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Abstract: In the previous definitions of fractional (α−) calculus, there were a mismatch in some properties to classical calculus. This

is because these definitions were built in an unusual way, they were built from the definition of integral to derivative. For example,

in the Riemann-Liouville definition of derivative, the derivative of a constant may not be zero. In this paper, we will overcome these

incompatibilities, by accurately constructing α− derivative and α− integral by usual way, so it coincides with the classical ones. We

also generalized some basic formulas and theorems.
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1 Introduction

Fractional calculus deals with derivatives and integrals of any order. Fractional calculus dates back to roughly the same
time as classical calculus. It was first referenced in a letter from Leibniz to l’Hospital in 1695, where the concept of the
fractional derivative was introduced. Many famous mathematicians, such as Liouville, Grunwald, Riemann, Euler,
Lagrange, Heaviside, Fourier, and Abell, mentioned fractional calculus on formal considerations which can be found
chronologically in [1]. Since then, many forms of fractional calculus have emerged, Riemann-Liouville, Riesz, and
Caputo fractional derivatives [2]-[4] and more recent conceptions of [5]-[8]. Fractional calculus is nowadays the realm of
physicists and mathematicians, who investigate the usefulness of such non-integer order derivatives and integrals in
different areas of physics and mathematics (see, e.g.,[9]-[11]). Fractional calculus has applications in both classical and
quantum mechanics, Appli field theories, variational calculus, and optimal control (see, e.g., [12]-[14]).

The two most widely used definitions are Riemann-Liouville and Caputo operators.

Definition 1(Riemann-Liouville fractional- derivatives 1847). Let f (.) be a continuous function in [a,b], 0 < α ≤ 1.
The left Riemann-Liouville fractional derivative of order α is given by

aDα
t f (t) =

1

Γ (α)

d

dt

(∫ t

a
(t − τ)α−1 f (τ)dτ

)

, t ∈ [a,b].

The right Riemann-Liouville fractional derivative of order α is given by

tD
α
b f (t) =− 1

Γ (α)

d

dt

(∫ b

t
(τ − t)α−1 f (τ)dτ

)

, t ∈ [a,b].

Definition 2(Caputo’s fractional derivatives 1967). Let f (.) be a continuous function in [a,b], 0<α ≤ 1. The left Caputo

fractional derivative of order α is given by

C
a Dα

t f (t) =
1

Γ (1−α)

∫ t

a
(t − τ)−α d

dt
f (τ)dτ, t ∈ [a,b].

and the right Caputo fractional derivative derivative of order α is given by

C
t Dα

b f (t) =− 1

Γ (1−α)

∫ b

t
(τ − t)−α d

dt
f (τ)dτ, t ∈ [a,b].

∗ Corresponding author e-mail: mashehata−math@yahoo.com, mashehata−math@bhie.edu.eg

c© 2024 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/100307


412 M. Shehata : From Calculus to α- Calculus

But this definitions gives rise to some problems. For example if one makes f (t) = K = constant in Riemann-Liouville

formula, one finds that its αth derivative is
Ktα

Γ (1−α)
, that is to say, is different from zero. This is because they depended

on the integral on the definition of the derivative.

In [15], a fractional derivative was defined by

lim
h→0

f (t + htα−1)− f (t)

h

for only positive real number t.

In this paper, we will build the definitions of α− derivative and α− integral by usual way, we will define α− derivative
by the limits, and α− integral by limits of Riemann. Also, we will generalized formulas and theorems of derivatives and
integrals. Through this paper α ∈ (0,1] and for a real number t (positive or negative), we denote by (t)α to the α−
principal root of t which is defined by

(t)α := |t|α .
{

1 t ≥ 0

eiπα t < 0

2 α- differentiable function

Definition 3( α- Differentiable function) Let f (t) be a real valued function defined in an open interval containing a real

number a and let aα , α ∈ (0,1], denotes to the principal root of the real number a. The function f (t) is α- differentiable

at a if

d f

dtα
(a) := lim

t→a

f (t)− f (a)

tα − aα

exists as a complex number.

