](s)
s

]k/ε

,

and

P2 (s;k,m) :=
m

∑
l=1

2l−1

∏
i=1

1
p
(

δ
−1
[i]

)
[(

δ
−1
[2l−1]

δ
−1
[2l]

)k/ε

− 1
p
(

δ
−1
[2l]

)
]
.

Lemma 7.[23] If g ∈ Cm ([s0,∞),(0,∞)), g( j) (s) > 0 for
j = 1,2, ...,m, and g(m+1) (s) ≤ 0, then g(s) ≥ ε

m sg′ (s),
eventually, for all ε ∈ (0,1).

3.1 Properties of solutions

Next, we say that z(s) belongs to class Sk, 0 < k < n, if
z(s) satisfies the following properties:

(i)z( j) (s)> 0 for j = 0,1, ...,k;
(ii)(−1) j−k z( j) (s)> 0 for j = k+1,k+2, ...,n−1.
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In view of Lemma 2.2.1 in [24], we obtain the
following lemma:

Lemma 8.Each corresponding function z(s) of an
eventually positive solution x(s) to equation (1) satisfies(

a(s)
[
z(n−1) (s)

]α)′
≤ 0 and belongs to one of the

classes Sk for k = 1,3, ...,n−1.

Lemma 9.For z ∈ Sk, we have that z(s)/sk/ε is
decreasing, for k = 1,3, ...,n−1.

Proof.Assume that z ∈ Sk for k = 1,3, ...,n − 1. Then,
z( j) (s) > 0 for j = 0,1, ...,k, and z(k+1) (s) < 0. Using
Lemma 7 with m = k, we obtain z(s)≥ ε

k sz′ (s). Then,(
z(s)
sk/ε

)′
=

1
sk/ε+1

[
sz′ (s)− k

ε
z(s)

]
≤ 0.

The proof is complete.

Lemma 10.For z ∈Sk, we have that x(s)>Pk (s,n)z(s),
eventually, for k = 1,3, ...,n−1.

Proof.Using Lemma 9, we obtain z(s)/sk/ε is decreasing.
Then, we find

z
(
δ[2l] (s)

)
≥
[

δ[2l] (s)
s

]k/ε

z(s)

and

z
(

δ
−1
[2l−1] (s)

)
≥

[
δ
−1
[2l−1] (s)

δ
−1
[2l] (s)

]k/ε

z
(

δ
−1
[2l] (s)

)
.

It follows from Lemma 2 that

x >
m

∑
l=0

(
2l

∏
i=0

p
(
δ[i]
))[ z(δ[2l])

p(δ[2l])
− z
(
δ[2l]
)]

> z
m

∑
l=0

(
2l

∏
i=0

p
(
δ[i]
))[ 1

p(δ[2l])
−1
][

δ[2l](s)
s

]k/ε

.

Moreover, using the results of Lemma 3, we obtain

x >
m

∑
l=1

2l−1

∏
i=1

1
p
(

δ
−1
[i]

)
[(

δ
−1
[2l−1]

δ
−1
[2l]

)k/ε

− 1
p
(

δ
−1
[2l]

)
]

z
(

δ
−1
[2l]

)
> z

m

∑
l=1

2l−1

∏
i=1

1

p
(

δ
−1
[i]

) [( δ
−1
[2l−1]

δ
−1
[2l]

)k/ε

− 1
p
(

δ
−1
[2l]

)
]
.

The proof is complete.

Lemma 11.For z ∈ Sn−1, we have that
z′ (s) > φn−3 (s,s1)a1/α (s)z(n−1) (s), and z(s)/φn−2 (s) is
decreasing, eventually.

Proof.Assume that z ∈ Sn−1. Since(
a(s)

[
z(n−1) (s)

]α)′
≤ 0, w ehave

z(n−2) (s) >
∫ s

s1

a1/α (ℓ)z(n−1) (ℓ)

a1/α (ℓ)
dℓ

≥ φ0 (s,s1)a1/α (s)z(n−1) (s) . (19)

Integrating (19) n−3 times from s1 to s, we get

z′ (s)> φn−3 (s,s1)a1/α (s)z(n−1) (s) .

