

http://dx.doi.org/10.18576/isl/120603

Strong Fuzzy Chromatic Polynomial of Intuitionistic Fuzzy Graphs (IFGs) Based on (α, β) -Levels

Lateram Zawuga Hordofa^{*}, V. N. SrinivasaRao Repalle and Mamo Abebe Ashebo

Mathematics Department, Wollega University, Nekemte, Ethiopia

Received: 22 Feb. 2023, Revised: 22 Mar. 2023, Accepted: 24 Apr. 2023 Published online: 1 Jun. 2023

Abstract: This research introduces a new idea of (α, β) -level based strong fuzzy chromatic polynomial of intuitionistic fuzzy graph(IFGs). In addition, some characteristics of (α, β) -level based strong fuzzy chromatic polynomials of IFGs are specified and proven. Besides, the strong (α, β) -fundamental set and the strong (α, β) -level graphs are defined with clear examples. Moreover, some algebraic characteristics of the strong (α, β) -level graph of IFGs and their chromatic polynomials are also projected and shown.

Keywords: Chromatic polynomial, Intuitionistic fuzzy graph, Strong (α, β) -level

1 Introduction

Zadeh [1] introduced a fuzzy set that was intended to assign a member of a given universal set X containing a set C with the degree of its membership value in C [1]. Based on this set Kaufmann [2] developed a fuzzy graph. Later, Rosenfeld [3] advanced and developed many of the structures of fuzzy graph. Atanassov [4] introduced Intuitionistic fuzzy set that is an extension of the fuzzy set. After a decade, Atanassov [5] defined IFG. Later, more properties of IFGs were presented [6][7]. M. Akram et. al., provides method for calculating the distance matrix's sum, eccentricity, diameter, and radius of IFG [8]. We apply IFGs in Election process [9], cell grouping [10] and water supply [11] and also it is used in medical diagnostics, pipeline and decision-making [12]. Mamo and Srinivasa Rao Repalle presented the fuzzy graphs' chromatic polynomial based on α -levels [13]. Rifayathali et.al., developed the coloring of IFGs [14]. Prasanna et al., introduced the strong coloring of IFGs [15]. Mohideen et. al., presented IFGs' coloring based on (α , β)-levels [16]. M. Akram developed various characteristics of level graph of the IFGs using (α , β)- [17].

Although many works were reported on the IFG and on their coloring, a study on its strong fuzzy chromatic polynomial has not been reported yet. To fill this gap, the authors have dealt with a strong fuzzy chromatic polynomial based on the strong (α, β) -levels. This article is structured as follows: Section two consists of the preliminaries that are necessary for understanding the article. The third part introduces the concept of strong (α, β) -level graphs of the IFG and their properties. And also, it introduces the idea of the strong (α, β) -fundamental set of the IFG. The fourth section defines notion of strong fuzzy chromatic polynomial of IFGs based on (α, β) -levels and presents certain related properties. Lastly, section five summarizes the article.

2 Preliminaries

This section provides essential definitions and propositions.

Definition 1.[19] The chromatic polynomial of a simple graph W with k given colors is represented by P(W, k) and it counts all ways to reach a correct vertex coloring.

Proposition 1.[19] Let F be a simple graph. Then, P(F, k) = P(F - g, k) - P(F/g, k) where F - g is obtained by deleting edge g from F and F/g is obtained by contacting edge g from F.

^{*} Corresponding author e-mail: h.z.latera@gmail.com

Proposition 2.[19]. If a simple graph $F = \bigcup_{i=1}^{n} F_i$ and $\bigcap_{i=1}^{n} F_i = \emptyset$, then

$$P(F, k) = P(F_1, k) \times P(F_2, k) \times \dots \times P(F_n, k)$$

Definition 2. [4] An IFS Q in W is defined as $Q = \{(w, \mu_Q(w), \gamma_Q(w)), w \in W\}$. Where $\forall w \in W$ the functions, $\mu_Q : W \rightarrow [0,1]$ and $\gamma_Q : W \rightarrow [0,1]$ shows the membership degree and non-membership degree of the element $w \in W$ respectively.

Definition 3. [18] An IFG G = (V, E) is a graph that satisfy;

 $1.V = \{w_1, w_2, \dots, w_n\}$ such that $\mu_1 : V \to [0,1]$ and $\gamma_1 : V \to [0,1]$ represent the membership degree and the nonmembership degree of element w_i in V respectively where $0 \le \mu_1(w_i) + \gamma_1(w_i) \le 1$ for every $w_i \in V$, (i = 1, 2, ..., n).

