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Abstract: In this paper, a characterization of the generalized life model based on some recurrence relations for single and product
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1 Introduction

Recently, in reliability theory, the generalized life model (GLM) has become more applicable in lifetime distribution that
has continuous distribution function (cdf) F(x) and probability density function (pdf) f (x), which are given respectively
as:

F(x) = 1− [ah(x)+ b]c,x ∈ (α,β ), (1)

f (x) =−ach′(x)[ah(x)+ b]c−1
,x ∈ (α,β ), (2)

where h(x) is a monotonic, continuous and differentiable function on (α,β ), a 6= 0, F(α) = 0 and F(β ) = 1. Thus from
(1) and (2) we have the relation

(ah(x)+ b) f (x) =−ach′(x)[1−F(x)]. (3)

The class of the GLM includes among others the generalized Pareto model, the generalized Weibull model, the Burr
type-XII model, and the Compound Weibull model. It a worthwhile to mention that the results presented here are a
generalization of the recurrence relations for single and product moments of many distributions based on the ordinary
order statistics (OS) and upper record values in the literature. The concept of the generalized order statistics (GOS) is
introduced by [1]as a unified approach to the ordinary OS, record values and k-record values, which can be outlined as:
The random variables X(r,n,m,k), r = 1,2, ...,n be GOS from an absolutely cdf F(x) and pdf f (x). Then their joint pdf
can be written as:

f (x1,x2, ....,xn) =C ∏n−1
i=1 f (xi) [1−F(xi)]

m [1−F(xn)]
k−1

f (xn), (4)

on the cone F−1(0)< x1 < .... < xn < F−1(1) of Rn, where C = ∏n
i=1 γi, γi = k+(n− i)+Mi > 0,Mi = ∑n−1

j=i m j,

i = 1, ...,n− 1, γn = k > 0, and m̃ = (m1,m2, ...,mn−1) ∈ Rn−1.

• If m = 0 and k = 1, then (4) is the joint pdf of the ordinary OS..

• If m =−1 and k = 1, then (4) is the joint pdf of the first n upper record valuesYU(1) < YU(2) < .... < YU(n) < .....

• If m =−1 and k 6= 1, then (4) is the joint (pdf) of the k-record values.
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Here we assume two cases:

Case I: m1 = m2 = .......= mn−1 = m.

Case II: γi 6= γ j, i, j = 1,2, ...,n− 1.

For case I, we can derive from (4) the pdf of the r-th GOS X(r,n,m,k) as

fr(x) =
cr−1

(r−1)! (1−F(x))γr−1
f (x)gr−1

m (F(x)), (5)

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), for x < y and r < s as

fr,s(x,y) =Cr,s(1−F(x))m
f (x)gr−1

m (F(x) [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1
f (y), (6)

where for 0 < x < 1, we have

hm(x) = {
− 1

m+1
(1− x)m+1, m 6=−1

−log(1− x), m =−1
,

gm(x) = {
1

m+1
[1− (1− x)m+1], m 6=−1

−log(1− x), m =−1

Cr−1 = ∏r
j=1 γ j, r = 1,2, ...,n and Cr,s =

Cs−1

(r−1)!(s−r−1)! .

For case II, we can derive from (4) the pdf of the r-th GOS X(r,n,m,k) as

fr(x) =Cr−1 ∑r
i=1 ai(r) [1−F(x)]γi−1

f (x), (7)

and the joint pdf of X(r,n,m,k) and X(s,n,m,k), for x < y and r < s as

fr,s(x,y) =Cs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s) [1−F(x)]γ j

[
1−F(y)
1−F(x)

]γi f (x) f (y)
[1−F(x)][1−F(y)] ,

(8)

where ai = ai(r) = ∏r
j=1, j 6=i

1
γ j−γi

, γi 6= γ j, 1 ≤ i < r ≤ n

and ar
i (s) = ∏s

j=r+1, j 6=i
1

γ j−γi
, γi 6= γ j , r+ 1 ≤ i < s ≤ n

Therefore
ai(r−1) = (γr − γi)ai(r)

ar
i (r− 1) = (γr − γi)a

r
i (r)

ar
i (s) = (γr − γi)a

r−1
i (s)