More generally, a function f is said to be α− differentiable on an open set Ω if it is α− differentiable at every point in

Ω . A function that
d f

dtα
exists on its domain is said to be α− differentiable.

Example If f (t) = t. Find
d f

dt
1
2

(t) at t = 1, t =−1 and t = 0.

d f

dt
1
2

(a) = lim
τ→a

τ − a

τ
1
2 − a

1
2

= lim
τ→a

τ − a

|τ| 1
2 −|a| 1

2

.

{
1 a ≥ 0

e
−iπ

2 a < 0

= lim
τ→a

τ − a.
(

|τ| 1
2 + |a| 1

2

)

|τ|− |a| .

{
1 a ≥ 0
−i a < 0

=

{

2|a| 1
2 a ≥ 0

2i|a| 1
2 a < 0

So,

d f

dt
1
2

∣
∣
∣
∣
t=1

= 2,
d f

dt
1
2

∣
∣
∣
∣
t=0

= 0 and
d f

dt
1
2

∣
∣
∣
∣
t=−1

= 2i.

Remark 1If
d f

dtα
exists on its domain, then it is a complex-valued function given by

d f

dtα
= fα(t).sα (t),
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Table 1: List of some α differentiable functions

d

dtα
(k) = 0

d

dtα
(tβ ) =

β

α
tβ−α

d

dtα

(
et
)
=

t1−α et

α

d

dtα
(ln |t|) = 1

α tα
, t > 0

d

dtα
(sint) =

t1−α cos t

α

d

dtα
(cost) =

−t1−α sin t

α

d

dtα
(tan t) =

t1−α sec2 t

α

d

dtα
(cot t) =

−t1−α csc2 t

α

dt

dtα
(sect) =

t1−α sec t tan t

α

d

dtα
(csct) =

−t1−α csc t cot t

α

d

dtα

(

sin−1 t
)

=
t1−α

α
√

1− t2

d

dtα

(

tan−1 t
)

=
t1−α

α
(
1+ t2

)

d

dtα

(

csc−1 t
)

=
t1−α

α t
√

t2 −1

where fα(t) is a real valued function defined by

fα (t) :=
d f

d|t|α = lim
τ→t

f (τ)− f (t)

|τ|α −|t|α

and sα is a step complex valued function defined by

sα(t) =

{
1 t ≥ 0,

e−iαπ t < 0,

Remark 2For 0 < α < 1, If
d f

dtα
is exist at zero, then

d f

dtα
(0) = constant.

Remark 3If 0 < α2 < α1 ≤ 1 and f (t) is α1− differentiable at a, then it is α2− differentiable at a, moreover

d f

dtα2
(a) =

α1 aα1−α2

α2

d f

dtα1
(a).

So, if f (t) is differentiable( 1− differentiable) at a, then it is α− differentiable at a, and

d f

dtα
(a) =

a1−α

α

d f

dt
(a).

The converse is not true. For example f (t) = (t)
1
2 is 1

2
− differentiable at 0 but not differentiable at 0.

From remark 3, we can get table 1:
From the definition 3, we can easy prove the following theorems:

Theorem 1Let f (t) and g(t) be α− differentiable functions and k be a constant. Then each of the following equations

holds.

(1)
d

dtα
[k] = 0
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(2)
d

dtα
[k f (t)] = k

d

dtα
[ f (t)]

(3)
d

dtα
[ f (t)± g(t)] =

d

dtα
[ f (t)]± d

dtα
[g(t)]

(4)
d

dtα
[ f (t).g(t)] =

d f (t)

dtα
.g(t)+ f (t).

dg(t)

dtα

(5)
d

dtα

[
f (t)

g(t)

]

=
1

(g(t))2

[
d f (t)

dtα
.g(t)− f (t).

dg(t)

dtα

]

, g(t) 6= 0

Theorem 2If y = f (x) is differentiable at x and x = g(t) is α− differentiable at t, then

dy

dtα
=

dy

dx
.

dx

dtα
.