 $2.\mu_2 : E \to [0,1]$ and $\gamma_2 : E \to [0,1]$ are in such a way that $\mu_2(w_i, w_j) \leq \min\{\mu_1(w_i), \mu_1(w_j)\}$ and $\gamma_2(w_i, w_j) \leq \max\{\gamma_1(w_i), \gamma_1(w_j)\}\$ satisfy the constraint $0 \leq \mu_2(w_i, w_j) + \gamma_2(w_i, w_j) \leq 1$ for every $(w_i, w_j) \in E \subseteq V \times V, (i, j = 1, 2, ..., n)$ where $\mu_2(w_i, w_j)$ and $\gamma_2(w_i, w_j)$ are the degree of membership and the degree of non-membership of the element $(w_i, w_j) \in E$ respectively.

Definition 4.[16], [17]. An (α, β) -level graph of an IFG, H is $H_{\alpha,\beta} = (V_{\alpha,\beta}, E_{\alpha,\beta})$ where,

 $V_{\alpha,\beta} = \{v \in V | \mu_1(v) \ge \alpha \text{ and } \gamma_1(v) \le \beta\}$ and

 $E_{\alpha,\beta} = \{v, w \in V | \mu_2(v, w) \ge \alpha \text{ and } \gamma_2(v, w) \le \beta\}.$

Definition 5. [16] Let H = (V, E) be an IFG. $\chi(H) = \{(w, m(w), n(w)) | w \in W\}$ such that:

1. $W = \{1, 2, \cdots, |V|\}$

2. $m(w) = \sup\{\alpha \in [0,1] | w \in A_{\alpha,\beta}\}$ and $n(w) = \inf\{\beta \in [0,1] | w \in A_{\alpha,\beta}\}$ where $A_{\alpha,\beta} = \{1,2,\cdots,\chi_{\alpha,\beta}\}$.

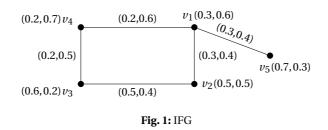
3 The strong (α, β) -levels of an IFG

This section defines a notion of $(\alpha, \beta)_s$ level graphs and strong fundamental set of an IFG. Moreover, some characterizations of the strong (α, β) -level graphs are provided with justifications.

Definition 6. Let *H* be an IFG and suppose that $I = \{\alpha_m, \beta_m\}_{m=1}^{q-1}$ satisfy $\alpha_{m+1} > \alpha_m$ and $\beta_{m+1} < \beta_m \forall m = 1, 2, ..., q-1$. Then $F_s = \{(0, 1)\} \cup I$, is said to be $(\alpha, \beta)_s$ -fundamental set of *H* and read as the strong (α, β) -fundamental set of *H*.

Definition 7. Let F_s be the strong fundamental set of an IFG, H = (V, E). Then the strong (α, β) -level graph of H denoted by $H_{(\alpha,\beta)_s}$ is $H_{(\alpha,\beta)_s} = \{V_{(\alpha,\beta)_s}, E_{(\alpha,\beta)_s}\}$ such that $V_{(\alpha,\beta)_s} = \{w \in V \mid \mu_1(w) > \alpha \text{ and } \gamma_1(w) < \beta\}$ and $E_{(\alpha,\beta)_s} = \{(w, x) \in V \times V \mid \mu_2(w, x) > \alpha \text{ and } \gamma_2(w, x) < \beta\}$ where $(\alpha, \beta)_s \in [0, 1]$.

Example 1. Take the IFG provided in figure 1 to illustrate various $(\alpha, \beta)_s$ -level graphs of *G*.



The $(\alpha, \beta)_s$ -fundamental set of *G* is: $F_s = \{(0, 1)_s, (0.2, 0.7)_s, (0.3, 0.6)_s, (0.5, 0.5)_s, (0.6, 0.2)_s, (0.7, 0.3)_s\}$. Based on this set, the corresponding strong level graphs are discussed in figure 2 below:

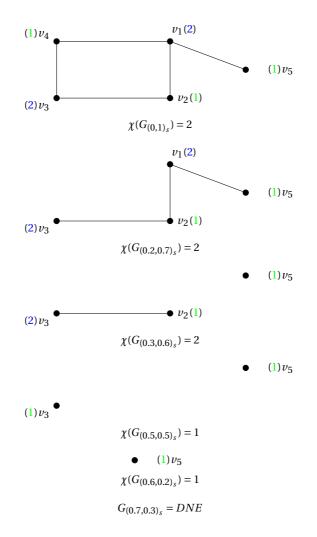


Fig. 2: The strong level graphs of the graph in figure 1

Remark.