. (9)

2 Characterization of Distribution When

mi = mj = m; i, j = 0,1,2, ...n− 1

For simplicity, let us denote the i-th moment E(hi(X(r,n,m,k)) by µ i
r:n and the product moments

E(hi(X(r,n,m,k))g j(X(s,n,m,k))) by µ
i, j
r,s:n.

Relation1 :

For 2 ≤ r ≤ n and i = 0,1,2, ...

µ i+1
r:n =

cγr

cγr +(i+ 1)
µ i+1

r−1:n −
b(i+ 1)

a(cγr +(i+ 1))
µ i

r:n, (10)
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if and only if F(x) satisfies (1).

Proof:

First, we will prove (1) implies(10). From (5), for 2 ≤ r ≤ n and i = 0,1,2, ...

µ i+1
r:n =

Cr−1

(r−1)!

∫ β
α hi+1(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx.

Integrating by parts, treating [1−F(x)]γr−1
as the part for integration and the rest of

the integrand for differentiation, we obtain

µ i+1
r:n =

(i+1)Cr−1

γr(r−1)!

∫ β
α hi(x)h′(x)gr−1

m (F(x)) [1−F(x)]γr dx

+
(r−1)Cr−1

γr(r−1)!

∫ β
α hi+1(x)gr−2

m (F(x)) [1−F(x)]γr+m
f (x)dx.

Upon using γr−i = γr + i(m+ 1), Cr−1 = γrCr−2 and (3) we obtain

µ i+1
r:n = µ i+1

r−1:n −
(i+1)Cr−1

cγr(r−1)!

∫ β
α hi+1(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx

−
b(i+1)Cr−1

caγr(r−1)!

∫ β
α hi(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx

= µ i+1
r−1:n −

(i+1)
cγr

µ i+1
r:n − b(i+1)

caγr
µ i

r:n.

The recurrence relation (10) is derived simply by rewriting the above equation, hence the ‘ if ’ part.

To prove (10) implies (1), we have from (10) that

[cγr +(i+ 1)]
Cr−1

(r−1)!

∫ β
α hi+1(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx

= acγr
cr−2

(r−2)!

∫ β
α hi+1(x)gr−2

m (F(x)) [1−F(x)]γr+m
f (x)dx

−b(i+ 1)
cr−1

(r−1)!

∫ β
α hi(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx.

Integrating the first integral on the right-hand side by parts with treating gr−2
m (F(x)) [1−F(x)]m f (x)

as the part for integration and the rest of the integrand for differentiation, we get after simplification that

∫ β
α hi+1(x)gr−1

m (F(x)) [1−F(x)]γr−1
f (x)dx

=−ac
∫ β

α h′(x)hi(x)gr−1
m (F(x)) [1−F(x)]γr dx

−b
∫ β

α hi(x)gr−1
m (F(x)) [1−F(x)]γr−1

f (x)dx.

Thus, this equation can be rewritten as

∫ β
α hi(x)gr−1

m (F(x)) [1−F(x)]γr−1
.[ah(x) f (x)+ ach′(x)[1−F(x)]+ b f (x)]dx = 0.

It follows from Lin [2] that η(x) = hi(x)gr−1
m (F(x))[1−F(x)]γr−1 is complete.Thus, from the completeness

property, we have [ah(x)+ b] f (x) = −ach′(x)[1−F(x)]. From the last equation by using separation of variables we get
(1). ⊓⊔

Corollary 1:

For 2 ≤ r ≤ n, i = 0 and a = b = 1 in (10) we get

µr:n =
cγr

cγr+1
µr−1:n −

1
cγr+1

.