Theorem 3Let f (t) be a function and a be in its domain. If f (t) is α− differentiable at a, then it is continuous at a.

Proof.If f (t) is α− differentiable at a, then
d

dtα
(a) exists and

d

dtα
(a) = lim

t→a

f (t)− f (a)

tα − aα
.

Now

lim
t→a

f (t) = lim
t→a

( f (t)− f (a)+ f (a))

= lim
t→a

(
f (t)− f (a)

tα − aα
.(tα − aα)+ f (a)

)

= lim
t→a

f (t)− f (a)

tα − aα
. lim
t→a

(tα − aα)+ lim
t→a

f (a)

=
d

dtα
(a).0+ f (a) = f (a).

Therefore, since f (a) is defined and lim
t→a

f (t) = f (a) we conclude that f is continuous at a.

3 Application of α− differentiable

Definition 4Let f be a real valued function defined over an interval I and let c ∈ I. We say f has an absolute maximum

on I at c if

f (c)≥ f (t) for allt ∈ I.

We say f has an absolute minimum on I at c if

f (c)≤ f (t) for allt ∈ I.

If f has an absolute maximum on I at c or an absolute minimum on I at c , we say f has an absolute extremum on I at

c.

Theorem 4(Extreme value theorem) If f is a real valued continuous function over the closed, bounded interval [t0, t f ] ,

then there is a point in [t0, t f ] at which f has an absolute maximum over [t0, t f ] and there is a point in [t0, t f ] at which f

has an absolute minimum over [t0, t f ].

Definition 5We say that a function f has a local maximum on an open interval I at t = c if

f (c) ≥ f (t) for allt ∈ I that are near c

Similarly, we say that a function f has a local minimum on an open interval I at t = c if

f (c) ≤ f (t) for allt ∈ I that are near c

We say that a function f has a local extremum att = c if f has a local maximum at c or f has a local minimum at c.
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Theorem 5(Fermat’s -α− Theorem) If f is α− differentiable at a point c and has a local extremum at c, then
d f

dtα
(c) =

0 (i.e fα (c) = 0).

Proof. 1.For α = 1(this is a classical case
d f

dt
(c) = 0 ).

2.For 0 < α < 1 and c = 0 (from remark 1,
d f

dtα
(c) = 0 ).

3.For 0 < α < 1 and c 6= 0. Assume f has a local extremum at c and is α−differentiable at c. We need to prove that
fα (c) = 0. To demonstrate this, we shall show that fα(c)≥ 0 and fα (c)≤ 0, implying that fα(c) = 0. Because f has
a local extremum at c, therefore it has a local maximum or local minimum at c. Assume f has a local minimum at c.

Similarly, we can handel the case when f has a local maximum at c. There is an open interval I where f (c) ≤ f (t)
for all t ∈ I. Because f is α−differentiable at c,

fα (c) = lim
t→c

f (t)− f (c)

|t|α −|c|α .

Because this limit exists, both sided limits also exist and equal fα (c). Therefore,

fα(c) = lim
t→c+

f (t)− f (c)

|t|α −|c|α (1)

and

fα (c) = lim
t→c−

f (t)− f (c)

|t|α −|c|α . (2)

Because f (c) is a local minimum, we see that f (t)− f (c) ≥ 0 for t near c. Therefore, for t near c, but t > c, we

have
f (t)− f (c)

|t|α −|c|α ≥ 0. From (1), we conclude that fα (c)≥ 0. Similarly, it can be shown that fα (c)≤ 0. Therefore,

fα (c) = 0.

Theorem 6(Rolle’s-α− theorem) Let f be a real valued continuous on [t0, t f ] and α− differentiable over (t0, t f ) such

that f (t0) = f (t f ). There is at least one c ∈ (t0, t f ) such that
d

dtα
(c) = 0 ( fα(c) = 0 ).

Proof.Let k = f (t0) = f (t f ). We consider three cases:

1. f (t) = k for all t ∈ (t0, t f ).
2.There exists t ∈ (t0, t f ) so that f (t)> k.