- 1. In figure 2, the number assigned to each vertex is the proper color given for the vertex.
- 2. Since $V_{(0.7,0.3)_s}$ is an empty set, $G_{(0.7,0.3)_s}$ does not exist.
- 3. $\chi(G) = \{(2, (0.3, 0.6)_s), (1, (0.6, 0.2)_s)\}.$

3.1 Characteristics of the strong (α, β) -level graphs of an IFG

Theorem 1. If $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ are the strong level graphs of an IFG, H with $0 \le \alpha_l < \alpha_m \le 1$ and $1 \ge \beta_l > \beta_m \ge 0$, then $V_{(\alpha_l,\beta_l)_s} \supseteq V_{(\alpha_m,\beta_m)_s}$ and $E_{(\alpha_l,\beta_l)_s} \supseteq E_{(\alpha_m,\beta_m)_s}$.

*Proof.*Let $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ be two strong level graphs of an IFG, H = (V,E) with $0 \le \alpha_l < \alpha_m \le 1$ and $1 \ge \beta_l > \beta_m \ge 0$. Then the strong (α,β) -level graphs of $H; H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ have the vertex sets that are given by $V_{(\alpha_1,\beta_l)_s} = \{w \in V \mid \mu_1(w) > \alpha_l \text{ and } \gamma_l(w) < \beta_l\}$ and $V_{(\alpha_m,\beta_m)_s} = \{w \in V \mid \mu_1(w) > \alpha_m \text{ and } \gamma_1(w) < \beta_m\}$ respectively. Now suppose $w \in V_{(\alpha_m,\beta_m)_s}$. Then $w \in V_{(\alpha_m,\beta_m)_s} \Rightarrow \mu_1(w) > \alpha_m$ and $\gamma_1(w) < \beta_m$. Since $\alpha_m > \alpha_l$ and $\beta_m < \beta_l$. Then it implies, $\mu_1(w) > \alpha_m > \alpha_l$ and $\gamma_1(w) < \beta_m < \beta_l$. Further, this indicates $\mu_1(w) > \alpha_l$ and $\gamma_1(w) < \beta_l$. This shows, $w \in V_{(\alpha_l,\beta_l)_s}$. Hence, $V_{(\alpha_l,\beta_l)_s} \supseteq V_{(\alpha_m,\beta_m)_s}$.

Similarly, edge sets of $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ are: $E_{(\alpha_l,\beta_l)_s} = \{(w,y) \in E \mid \mu_2(w,y) > \alpha_l \text{ and } \gamma_2(w,y) < \beta_l\}$ and

 $E_{(\alpha_m,\beta_m)_s} = \{(w,y) \in E \mid \mu_2(w,y) > \alpha_m \text{ and } \gamma_2(w,y) < \beta_m\} \text{ respectively. Suppose that } (w,y) \in E_{(\alpha_m,\beta_m)_s}. \text{ Now } (w,y) \in E_{(\alpha_m,\beta_m)_s} \Rightarrow \mu_2(w,y) > \alpha_m \text{ and } \gamma_2(w,y) < \beta_m. \text{ Since } \alpha_m > \alpha_l \text{ and } \beta_m < \beta_l. \text{ Then this implies, } \mu_2(w,y) > \alpha_m > \alpha_l \text{ and } \gamma_2(w,y) < \beta_m < \beta_l. \text{ Further, this indicates } \mu_2(w,y) > \alpha_l \text{ and } \gamma_2(w,y) < \beta_l \text{ which shows } (w,y) \in E_{(\alpha_l,\beta_l)_s}. \text{ Thus, } E_{(\alpha_l,\beta_l)_s} \supseteq E_{(\alpha_m,\beta_m)_s}.$

Corollary 1. If $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ are the strong level graphs of an IFG, H such that $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$, then $|V_{(\alpha_m,\beta_m)_s}| \le |V_{(\alpha_l,\beta_l)_s}|$ and $|E_{(\alpha_m,\beta_m)_s}| \le |E_{(\alpha_l,\beta_l)_s}|$.

*Proof.*Take an IFG, H = (V, E). Let $H_{(\alpha_l, \beta_l)_s}$ and $H_{(\alpha_m, \beta_m)_s}$ be the strong level graphs of H with $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$. Then by theorem 1, $V_{(\alpha_l, \beta_l)_s} \supseteq V_{(\alpha_m, \beta_m)_s}$ and $E_{(\alpha_l, \beta_l)_s} \supseteq E_{(\alpha_m, \beta_m)_s}$. This shows $|V_{(\alpha_m, \beta_m)_s}| \le |V_{(\alpha_l, \beta_l)_s}|$ and $|E_{(\alpha_m, \beta_m)_s}| \le |E_{(\alpha_l, \beta_l)_s}|$. Hence, the corollary holds.