From (19), we have z(n−2) (s)/φ0 (s) is decreasing. Thus,

z(n−3) (s) >
∫ s

s1

φ0 (ℓ,s1)
z(n−2) (ℓ)

φ0 (ℓ,s1)
dℓ

≥ φ1 (s,s1)
z(n−2) (s)
φ0 (s,s1)

.

Hence, z(n−3) (s)/φ1 (s) is decreasing. By repeating the
same approach, we arrive at z(s)/φn−2 (s) is decreasing.
The proof is complete.

3.2 Oscillation results

Lemma 12.[24] Assume that υ ∈ Cn([s0,∞) ,(0,∞)), υ(n)

does not vanish eventually, and υ(n) is of one sign. If
υ(n−1) (s)υ(n) (s) ≤ 0 and lims→∞ υ (s) ̸= 0, then,
eventually,

υ (s)≥ ε

(n−1)!
sn−1

∣∣∣υ(n−1) (s)
∣∣∣ ,

for ε ∈ (0,1).

Theorem 4.All solutions of equation (1) oscillate if

liminf
s→∞

∫ s

h(s)

[
hn−1 (ℓ)

]α
a(h(ℓ))

q(ℓ)Pα
k (h(ℓ) ,m)dℓ

>
[(n−1)!]α

e
, (20)

for all k = 1,3, ...,n−1, and for some m ≥ 0.

Proof.Assume the contrary that x(s) is an eventually
positive solution to equation (1). From Lemma 8, z ∈ Sk
for k = 1,3, ...,n − 1. From Lemma 10, equation (1)
becomes(

a(s)
[
z(n−1) (s)

]α)′
+q(s)Pα

k (h(s) ,m)zα (h(s))≤ 0.
(21)

It follows from Lemma 12 that

0 ≥
(

a(s)
[
z(n−1) (s)

]α)′
+q(s)Pα

k (h(s) ,m)
[

εhn−1(s)
(n−1)!

]α [
z(n−1) (h(s))

]α

.
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Setting u(s) := a(s)
[
z(n−1) (s)

]α

> 0, we have u(s) is a
positive solution of

u′ (s)+
q(s)Pα

k (h(s) ,m)

a(h(s))

[
εhn−1(s)
(n−1)!

]α

u(h(s))≤ 0.

From Theorem 1 in [21], the delay equation

u′ (s)+
q(s)Pα

k (h(s) ,m)

a(h(s))

[
εhn−1(s)
(n−1)!

]α

u(h(s)) = 0 (22)

also has a positive solution. Nevertheless, condition (20)
confirms that the solutions to equation (22) are oscillatory.

Theorem 5.All solutions of equation (1) oscillate if (20)
holds for k = 1,3, ...,n−3, and

limsup
s→∞

∫ s

s1

[
ρ (ℓ)q(ℓ)Pα

k (h(ℓ) ,m)
(

φn−2(h(ℓ))
φn−2(ℓ)

)α

− 1
β

(ρ ′(ℓ))
α+1

ρα (ℓ)φα
n−3(ℓ,s1)

]
dℓ= ∞, (23)

for some m ≥ 0.

Proof.Assume the contrary that x(s) is an eventually
positive solution to equation (1). From Lemma 8, z ∈ Sk
for k = 1,3, ...,n−1. From Lemma 10, equation (1) turns
into the form (21). From Theorem 4, we note that
condition (20) contradicts the possibility that z(s) belongs
to one of the categories Sk for k = 1,3, ...,n−3.

Assume that z ∈ Sn−1. We define the function

w(s) := ρ (s) a(s)

[
z(n−1) (s)

z(s)

]α

> 0.