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1126 M. Maswadah, M. Seham: Characterization of the Generalized Life Model

Repeating this relation, we get

µr:n = ∏r
i=1

cγi

cγi+1
µ1:n −∑r

i=1
1

1+cγi
∏r

j=i+1
cγ j

cγ j+1
,

with noting that ∏r
j=r+1 (.) = 1.

Corollary 2:

For record values γi = k for all i, thus the relations (10) become

µ i+1
r:n = ck

ck+(i+1)µ i+1
r−1:n −

b(i+1)
a(ck+(i+1))µ i

r:n.

Relation 2:

for 1 ≤ r < s− 2 ≤ n and i, j = 0,1,2, ...

µ i, j+1
r,s:n =

cγs

cγs +( j+ 1)
µ

i, j+1
r,s−1 −

b( j+ 1)

a[cγs +( j+ 1)]
µ i, j

r,s , (11)

if and only if F(x) satisfies(1).

Proof:

First, we will prove (1) implies (11).
From (6), for 1 ≤ r < s− 2 ≤ n and i, j = 0,1,2, ...

µ
i, j+1
r,s:n =Cr,s

∫ β
α gi(x)gr−1

m (F(x)) [1−F(x)]m f (x)I(x)dx,

where

I(x) =
∫ β

x h j+1(y) [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y)dy.

Integrating I(x) by parts with treating [1−F(y)]γs−1
as the part of integration and the rest of the integration

as the part of differentiation, we obtain

I(x) = (s−r−1)
γs

∫ β
x h j+1(y) [hm(F(y))− hm(F(x))]s−r−2 [1−F(y)]γs+m f (y)dy

+ ( j+1)
γs

∫ β
x h j(y)h′(y) [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs dy.

Upon using (3) in I(x) we get

I(x) = (s−r−1)
γs

∫ β
x h j+1(y) [hm(F(y))− hm(F(x))]s−r−2 [1−F(y)]γs+m f (y)dy

− ( j+1)
cγs

∫ β
x h j+1(y) [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y)dy

− b( j+1)
caγs

∫ β
x h j(y) [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y)dy.

Substituting I(x) into µ
i, j+1
r,s:n , using γr−i = γr + i(m+ 1) and Cr−1 = γrCr−2 we obtain

µ
i, j+1
r,s:n = µ

i, j+1
r,s−1:n −

( j+1)Cr,s

cγs

∫∫
α<x<y<β gi(x)h j+1(y)gr−1

m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy

−
b( j+1)Cr,s

caγs

∫∫
α<x<y<β gi(x)h j(y)gr−1

m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy.

c© 2023 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 12, No. 3, 1123-1131 (2023) / www.naturalspublishing.com/Journals.asp 1127

Thus,

µ
i, j+1
r,s:n = µ

i, j+1
r,s−1:n −

( j+1)
cγs

µ
i, j+1
r,s:n −

b( j+1)
acγs

µ
i, j
r,s:n.

The relation (11) can be derived simply by rewriting the above equation, hence the ‘if’ part.To prove (11) implies (1), we
have from (11) that

a[cγs +( j+ 1)]cr,s

∫∫
α<x<y<β gi(x)h j+1(y)gr−1

m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy

= ac(s− r− 1)cr,s

∫∫
α<x<y<β gi(x)h j+1(y)gr−1

m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−2 [1−F(y)]γs+m f (y) f (x)dxdy

−b( j+ 1)cr,s

∫∫
α<x<y<β gi(x)h j(y)gr−1

m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy.

Integrating the first integral on the right-hand side by parts with treating [hm(F(y))− hm(F(x))]s−r−2[1−F(y)]m f (y) as
the part for integration and the rest of the integrand for differentiation, we get after simplification that

a
∫∫

α<x<y<β gi(x)h j+1(y)gr−1
m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy

= ac
∫∫

α<x<y<β gi(x)h j(y)gr−1
m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−2 [1−F(y)]γs f (y) f (x)dxdy

−b
∫∫

α<x<y<β gi(x)h j(y)gr−1
m (F(x)) [1−F(x)]m

. [hm(F(y))− hm(F(x))]s−r−1 [1−F(y)]γs−1 f (y) f (x)dxdy.