Theorem 2. If $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ are the strong level graphs of an IFG, H such that $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$, then $H_{(\alpha_m,\beta_m)_s}$ is a sub graph of $H_{(\alpha_l,\beta_l)_s}$.

*Proof.*Take an IFG, H = (V, E). Let $H_{(\alpha_l, \beta_l)_s}$ and $H_{(\alpha_m, \beta_m)_s}$ be the strong level graphs of H and let $(\alpha_l, \beta_l)_s$ and $(\alpha_m, \beta_m)_s$ be given. Since $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$, $V_{(\alpha_m, \beta_m)_s} \subseteq V_{(\alpha_l, \beta_l)_s}$ and $E_{(\alpha_m, \beta_m)_s} \subseteq E_{(\alpha_l, \beta_l)_s}$. Hence, $H_{(\alpha_m, \beta_m)_s}$ is a sub graph of $H_{(\alpha_l, \beta_l)_s}$.

Corollary 2. *If* $(\alpha_k, \beta_k)_s$, $(\alpha_l, \beta_l)_s$ and $(\alpha_m, \beta_m)_s$ are the strong levels of an IFG, G = (V, E) such that $\alpha_k < \alpha_l, \alpha_l < \alpha_m, \beta_k > \beta_l$ and $\beta_l > \beta_m$, then $G_{(\alpha_m, \beta_m)_s}$ is a sub graph of $G_{(\alpha_k, \beta_k)_s}$.

Proof. The statement holds automatically from the theorem 2 and applying the transitivity property.

Theorem 3. If $H_{(\alpha_k,\beta_k)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ are the strong level graphs of an IFG, H such that $\alpha_k < \alpha_m$ and $\beta_m < \beta_k$, then $(H_{(\alpha_k,\beta_k)_s} \cup H_{(\alpha_m,\beta_m)_s}) = H_{(\alpha_k,\beta_k)_s}$.

*Proof.*Let $H_{(\alpha_k,\beta_k)_s}$ and $H_{(\alpha_m,\beta_m)_s}$ be the level graphs of an IFG, H such that $\alpha_k < \alpha_m$ and $\beta_k > \beta_m$. Then $\alpha_k < \alpha_m$ and $\beta_k > \beta_m$ implies that $V_{(\alpha_m,\beta_m)_s} \subseteq V_{(\alpha_k,\beta_k)_s}$ and $E_{(\alpha_m,\beta_m)_s} \subseteq E_{(\alpha_k,\beta_k)_s}$. Now by the definition of union of sets, $V_{(\alpha_k,\beta_k)_s} \cup V_{(\alpha_m,\beta_m)_s} = V_{(\alpha_k,\beta_k)_s} \cup E_{(\alpha_m,\beta_m)_s} = E_{(\alpha_k,\beta_k)_s}$. Hence, $(H_{(\alpha_k,\beta_k)_s} \cup H_{(\alpha_m,\beta_m)_s}) = H_{(\alpha_k,\beta_k)_s}$.

Theorem 4. If $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_k,\beta_k)_s}$ are the strong level graphs of an IFG, H such that $\alpha_l < \alpha_k$ and $\beta_l > \beta_k$, then $(H_{(\alpha_l,\beta_l)_s} \cap H_{(\alpha_k,\beta_k)_s}) = H_{(\alpha_k,\beta_k)_s}$.

*Proof.*Let $H_{(\alpha_l,\beta_l)_s}$ and $H_{(\alpha_k,\beta_k)_s}$ be the level graphs of an IFG, H such that $\alpha_l < \alpha_k$ and $\beta_l > \beta_k$. Then $\alpha_l < \alpha_k$ and $\beta_l > \beta_k$ implies that $V_{(\alpha_k,\beta_k)_s} \subseteq V_{(\alpha_l,\beta_l)_s}$ and $E_{(\alpha_k,\beta_k)_s} \subseteq E_{(\alpha_l,\beta_l)_s}$. By the definition of intersection of two sets, $V_{(\alpha_l,\beta_l)_s} \cap V_{(\alpha_k,\beta_k)_s} = V_{(\alpha_k,\beta_k)_s}$ and $E_{(\alpha_k,\beta_k)_s} = E_{(\alpha_k,\beta_k)_s}$. Hence, $(H_{(\alpha_k,\beta_k)_s} \cap H_{(\alpha_l,\beta_l)_s}) = H_{(\alpha_k,\beta_k)_s}$.

