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Abstract: The focus of our research was to address the generalized Huxley equation using the recently developed iterative method

called the new iterative method (NIM). Our study entailed a comprehensive investigation of the convergence characteristics of the NIM.

Additionally, we compared the outcomes obtained from the NIM with other established iterative techniques, including the variational

iteration method (VIM) and Adomian decomposition method (ADM), as well as the exact solution.
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1 Introduction

Nonlinear systems are ubiquitous in various scientific and
engineering fields, from physics and chemistry to biology
and economics. They arise when a system’s output is not
proportional to its input, leading to complex and often
chaotic dynamics. The behavior of these systems can be
modeled mathematically using nonlinear models, which
can capture their intricate behavior more accurately than
linear models. However, solving real-life nonlinear
models is often challenging both theoretically and
numerically, as they may not have explicit solutions or
may require complex algorithms to solve.

To make nonlinear models tractable, researchers often
resort to making simplifying assumptions, which can
reduce the complexity of the problem and make it easier
to analyze. These assumptions may include
approximations, neglecting small terms, reducing the
number of variables, or assuming symmetry or
periodicity. However, these simplifications can lead to
inaccurate results or may obscure important features of
the system’s behavior. In some cases, the assumptions
made may render the model irrelevant to real-world
applications.

Despite the challenges of modeling and analyzing
nonlinear systems, significant progress has been made in
recent years. Various techniques, such as perturbation
methods, numerical simulations, bifurcation analysis, and

chaos theory, have been developed to analyze and solve
nonlinear models. Moreover, recent advances in machine
learning and artificial intelligence have shown promising
results in solving complex systems while maintaining
accuracy. These new methods offer exciting opportunities
for solving challenging problems in various fields [1,2,3,
4,5,6,7,8,9,10].

The introduction of a new mathematical approach
called the new iterative method (NIM) by Daftardar-Gejji
and Jafari [11] has enabled the solution of both linear and
nonlinear functional equations. The NIM technique has
demonstrated its effectiveness in solving various types of
nonlinear equations, including algebraic, integral,
ordinary and partial differential equations of both
fractional and integer order. Compared to other
established methods such as ADM [13], HPM [14], and
VIM [15], NIM is simple to understand and implement
using computer software. Research has indicated that
NIM delivers superior results [12].

The generalized Huxley equation,

ut − uxx = β u(1− uδ)(uδ − γ), 0 ≤ x ≤ 1, t ≥ 0, (1)

where the initial condition is defined as follows:

u(x,0) =
[γ

2
+

γ

2
tanh(σγx)

]1/δ
, (2)

illustrate the propagation of nerve impulses in nerve fibres
and the movement of liquid crystals. Wang et al. derived
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the exact solution to the equation using nonlinear
transformations, as outlined in their paper [16]:

u(x, t) =

[

γ

2
+

γ

2
tanh

{

σγ

(

x+

{

αρ

2(1+ δ )

}

t

)}]1/δ

(3)

where σ = δρ/4(1 + δ ), α = 1 + δ − γ and

ρ =
√

4β (1+ δ ).

Several methods have been utilized for obtaining
approximate solutions of the generalized Huxley
equation. For example, Hashim et al. [17] implemented
the Adomian decomposition method, Hashemi et al. [18]
implemented both the HPM and the ADM, Batiha et al.
[19] discussed the use of the variational iteration method,
and Hemida and Mohamed [20] developed a scheme
based on the homotopy analysis method to approximate
solutions to the equation.

The new iterative method (NIM) was utilized to
derive an analytical solution for the generalized Huxley
equation, as outlined in this article. The accuracy of NIM
was assessed by comparing its results with those of other
iterative methods, including VIM and ADM, as well as
the exact solution. The outcomes obtained via NIM were
discovered to be consistent and closely aligned with those
obtained using ADM, VIM, and the exact solution.

2 The new iterative method (NIM)

In this section, the NIM numerical method will be outlined
as follows [21,22,23,24]:

u = f +L(u)+N(u), (4)

In the equation above, f is a known function, and L
and N are linear and nonlinear operators, respectively.
The NIM solution for Eq. (4) has the form

u =
∞

∑
i=0

ui. (5)

Since L is linear then

L

(

∞

∑
i=0

ui

)

=
∞

∑
i=0

L(ui). (6)

The nonlinear operator N in Eq. (4) is decomposed as
below

N

(

∞

∑
i=0

ui

)

= N(u0)+
∞

∑
i=1

{

N

(

i

∑
j=0

u j

)

−N

(

i−1

∑
j=0

u j

)}

.