3.There exists t ∈ (t0, t f ) so that f (t)< k.

Case 1:If f (t) = k for all t ∈ (t0, t f ), then fα (t) = 0 for all t ∈ (t0, t f ).
Case 2:Because f is continuous over [t0, t f ], According to the extreme value theorem, it has an absolute maximum. Also,

since there is a point t ∈ (t0, t f ) such that f (t)> k, the absolute maximum is greater than k. As a result, the absolute
maximum is not reached at either endpoint, the absolute maximum must occur at an interior point c ∈ (t0, t f ). Because
f has a maximum at an interior point c, and is α−differentiable at c, by Fermat’s-α− theorem, fα (c) = 0.

Case 3:The scenario when there exists a point t ∈ (t0, t f ) such that f (t) < k is similar to case 2, but maximum replaced by
minimum.

Theorem 7( Mean value-α− theorem) Let f be a continuous real valued function on [t0, t f ] and α− differentiable over

(t0, t f ). Then, there is at least one point c ∈ (t0, t f ) such that

fα (c) =
f (t f )− f (t0)

|t f |α −|t0|α
.

Proof.Let g(t) = f (t)− rtα
, where r is a constant. Because f is continuous on [t0, t f ] and α− differentiable on (t0, t f ),

the same is true for g. We now need to find r so that g meets the conditions of Rolle’s- α− theorem. Namely

g(t0) = g(t f )⇔ f (t0)− r |t0|α = f (t f )− r |t f |α

⇔ r
(
|t f |α −|t0|α

)
= f (t f )− f (t0)

⇔ r =
f (t f )− f (t0)

|t f |α −|t0|α
.
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Table 2: List of indefinite α integral of some functions
∫

k dtα = c+ktα
∫

tβ dtα = c+
α

β
tβ+α

∫

t1−α et dtα = c+αet
∫

1

tα
dtα = c+α ln |t|, t > 0

∫ (

t1−α sin t
)

dtα = c−α cos t

∫ (

t1−α cos t
)

dtα = c+α sin t

∫ (

t1−α sec2 t
)

dtα = c+α tant

∫ (

t1−α csc2 t
)

dtα = c−α cott

∫ (

t1−α sec t tan t
)

dtα = c+α sec t

∫ (

t1−α csc t cot t
)

dtα = c−α csc t

∫ (
t1−α

√
1− t2

)

dtα = c+α sin−1 t

∫ (
t1−α

1+ t2

)

dtα = c−α tan−1 t

∫ (
t1−α

t
√

t2 −1

)

dtα = c+α sec−1 t

By Rolle’s-α− theorem, since g is α− differentiable and g(t0) = g(t f ), there is some c in (t0, t f ) for which gα(c) = 0
and it follows from the equality g(t) = f (t)− r|t|α that,

gα(t) = fα (t)− r = 0

⇒ fα (c) = r =
f (t f )− f (t0)

|t f |α −|t0|α
.

4 Indefinite α− integral

If F(t) is α− differentiable and
dF

dtα
= f (t), then

dF

dtα
= f (t)⇔ dF = f (t)dtα

⇔ F(t) =

∫

f (t)dtα

and in general
∫

f (t)dtα = F(t)+ c.

From remark 3, if F(t) is differentiable, then

dtα = α tα−1 dt

So we can construct table 2:

5 α− Integrable function

Suppose f is a continuous on the closed bounded interval [t0, t f ]. Given a partition P = {t0, t1, t2, ..., tn}, of [t0, t f ], with
t0 < t1 < t2 < ... < tn = t f and ||p||= max

1≤i≤n
|ti − ti−1|.

Let Rα ,P :=
n

∑
i=1

f (t∗i )
(
tα
i − tα

i−1

)
, t∗i ∈ [ti−1, ti],

Rα := lim
||P||→0

Rα ,P.
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Definition 6Let f be a continuous function defined on [t0, t f ]. The function f (t) is said to be α− integrable on [t0, t f ] if

∫ t f

t0

f (t)dtα := lim
n→∞

Rα

exists as a complex number. By convention we define

∫ t0

t0

f (t)dtα := 0,

∫ t f

t0

f (t)dtα :=−
∫ t0

t f

f (t)dtα
.