4 Strong fuzzy chromatic polynomial of the IFGs based on (α, β) -levels

This section defines (α, β) -level based strong fuzzy chromatic polynomial of an IFG and derive the chromatic polynomials for illustrative example. Also it states and shows some related concepts.

Definition 8.Let k colors be given and let F_s be the strong fundamental set of an IFG, H. Then strong fuzzy chromatic polynomial of H based on (α, β) -levels which is denoted by $P^I_{(\alpha,\beta)_s}(H,k)$ is defined as: $P^I_{(\alpha,\beta)_s}(H,k) = P(H_{(\alpha,\beta)_s},k)$, $\forall (\alpha,\beta)_s \in F_s$.

Example 2. Take *k* distinct colors to properly color an IFG, *G* in figure 1. Then $P_{(\alpha,\beta)_s}^I(G,k)$ is $P(G_{(\alpha,\beta)_s},k) \forall (\alpha,\beta)_s \in F_s$ in figure 2 and computed as follows:

- 1. For $\alpha = 0, \beta = 1, P_{(0,1)_s}^I(G, k) = P(G_{(0,1)_s}, k)$ is computed using proposition 1 as in figure 3 below: $P_{(0,1)_s}^I(G, k) = P(G_{(0,1)_s}, k) = P(P_4, k) \cdot P(N_1, k) P(K_3, k) \cdot P(N_1) P(P_4, k) + P(K_3, k) = k \times [k(k-1)^3] k \times [k(k-1)(k-2)] k(k-1)^3 + k(k-1)(k-2) = k(k-1)^2(k^2 3k + 3)$
- 2. For $\alpha = 0.2$, $\beta = 0.7$, the strong level graph corresponding to the level is a Path graph P_4 . Therefore, $P_{(0.2,0.7)_s}^I(G,k) = P(G_{(0.2,0.7)_s},k) = P(P_4,k) = k(k-1)^3$.
- 3.For $\alpha = 0.3$, $\beta = 0.6$, the strong level graph corresponding to the level is a forest graph containing Path graphs P_2 and P_1 . Therefore, $P_{(0.3,0.6)_s}^I(G,k) = P(G_{(0.3,0.6)_s},k) = P(P_1,k) \times (P_2,k) = k^3 k^2$
- 4. For $\alpha = 0.5$, $\beta = 0.5$, we have the strong level graph N_2 . Thus, $P_{(0.5,0.5)_s}^I(G,k) = P(G_{(0.5,0.5)_s},k) = P(N_2,k) = k^2$.

5.Lastly, for $\alpha = 0.6$, $\beta = 0.2$, we have the strong level graph N_1 . Thus, $P_{(0.6,0.2)_s}^I(G, k) = P(G_{(0.6,0.2)_s}, k) = P(N_1, k) = k$.

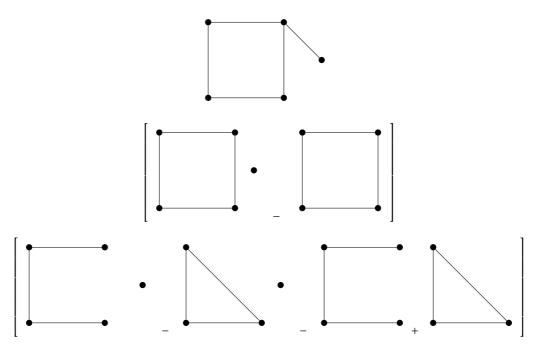


Fig. 3: The computation of $P(G_{(0,1)_s}, k)$

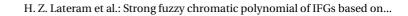
Therefore, $P^{I}_{(\alpha,\beta)_{s}}(G,k)$ of a graph in figure 1 is:

$$P^{I}_{(\alpha,\beta)_{s}}(G,k) = \begin{cases} (k(k-1)^{2})(k^{2}-3k+3) & \text{if } \alpha = 0, \beta = 1\\ k(k-1)^{3} & \text{if } \alpha = 0.2, \beta = 0.7\\ k^{3}-k^{2} & \text{if } \alpha = 0.3, \beta = 0.6\\ k^{2} & \text{if } \alpha = 0.5, \beta = 0.5\\ k & \text{if } \alpha = 0.6, \beta = 0.2 \end{cases}$$

Generally, the comparison of the vertex set, the edge set, the chromatic numbers, and the chromatic polynomials of various strong levels of a graph in figure 1 are put in table 1.