=
∞

∑
i=0

Ai, (7)

where

A0 = N(u0)

A1 = N(u0 + u1)−N(u0)

A2 = N(u0 + u1 + u2)−N(u0 + u1)

...

Ai =

{

N

(

i

∑
j=0

u j

)

−N

(

i−1

∑
j=0

u j

)}

, i ≥ 1.

Using Eqs.(5), (6) and (7) in Eq. (4), we get

∞

∑
i=0

ui = f +
∞

∑
i=0

L(ui)+
∞

∑
i=0

Ai. (8)

The solution of Eq. (4) can be expressed as

u =
∞

∑
i=0

ui = u0 + u1 + u2 + . . .+ un + . . . , (9)

where

u0 = f

u1 = L(u0)+A0

u2 = L(u1)+A1

...

un = L(un−1)+An−1

... (10)

Algorithm

INPUT : Read M(Number o f iterations);

Read L(u); N(u); f

Step− 1 : u−1 = 0, u0 = f

Step− 2 : For(n = 0, n ≤ M,n++)

{

Step− 3 : An = f (un)− f (un−1);

Step− 4 : un+1 = f +L(un)+An;

Step− 5 : u = un+1

} end

OUTPUT : u (11)

3 The convergence of the NIM

Theorem 1: For any n and for some real L > 0 and

||ui|| ≤ M < 1
e
, i = 1,2, ..., if N is C(∞) in the

neighborhood of u0 and ||N(n)(u0)|| ≤ L, then ∑∞
n=0 Hn is

convergent absolutely and
||Hn|| ≤ LMnen−1(e− 1), n = 1,2, ....
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Proof:

||Hn|| ≤ LMn
∞

∑
in=1

∞

∑
in−1=0

· · ·
∞

∑
i1=0

(

n

∏
j=1

1

i j!

)

= LMnen−1(e− 1). (12)

Thus the series ∑∞
n=1 ||Hn|| is dominated by the convergent

series LM(e − 1)∑∞
n=1(Me)n−1, where M < 1/e. Hence,

∑∞
n=0 Hn is absolutely convergent, due to the comparison

test.
As it is difficult to show boundedness of ui, for all i, a

more useful result is provedin the following theorem,

where conditions on N(k)(u0) are given which are
sufficient to guarantee convergence of the series.

Theorem 2: The series ∑∞
n=0 Hn is convergent

absolutely if N is C(∞) and ||N(n)(u0)|| ≤ M ≤ e−1,∀n.

Proof: Consider the recurrence relation

εn = ε0exp(εn−1), n = 1,2,3, ..., (13)

where ε0 = M. Define ηn = εn − εn−1,n = 1,2,3, · · ·. We
observe that

||Hn|| ≤ ηn, n = 1,2,3, · · ·. (14)

Let

σn =
n

∑
i=1

ηi = εn − ε0. (15)

Not that ε0 = e−1 > 0, ε1 = ε0exp(ε0) > ε0 and
ε2 = ε0exp(ε1) > ε0exp(ε0) = ε1. In general,
εn > εn−1 > 0. Hence ∑ηn is a series of positive real
numbers. Note that

0 < ε0 = M = e−1 < 1,

0 < ε1 = ε0exp(ε0)< ε0e1 = e−1e1 = 1, (16)

0 < ε2 = ε0exp(ε1)< ε0e1 = 1.

In general 0 < εn < 1. Hence, σ = εn − ε0 < 1. This
implies that {σn}

∞
n=1 is bounded above by 1, and hence

convergent. Therefore, ∑Hn is absolutely convergent by
comparison test.

4 Discussion of Numerical Results

This section applies NIM to obtain the solution of the
generalized Huxley equation. We will perform integration
of equation (1) and utilize equation (2) to derive the
solution of the generalized Huxley equation (1) based on
the specified initial condition.

u =
[γ

2
+

γ

2
tanh(σγx)

]1/δ

+

∫ t

0

[

uxx +(β u)
(

1− uδ
)(

uδ − γ
)]

dt (17)

By using algorithm (11) we obtain:

u0 =
[ γ

2
+

γ

2
tanh(σγx)

]1/δ
(18)

u1 = β 2−
1
δ
−2t(γ(tanh(

M

2N
)+ 1))1/δ

(4(γ + 1)((
γ

e−
M
N + 1

)1/δ )δ

− 4((
γ

e−
M
N + 1

)1/δ )2δ

+
γ(2γ − 4(δ + 1)− γ(δ + sinh(M

N
)+ 1)sech2( M

2N
))

δ + 1
),

(19)

where M = β γδx, and N =
√

β (δ + 1).
So,

1

∑
i=0

ui = u0 + u1. (20)

By utilizing computer algebra software such as
Mathematica, it is easy to obtain the remaining
components required for the repetition formula.