Remark 4If f is α− integrable, then it is 1− integrable (integrable). and

∫ t f

t0

f (t)dtα = α

∫ t f

t0

f (t)tα−1 dt

= α sα(t).

∫ t f

t0

f (t) |t|α−1 dt

differentiable ⇒ α − differentiable ⇒ continuous

⇒ α − integrable ⇒ integrable .

Then, we can construct the fundamental theorems for α− calculus

Theorem 8(Fundamental α− theorem of calculus, part 1) If f (t) is continuous on [t0, t f ], and the functions F1(t), F2(t)
are defined by

F1(t) =

∫ t

t0

f (τ)dtτα
, F2(t) =

∫ t f

t
f (τ)dtτα

then
dF1(t)

dtα
= f (t),

dF2(t)

dtα
=− f (t) over [t0, t f ]

Theorem 9(Fundamental α− theorem of calculus, Part 2) If f (t) is continuous on [t0, t f ] and
dF(t)

dtα
= f (t), then

∫ t f

t0

f (t)dtα = F(t f )−F(t0).

From the fundamental theorem and Leibniz integral rule, we can prove

Theorem 10(α−Leibniz integral rule) If f (t,τ) is continuous function and its partial derivatives exist and are themselves

continuous function and the limits of integration a(t), b(t) are continuous and differentiable functions of t, then

d

dt

∫ b(t)

a(t)
f (t,τ)dτα = f (t,b(t)).

db

dt
− f (t,a(t)).

da

dt
+

∫ b(t)

a(t)

∂

∂ t
f (t,τ)dτα

and by applying α−Leibniz integral rule n+1 times to

∫ t

t0

(t−τ)n and
∫ t f

t0
(τ−t)n respectively, we obtain the α− Couchy

formulaes for repeated integration:

Theorem 11(α− Cauchy formulaes) If f (t) is continuous function, then

1.

∫ t

t0

(t − τ)n f (τ)dτα = n!

∫ t

t0

∫ τ

t0

∫ τ1

t0

...

∫ τn−1

t0
︸ ︷︷ ︸

n+1 times

f (τn)dτα
n dτn−1...dτ1dτ,

2.

∫ t f

t
(τ − t)n f (τ)dτα = n!

∫ t f

t

∫ t f

τ

∫ t f

τ1

...

∫ t f

τn−1
︸ ︷︷ ︸

n+1 times

f (τn)dτα
n dτn−1...dτ1dτ.
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6 α− Operators of first extension

For a given time horizon [t0, t f ], we define the α− derivatives and integrals operators of continuous α− differentiable
real valued function x = f (t) by

First extension derivatives

dα1 f

dtα2
:= Γ (α1 + 1)

d f

dtα2
, (3)

x(α) = f (α) = Dα f :=
dα f

dtα
= Γ (α + 1)

d f

dtα
(4)

and if f (t) is differentiable

dα1 f

dtα2
=

Γ (α1 + 1)

α2
t1−α2

d f

dt
, (5)

x(α) = f (α) = Dα f =
dα f

dtα
= Γ (α)t1−α d f

dt
. (6)

First extension integral

x(−α) = f (−α) = Iα f :=
1

Γ (α + 1)

∫

f (t)dtα
. (7)

Lower and upper integral operators are defined by

Iα f :=
1

Γ (α + 1)

∫ t

t0

f (t)dtα =
1

Γ (α)

∫ t

t0

tα−1 f (t)dt (8)

I
α

f :=
1

Γ (α + 1)

∫ t f

t
f (t)dtα =

1

Γ (α)

∫ t f

t
tα−1 f (t)dt (9)

Remark 5Note that

1.Dα (tα) = Γ (α + 1)
2.Dα (Iα f (t)) = Dα (Iα f (t)) = f (t)