(<i>u,p</i>);				
Strong level	$ V_{(\alpha,\beta)_s} $	$ E_{(\alpha,\beta)_s} $	$\chi(G_{\alpha,\beta)_s})$	$P^{I}_{(\alpha,\beta)_{s}}(G,k)$
$\alpha = 0 \ \beta = 1$	5	5	2	$k(k-1)^2(k^2-3k+3)$
$\alpha = 0.2 \ \beta = 0.7$	4	3	2	$k(k-1)^{3}$
$\alpha = 0.3 \ \beta = 0.6$	3	1	2	$k^3 - k^2$
$\alpha = 0.5 \ \beta = 0.5$	2	0	1	k^2
$\alpha = 0.6 \ \beta = 0.2$	1	0	1	k

Table 1: The comparison of $|V_{(\alpha,\beta)_s}|$, $|E_{(\alpha,\beta)_s}|$, $\chi(G_{\alpha,\beta)_s})$ and $P^I_{(\alpha,\beta)_s}(G,k)$.



Remark.As α increases or as β decreases:

- 1. Both the cardinal of vertices and the cardinal of edges of an IFG based on the strong (α , β)-level decrease.
- 2. Both the chromatic number and the degree of strong fuzzy chromatic polynomial of an IFG based on (α, β) -level decrease.

4.1 The Characteristics of strong fuzzy chromatic polynomial of IFGs based on (α, β) -levels

Theorem 5. If $H_{(\alpha_1,\beta_1)_s}$ and $H_{(\alpha_2,\beta_2)_s}$ are the strong level graphs of an IFG, H = (V, E) with $\alpha_1 < \alpha_2$ and $\beta_1 > \beta_2$, then $deg(P(H_{(\alpha_2,\beta_2)_s}, k)) \leq deg(P(H_{(\alpha_1,\beta_1)_s}, k)).$

*Proof.*Assume that H = (V, E) is an IFG and also assume that $H_{(\alpha_1, \beta_1)_s}$ and $H_{(\alpha_2, \beta_2)_s}$ are the strong level graphs of H such that $\alpha_1 < \alpha_2$ and $\beta_1 > \beta_2$. Since for any graph F, deg(P(F, k)) = |V(F)|, we have $deg(P(H_{(\alpha_1, \beta_1)_s}, k)) = |V_{(\alpha_1, \beta_1)_s}|$ and $deg(P(H_{(\alpha_2, \beta_2)_s}, k)) = |V_{(\alpha_2, \beta_2)_s}|$. Since $\alpha_1 < \alpha_2$ and $\beta_1 > \beta_2$, by applying corollary 1, We obtain $|V_{(\alpha_1, \beta_1)_s}| \ge |V_{(\alpha_2, \beta_2)_s}|$. Thus, $deg(P(H_{(\alpha_2, \beta_2)_s}, k)) \le deg(P(H_{(\alpha_1, \beta_1)_s}, k))$.

Corollary 3. *If* $(\alpha_l, \beta_l)_s$, $(\alpha_m, \beta_m)_s$ and $(\alpha_n, \beta_n)_s$ are the strong intuitionistic fuzzy levels of an IFG, H = (V, E) such that $\alpha_m > \alpha_l, \alpha_n > \alpha_m, \beta_m < \beta_l$ and $\beta_n < \beta_m$, then $deg(P(H_{(\alpha_n, \beta_n)_s}, k)) \le deg(P(H_{(\alpha_l, \beta_l)_s}, k))$.

*Proof.*Assume that H = (V, E) is an IFG and $H_{(\alpha_l, \beta_l)_s}, H_{(\alpha_m, \beta_m)_s}$ and $H_{(\alpha_n, \beta_n)_s}$ are the strong level graphs of H with $\alpha_m > \alpha_l, \alpha_n > \alpha_m, \beta_m < \beta_l$ and $\beta_n < \beta_m$. Now the transitivity of three real numbers implies that $\alpha_1 < \alpha_n$ and $\beta_1 > \beta_n$. Further, by applying theorem 3, $deg(P(H_{(\alpha_n, \beta_n)_s}, k)) \le deg(P(H_{(\alpha_l, \beta_l)_s}, k))$.

Theorem 6. If H_c is an underlying crisp graph of an IFG, H and $F_s = \{(0,1)_s\} \cup \{(\alpha_i,\beta_i)_s\}_{i=1}^l$ is the strong fundamental set of H such that $0 < \alpha_i$ and $\beta_i < 1 \forall i = 1, 2, \dots, l$, then $P_{(0,1)_s}^I(H,k) = P(H_c,k)$.