Thus, this equation can be rewritten as

∫∫
α<x<y<β gi(x)h j(y)gr−1

m (F(x))[1−F(x)]γs−1 [hm(F(y))− hm(F(x))]s−r−1
f (x)

.[ah(y) f (y)+ ach′(y)[1−F(y)]+ b f (y)]dydx = 0.

It follows from [2] that η(x) = gi(x)hi(x)gr−1
m (F(x))[1−F(x)]γr−1 [hm(F(y))− hm(F(x))]s−r−1

f (x) is complete.
Thus, from the completeness property, we have [ah(y)+ b] f (y) = −ach′(y)[1−F(y)]. From the last equation by using
separation of variables we get (1). ⊓⊔
Corollary 3:

The recurrence relation (11)can be used in a simple recursive manner to compute all the single and product moments of
all the order statistics. By setting i=j=0 and a = b = 1 in (11) we get the relation

µs:n =
γs

γs+1
µs−1:n +

1
γs+1

and letting i = 1, j = 0 and a = b = 1 in (11) we get the relation

µr,s:n =
γs

γs+1
µr,s−1:n +

1
γs+1

µr

which together immediately yields for 1 ≤ r < s− 2 ≤ n,

Cov(Xr,Xs) =
γs

γs+1
Cov(Xr,Xs−1),

and for r ≥ 1,

Cov(Xr,Xr+1) =
γr+1

γr+1+1
Cov(Xr).
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3 Characterization of Distribution When

γi 6=γj, i, j = 1,2, ...n− 1

Proof of Relation 1:

First, we will prove (1)implies (10). From (7), for 2 ≤ r ≤ n and i, j = 0,1,2, ...

µ i+1
r:n =Cr−1 ∑r

j=1 a j(r)
∫ β

α hi+1(x)[1−F(x)]γ j−1 f (x)dx

=Cr−1 ∑r
j=1 a j(r)

[γ j+(γr−γ j)]
γr

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

=
Cr−1

γr
∑r

j=1 a j(r)γ j

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

+
Cr−1

γr
∑r

j=1 a j(r))(γr − γ j)
∫ β

α hi+1(x)[1−F(x)]γ j−1 f (x)dx.

Integrating the first integral by parts with treating [1−F(x)]γ j−1
f (x) as the part of integration and using (9) in the second

integral we get

µ i+1
r:n =

Cr−1(i+1)
γr

∑r
j=1 a j(r)

∫ β
α hi(x)h′(x)[1−F(x)]γ j dx

+Cr−2 ∑r−1
j=1 a j(r− 1)

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx.

Using (3) in the first integral

µ i+1
r:n = µ i+1

r−1:n −
(i+1)

cγr
Cr−1 ∑r

j=1 a j(r)
∫ β

α hi+1(x)[1−F(x)]γ j−1 f (x)dx

−
b(i+1)

caγr
Cr−1 ∑r

j=1 a j(r)
∫ β

α hi(x)[1−F(x)]γ j−1 f (x)dx.

Then

µ i+1
r:n = µ i+1

r−1:n −
(i+1)

cγr
µ i+1

r:n − b(i+1)
caγr

µ i
r:n.

The recurrence relation (11) is derived simply by rewriting the above equation, hence the ‘if ’ part. To prove (11) implies
(1), we have from (11) that

a[cγr +(i+ 1)]Cr−1 ∑r
j=1 a j(r)

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

= acγrCr−2 ∑r
j=1 a j(r− 1)

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

−b(i+ 1)Cr−1 ∑r
j=1 a j(r)

∫ β
α hi(x)[1−F(x)]γ j−1 f (x)dx.