To compare the precision and effectiveness of the new
iterative method (NIM) with the ADM [17] and the VIM
for solving Eq. (1), we will utilize the same parameter
values for the generalized Huxley equation (1) as those
used in [17]. By doing so, we aim to demonstrate the
superiority of NIM over ADM and VIM for the same
equation.

Numerical comparisons of the results obtained using
NIM, VIM, ADM, and exact solutions for the case where
β = 1, γ = 0.001, and δ = 1,2, and 3 are presented in
Tables 1–3. The results demonstrate that NIM
outperforms VIM and ADM in terms of efficiency.This is
because NIM obviates the requirement to calculate
Adomian polynomials, which can pose difficulties in
certain circumstances.

5 Conclusion

The successful application of the new iterative method
(NIM) to solve the generalized Huxley equation is
presented in this paper. The solution obtained through
NIM is presented as a series, and the accuracy of this
solution is compared with the ADM, VIM, and exact
solutions. The results of the comparison demonstrate that
NIM is both efficient and reliable in solving partial
differential equations. In fact, the use of NIM offers a
straightforward method for finding highly accurate
solutions to such equations. The implications of these
findings are significant, as they provide researchers and
practitioners with a promising new tool for tackling
challenging mathematical problems in a variety of fields,
including physics, engineering, and finance, among
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Table 1: Numerical and exact solutions at γ = 0.001, β = 1, and δ = 1.

x t Exact NIM ADM [17] VIM [19]

0.1 0.05 0.000500030171 0.000500005184 0.000500005184 0.000500005184

0.1 0.000500042665 0.000499992695 0.000499992690 0.000499992690

1 0.000500267553 0.000499767825 0.000499767803 0.000499767803

0.5 0.05 0.000500100882 0.000500075894 0.000500075895 0.000500075895

0.1 0.000500113376 0.000500063402 0.000500063401 0.000500063401

1 0.000500338263 0.000499838513 0.000499838513 0.000499838513

0.9 0.05 0.000500171593 0.000500146606 0.000500146605 0.000500146605

0.1 0.000500184087 0.000500134112 0.000500134111 0.000500134111

1 0.000500408974 0.000499909228 0.000499909224 0.000499909224

Table 2: Numerical exact solutions at γ = 0.001, β = 1, and δ = 2.

x t Exact NIM ADM [17] VIM [19]

0.1 0.05 0.0223618841 0.0223607666 0.0223607664 0.0223607664

0.1 0.0223624429 0.0223602077 0.0223602076 0.0223602076

1 0.0223724988 0.0223501490 0.0223501462 0.0223501490

0.5 0.05 0.0223644658 0.0223633485 0.0223633483 0.0223633483

0.1 0.0223650245 0.0223627896 0.0223627895 0.0223627895

1 0.0223750792 0.0223527299 0.0223527292 0.0223527320

0.9 0.05 0.0223670472 0.0223659299 0.0223659298 0.0223659298

0.1 0.0223676058 0.0223653713 0.0223653711 0.0223653711

1 0.0223776594 0.0223553125 0.0223553120 0.0223553148

Table 3: Numerical and exact solutions at γ = 0.001 β = 1, and δ = 3.

x t Exact NIM ADM [17] VIM [19]

0.1 0.05 0.0793740204 0.0793700536 0.0793700531 0.0793700531

0.1 0.0793760039 0.0793680697 0.0793680693 0.0793680695

1 0.0794116901 0.0793323441 0.0793323439 0.0793323637

0.5 0.05 0.0793819558 0.0793779900 0.0793779893 0.0793779894

0.1 0.0793839389 0.0793760061 0.0793760059 0.0793760061

1 0.0794196179 0.0793402882 0.0793402876 0.0793403074

0.9 0.05 0.0793898897 0.0793859242 0.0793859239 0.0793859240

0.1 0.0793918724 0.0793839413 0.0793839409 0.0793839411

1 0.0794275442 0.0793482315 0.0793482298 0.0793482496

others. With its demonstrated effectiveness and simplicity,
NIM is sure to become a valuable asset in the arsenal of
numerical methods available for solving partial
differential equations.
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