*Proof.*Let *H* be an IFG and $F_s = \{(0,1)_s\} \cup \{(\alpha_i, \beta_i)_s\}_{i=1}^l$ be a strong fundamental set of *H*. Suppose that H_c is the underlying graph and assume $0 < \alpha_i$ and $\beta_i < 1 \forall i = 1, 2, \dots, l$ of (α_i, β_i) in F_s . Then by applying theorem 2, $H_{(\alpha_i, \beta_i)_s}$ is a sub graph of $H_{(0,1)_s}$ for each $i = 1, 2, \dots, l$. Since every strong level graph of *H* is sub graph of $H_{(0,1)_s}$ and $H_{(0,1)_s}$ is the underlying graph of *H*. $H_{(0,1)_s}$ contains every vertex and every edge of H_c . Thus, $H_{(0,1)_s}$ and H_c are similar graphs and contain equal chromatic polynomial. Mathematically, $P(H_{(0,1)_s}, k) = P(H_c, k)$. Hence, $P_{(0,1)_s}^I(H, k) = P(H_c, k)$.

Theorem 7. If F and H are the IFG components of an IFG G, then $P^{I}_{(\alpha,\beta)_{s}}(G,k) = P^{I}_{(\alpha,\beta)_{s}}(F,k) \times P^{I}_{(\alpha,\beta)_{s}}(H,k)$.

*Proof.*Let *F* and *H* be IFG components of an IFG, *G*. Now suppose that $G_{(\alpha,\beta)_s}$, $F_{(\alpha,\beta)_s}$ and $H_{(\alpha,\beta)_s}$ are the strong (α,β) -level graphs of *G*, *F*, and *H* in a respective manner. Since *F* and *H* are IFG components of *G*, $F_{(\alpha,\beta)_s}$ and $H_{(\alpha,\beta)_s}$ are underlying crisp components of $G_{(\alpha,\beta)_s}$. Now, by applying proposition 2: $P_{(\alpha,\beta)_s}^I(G,k) = P_{(\alpha,\beta)_s}^I(F,k) \times P_{(\alpha,\beta)_s}^I(H,k)$.

Theorem 8. If $W_{(\alpha_l,\beta_l)_s}$ and $W_{(\alpha_m,\beta_m)_s}$ are the level graphs of an IFG, W with $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$, then $P^I(W_{(\alpha_l,\beta_l)_s} \cup W_{(\alpha_m,\beta_m)_s}, k) = P^I(W_{(\alpha_l,\beta_l)_s}, k).$

*Proof.*Let $W_{(\alpha_l,\beta_l)_s}$ and $W_{(\alpha_m,\beta_m)_s}$ are the level graphs of an IFG, W with $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$. Then $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$ implies that $V_{(\alpha_m,\beta_m)_s} \subseteq V_{(\alpha_l,\beta_l)_s}$ and $E_{(\alpha_m,\beta_m)_s} \subseteq E_{(\alpha_l,\beta_l)_s}$. Now by the definition of union of sets, $V_{(\alpha_l,\beta_l)_s} \cup V_{(\alpha_m,\beta_m)_s} = V_{(\alpha_l,\beta_l)_s} \cup E_{(\alpha_m,\beta_m)_s} = E_{(\alpha_l,\beta_l)_s}$. This implies, $W_{(\alpha_l,\beta_l)_s} \cup W_{(\alpha_m,\beta_m)_s} = W_{(\alpha_l,\beta_l)_s}$. Hence, $P^I(W_{(\alpha_l,\beta_l)_s} \cup W_{(\alpha_m,\beta_m)_s}, k) = P^I(W_{(\alpha_l,\beta_l)_s}, k)$.

Theorem 9. If $W_{(\alpha_l,\beta_l)_s}$ and $W_{(\alpha_m,\beta_m)_s}$ are the level graphs of an IFG, W with $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$, then $P^I(W_{(\alpha_l,\beta_l)_s} \cap W_{(\alpha_m,\beta_m)_s}, k) = P^I(W_{(\alpha_m,\beta_m)_s}, k).$

*Proof.*Let $W_{(\alpha_l,\beta_l)_s}$ and $W_{(\alpha_m,\beta_m)_s}$ be the level graphs of an IFG, W with $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$. Then $\alpha_l < \alpha_m$ and $\beta_l > \beta_m$ implies that $V_{(\alpha_m,\beta_m)_s} \subseteq V_{(\alpha_l,\beta_l)_s}$ and $E_{(\alpha_m,\beta_m)_s} \subseteq E_{(\alpha_l,\beta_l)_s}$. Now by the definition of intersection of two sets, $V_{(\alpha_l,\beta_l)_s} \cap V_{(\alpha_m,\beta_m)_s} = V_{(\alpha_m,\beta_m)_s}$ and $E_{(\alpha_m,\beta_m)_s} \subseteq E_{(\alpha_m,\beta_m)_s}$. This indicates $W_{(\alpha_l,\beta_l)_s} \cap W_{(\alpha_m,\beta_m)_s} = W_{(\alpha_m,\beta_m)_s}$. Hence, $P^I(W_{(\alpha_l,\beta_l)_s} \cap W_{(\alpha_m,\beta_m)_s}, k) = P^I(W_{(\alpha_m,\beta_m)_s}, k)$.