Using (9) in the second integral, the last equation can be written as

a(i+ 1)Cr−1 ∑r
j=1 a j(r)

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

=−acγrCr−1 ∑r
j=1 γ ja j(r)

∫ β
α hi+1(x)[1−F(x)]γ j−1 f (x)dx

−b(i+ 1)Cr−1 ∑r
j=1 a j(r)

∫ β
α hi(x)[1−F(x)]γ j−1 f (x)dx.

Integrating the first integral on the right-hand side by parts with treating [1−F(x)]γ j−1 f (x) as the part for integration and
the rest of the integrand for differentiation, we get after simplification that

∑r
j=1 a j(r)

∫ β
α hi(x)[1−F(x)]γ j−1[ah(x) f (x)+ ach′(x)[1−F(x)]+ b f (x)]dx = 0.

It follows from Lin [2] that η(x) = hi(x)[1 − F(x)]γr−1 is complete, thus from the completeness property, we have
[ah(x)+ b] f (x) =−ach′(x)[1−F(x)]. From the last equation by using separation of variables we get (1). ⊓⊔
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Proof of Relation 2:

First, we will prove (1) implies (11). From (8), for 1 ≤ r < s− 2 ≤ n and i, j = 0,1,2, ..., we have

µ t,v+1
r:s =Cs−1 ∑r

j=1 ∑s
i=r+1 a j(r)a

r
i (s)

∫∫
α<x<y<β gt(x)hv+1(y)[1−F(x)]γ j

.[ 1−F(y)
1−F(x)

]γi f (x) f (y)
[1− f (x)][1− f (y)]

dxdy

=
Cs−1

γs
∑r

j=1 ∑s
i=r+1 a j(r)a

r
i (s)[γi +(γs − γi)]

∫ y
α gt(x) [1−F(x)]γ j I(x)

f (x)

[1−F(x)]γi+1 dx,

where
I(x) =

∫ β
x hv+1(y) [1−F(y)]γi f (y)

[1−F(y)]dy.

Using (9) we get

µ t,v+1
r:s = µ t,v+1

r:s−1 +
Cs−1

γs
∑r

j=1 ∑s
i=r+1 a j(r)a

r
i (s)γi

.
∫ y

α gt(x) [1−F(x)]γ j I(x) f (x)

[1−F(x)]γi+1 dx.

Integrating I(x) by parts with treating hv+1(y) as the part of differentiation and using (3) we get

I(x) =− v+1
cγi

∫ β
x hv+1(y) [1−F(y)]γi−1

f (y)dy− b v+1
caγi

∫ β
x hv(y) [1−F(y)]γi−1

f (y)dy.

Substituting I(x) into µ
t,v+1
r,s we get

µ
t,v+1
r,s:n = µ

t,v+1
r,s−1:n −

(v+1)
cγs

µ
t,v+1
r,s:n −

b(v+1)
caγs

µ
t,v
r,s:n.

Rearranging the last relation we get (11), hence the ‘ if ’ part ⊓⊔
To prove (11) implies (1), we have from (11) that

a[cγs +(v+ 1)]Cs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s).

∫ β
x hv+1(y) [1−F(x)]γi−1

I(y) f (y)dy

= acγsCs−2 ∑r
j=1 ∑s−1

i=r+1 a j(r)a
r
i (s− 1)

∫ β
x hv+1(y) [1−F(x)]γi−1

I(y) f (y)dy

−b(v+ 1)Cs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s)

∫ β
x hv(y) [1−F(x)]γi I(y) f (y)dy,

where
I(y) =

∫ y
α gt(x) [1−F(x)]γ j f (x)

[1−F(x)]γi+1 dx.

Using (9) in the first integral of the right-hand side we get after simplification that

a(v+ 1)Cs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s)

∫ β
x hv+1(y) [1−F(y)]γi−1

I(y) f (y)dy

=−acCs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s)γi

∫ β
x hv+1(y) [1−F(y)]γi−1

I(y) f (y)dy

−b(v+ 1)Cs−1 ∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s)

∫ β
x hv(y) [1−F(y)]γi I(y) f (y)dy.