Then,

w′ (s)

=
ρ ′ (s)
ρ (s)

w(s)

+ρ (s)

[(
a(s)[z(n−1)(s)]

α
)′

zα (s) − a(s)[z(n−1)(s)]
α

zα+1(s) αz′ (s)

]
,

which with (21) gives

w′ (s) ≤ ρ ′ (s)
ρ (s)

w(s)

−ρ (s) q(s) Pα
k (h,m)

zα (h(s))
zα (s)

−ρ (s)
a(s)

[
z(n−1) (s)

]α

zα+1 (s)
αz′ (s) .

From Lemma 11, we have
z′ (s)> φn−3 (s,s1)a1/α (s)z(n−1) (s), and thus

w′ (s) ≤ ρ ′ (s)
ρ (s)

w(s)

−ρ (s)q(s)Pα
k (h,m)

zα (h(s))
zα (s)

−αρ (s) a1+1/α (s)φn−3 (s,s1)

[
z(n−1) (s)

z(s)

]α+1

=
ρ ′ (s)
ρ (s)

w(s)− ρ (s)q(s)Pα
k (h,m)

zα (h(s))
zα (s)

−α
φn−3 (s,s1)

ρ1/α (s)
w1+1/α (s) .

Using the fact that (z(s)/φn−2 (s))
′ < 0, we obtain

w′ (s) ≤ ρ ′ (s)
ρ (s)

w(s)

−ρ (s)q(s)Pα
k (h,m)

(
φn−2 (h(s))

φn−2 (s)

)α

−α
φn−3 (s,s1)

ρ1/α (s)
w1+1/α (s) . (24)

Using the inequality

Aw−Cw1+1/α ≤ 1
β

α
α Aα+1C−α ,

with

A =
ρ ′ (s)
ρ (s)

and C = α
φn−3 (s,s1)

ρ1/α (s)
,

we find

ρ ′ (s)
ρ (s)

w(s)−α
φn−3 (s,s1)

ρ1/α (s)
w1+1/α (s)

≤ 1
β

(ρ ′ (s))α+1

ρα (s)φ α
n−3 (s,s1)

.

Therefore, (24) reduces to

w′ (s) ≤ −ρ (s)q(s)Pα
k (h,m)

(
φn−2 (h(s))

φn−2 (s)

)α

+
1
β

(ρ ′ (s))α+1

ρα (s)φ α
n−3 (s,s1)

.

Integrating this inequality from s1 to s, we get

w(s1) ≥
∫ s

s1

[
ρ (ℓ)q(ℓ)Pα

k (h(ℓ) ,m)
(

φn−2(h(ℓ))
φn−2(ℓ)

)α

− 1
β

(ρ ′(ℓ))
α+1

ρα (ℓ)φα
n−3(ℓ,s1)

]
dℓ,

which contradicts condition (23).
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Corollary 1.All solutions of the equation(
a(s)

[
z′′′ (s)

]α)′
+q(s)xα (h(s)) = 0

oscillate if

liminf
s→∞

∫ s

h(s)

[
h3 (ℓ)

]α
a(h(ℓ))

q(ℓ)Pα
1 (h(ℓ) ,m)dℓ >

6α

e

and

limsup
s→∞

∫ s

s1

[
ρ (ℓ)q(ℓ)Pα

k (h(ℓ) ,m)

(
φ2 (h(ℓ))

φ2 (ℓ)

)α

− 1
β

(ρ ′ (ℓ))α+1

ρα (ℓ)φ α
1− (ℓ,s1)

]
dℓ= ∞.

Remark.It is easy to see that our previous results are an
improvement of the related results where the function
Pk (s,m) is used instead of (1− p(s)) which provides a
better estimate of the relationship between the solution
and its corresponding function.

4 Conclusion

In this work, we investigated the oscillatory behavior of
Emden-Fowler NDEs of second order. We obtained the
new oscillation criteria based on the inference of
improved monotonic properties of an iterative nature.
Examples and remarks compared our results with relevant
results in the literature, and emphasized the importance of
the new criteria.

Despite the large number of works that dealt with the
issue of studying the oscillatory behavior of solutions to
second-order differential equations, this issue is still very
rich in interesting analytical points. It is interesting to
extend our results to higher-order equations.
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