5 Conclusions

In this research, the concept of the $(\alpha, \beta)_s$ -fundamental set of an IFG and the idea of (α, β) -level based strong fuzzy chromatic polynomial of an IFG has been introduced. In addition, some characterizations of $(\alpha, \beta)_s$ -level graphs and (α, β) -level based strong fuzzy chromatic polynomial of an IFG have been discussed and illustrated. Moreover, the strong fuzzy chromatic polynomials of an IFG for the various $(\alpha, \beta)_s$ -levels have been computed and associated.

Contributions of Authors

Each author contributed an equal contribution in this article's preparation.

Conflicts of Interest

No one will conflict concerning this work's publication.

Funding Statement

There is no funding for this work.

References

- [1] L. A. Zadeh. Fuzzy Sets, Information and Control, 8, 338-353(1965).
- [2] A. Kauffman. Introduction a la Théories Des Sous-Ensembles Flous, Massonet Cie, 1(1973).
- [3] A. Rosenfeld. Fuzzy graphs, In Fuzzy Sets and Their Applications, Academic Press, 77-95, (1975).
- [4] K. T. Atanassov. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87-96,(1986).
- [5] K. T. Atanassov. Intuitionistic Fuzzy Sets Theory and Applications, *Physica Heidelberg*, Springer, 1,(1999).
- [6] K. T. Atanassov and A. Shannon. On a generalization of intuitionistic fuzzy graphs, *Notes on Intuitionistic Fuzzy Sets*, **12**, 24-29,(2006).
- [7] M. Akram, B. Davvaz. Strong intuitionistic fuzzy graphs, Filomat, 26(1), 177-196,(2012).
- [8] M. Akram, M.G. Karunambigai, and O.K. Kalaivani. Cayley intuitionistic fuzzy graphs, *Journal of Applied Mathematics and Informatics*, **32**, 827-842,(2014).
- [9] P. Ejegwa, G. Tyoakaa, A. Ayenge. Application of Intuitionistic Fuzzy Systems, 10, 35-40, (2016).
- [10] T. Chaira, Intuitionistic fuzzy color clustering of human cell images on different color models, *Journal of Intelligent and Fuzzy Systems*, **23**, 43-51,(2012)
- [11] Z. Shao, H. Rashmanlou. and M. Shoaib. New concepts in IFGs with application in water supplier systems, *Mathematics*, **8**, (2020).
- [12] M. Akram, A. Ashraf, and M. Sarwar. Novel applications of Intuitionistic fuzzy diagraphs in decision support systems, *Scientific World Journal*, (2014).
- [13] A. Mamo and V. N. Srinivasa Rao Repalle. Fuzzy Chromatic Polynomial of Fuzzy Graphs with Crisp and Fuzzy Vertices Using α-Cuts, *Advances in Fuzzy Systems*, (2019).
- [14] M.A. Rifayathali, A. Prasanna and S. I. Mohideen. Intuitionistic Fuzzy Graph Coloring, *International Journal of Research and Analytical Reviews*, **5**,(2018).
- [15] A. Prasanna, M. A. Rifayathali, and S.I. Mohideen. Strong Intuitionistic Fuzzy Graph Coloring, *International Journal of Latest Engineering Research and Applications (IJLERA)*, **2**, 163-169,(2017).
- [16] S.I. Mohideen and M.A. Rifayathali. Coloring of intuitionistic fuzzy graph using (α, β) -cuts, *international journal of Mathematics*, *Engineering and IT*, (2015).
- [17] M, Akram. Level graph of IFGs, In proc. Annals of Fuzzy Mathematics and Informatics, 16, 55-70,(2018).
- [18] R. Parvathi, M. G. Karunambigai, and K. T. Atanassov. (2009), Operations on IFGs, In proc. IEEE, 1396-1401, (2009).
- [19] U. Sanli. and I. N. Cangul. A new method for calculating the chromatic polynomial, Applied Sciences, 19, 110-121,(2017).