Integrating the first integral on the right-hand side by parts with treating [1−F(y)]γi−1 f (y) as the part for integration and
the rest of the integrand for differentiation and using (3) we get after simplification that

∑r
j=1 ∑s

i=r+1 a j(r)a
r
i (s)

∫ β
x hv(y) [1−F(y)]γi [ah(y) f (y)+ ach′(y)[1−F(y)]+ b f (y)]dy = 0.

It follows from Lin [2] that η(x) = hv(y)[1−F(y)]γi−1I(y) is complete, thus from the completeness property, we

have [ah(y)+ b] f (y) =−ach′(y)[1−F(y)]. From the last equation by using separation of variables we get (1). ⊓⊔
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4 Special Cases and Remarks

1.The relation (10) can be deduced from the relation (11) by putting I equal zero.

2.Setting k = 1 and m = 0 in the deduced recurrence relations (10) and (11), we get the corresponding relations for the
ordinary order statistics.

3.Setting m = −1 in the deduced recurrence relations (10) and (11),we get the corresponding relations for the k-th
record values.

4.Setting k = 1 and m =−1 in the deduced recurrence relations (10)and (11),we get the corresponding relations for the
upper record values.

5.Setting c = 1
λ , a = −λ β , b=1 and h(x) = xα in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the Generalized Weibull distribution, see [3].

6.Setting c → ∞,a = −θ
c
,b = 1 and h(x) = x2 in the recurrence relations (10) and (11) we deduce the corresponding

recurrence relations characterize the Rayleigh distribution, see [4].

7.Setting c → ∞,a = −θ
c
, b=1 and h(x) = x in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the Exponential distribution, see [4,5,6].

8.Setting c → ∞,a = −λ
c
, b=1 and h(x) = xp in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the ordinary Weibull distribution, see [7].

9.Setting c = 1,a = −1,b = 1 and h(x) = exp(−θx−p) in the recurrence relations (10) and (11), we deduce the
corresponding recurrence relations characterize the Inverse Weibull distribution, see [7].

10.Setting c = 1,a = −ab,b = 1 and h(x) = xp in the recurrence relations (10) and (11), we deduce the corresponding
recurrence relations characterize the Pareto distribution, see [8].

11.Setting c = −m,a = θ ,b = 1 and h(x) = xp in the recurrence relations (10) and (11), we deduce the corresponding
recurrence relations characterize the Burr Type-XII distribution, see [8].

12.Setting c = −1
θ ,a = θ ,b = 1 and h(x) = x in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the Generalized Pareto distribution see [8,9].

13.Setting c = 1,a = −a−p,b = 1 and h(x) = xp in the recurrence relations (10) and (11), we deduce the corresponding
recurrence relations characterize the power function distribution, see [10].

14.Setting c = 1,a = −1,b = 1 and h(x) = x in the recurrence relations (10) and (11), we deduce the corresponding
recurrence relations characterize the uniform distribution, see [10,11].

15.Setting c = −m,a = 1
θ ,b = 1 and h(x) = x in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the Lomax distribution, see [12].

16.Setting c = −m,a = 1
θ ,b = 1 and h(x) = xp in the recurrence relations (10) and (11), we deduce the corresponding

recurrence relations characterize the Compound Weibull distribution.

5 Conclusion

The general lifetime distribution contains some of the lifetime distributions most used in reliability and survival analyses.
These distributions have the flexibility in describing the lifetime variables of constant and non-constant hazard rate and
they are useful for modeling and analyzing lifetime data in medical, biological, and engineering sciences. Thus, the
recurrence relations for single and product moments in this work will be useful for estimating the characteristics of these
distributions such as the means, standard deviations, skewness, and kurtoses with reliable and easy way to apply, especially
for researchers in social sciences and psychology.
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