3.Dα
(

I
α

f (t)
)

=− f (t)

4.Iα (Dα f (t)) = f (t)+ constant

5.Iα (Dα f (t)) = f (t)− f (t0)

6.I
α
(Dα f (t)) = f (t f )− f (t)

7 α− Operators of second extension

In this section, we extend the notation to second extension,

Second extension derivatives

dα1,α3 f

dtα2,α4
:=

dα1

dtα2

(
dα3 f

dtα4

)

= Γ (α1 + 1)Γ (α3 + 1)
d

dtα2

(
d f

dtα4

)

, (10)

x(α1,α2) = f (α1,α2) = Dα1,α2 f : = Dα1 (Dα2 f ) =
dα1

dtα1

(
dα2 f

dtα2

)

= Γ (α1 + 1)Γ (α2 + 1)
d

dtα1

(
d f

dtα2

)

.

(11)
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x(α)2 = f (α)2 = Dα ,α f : = Dα (Dα f ) =
dα

dtα

(
dα f

dtα

)

= (Γ (α + 1))2 d

dtα

(
d f

dtα

)

,

(12)

x(2) = f (2) = D2 f := x(1)2 , (13)

x(β ) = f (β ) = Dβ f := x(α ,1) = Dα ,1 = Dα (D f ) , 1 < β = α + 1 ≤ 2. (14)

Second extension integrals

x(−α1,−α2) = f (−α1,−α2) = Iα1,α2 f := Iα1 (Iα2 f )

=
1

Γ (α1 + 1)Γ (α2 + 1)

∫ {∫

f (t)dtα2

}

dtα1 ,
(15)

x(−α)2 = f (−α)2 = Iα ,α f : = Iα (Iα f ) =
1

(Γ (α + 1))2

∫ {∫

f (t)dtα

}

dtα
, (16)

x(−2) = f (−2) = I2 f : = I (I f ) =

∫ {∫

f (t)dt

}

dt, (17)

x(−β ) = f (−β ) = Iβ f := x(−1,−α) = I1,α = I (Iα f ) , 1 < β = α + 1 ≤ 2. (18)

Remark 6Note that

1.Dβ
(

tβ
)

= Γ (β + 1), 1 < β ≤ 2

2.Dα1+α2 f 6= Dα1,α2 f 6= Dα2,α1 f

3.Dα1,α2 Iα2,α1 f (t) = f (t).

8 α− Operators of higher extension

We can extend the above notations to higher extension, for examples
Higher extension derivatives

x(α1,α2,α3) = Dα1,α2,α3 f : = Dα1 (Dα2,α3 f ) = Dα1,α2 (Dα3 f ) , (19)

x(α)3 = f (α)3 := Dα ,α ,α f , (20)

x(n) = f (n) = Dn f := x(1)n , (21)

x(β ) = f (β ) = Dβ f := Dα (Dn f ) , n < β = α + 1 ≤ n+ 1. (22)

Higher extension integrals We have the followings

x(−α1,−α2,−α3) = f (−α1,−α2,−α3) = Iα1,α2,α3 f := Iα1,α2 (Iα3 f ) = Iα1 (Iα2,α3 f ) , (23)

x(−α)3 = f (−α)3 := Iα ,α ,α f , (24)
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x(−n) = f (−n) = In f := x(−1)n , (25)

x(−β ) = f (−β ) := In (Iα f ) ,

n < β = α + n ≤ n+ 1.
(26)

From theorem 11,for n < β = α + n ≤ n+ 1, we can define Iβ and I
β

respectively by

Iβ f : =
1

Γ (α + 1)n!

∫ t

t0

(t − τ)n f (τ)dτα

=
1

Γ (α)n!

∫ t

t0

(t − τ)n τα−1 f (τ)dτ,

(27)

I
β

f : =
1

Γ (α + 1)n!

∫ t f

t
(τ − t)n f (τ)dτα

=
1

Γ (α)n!

∫ t f

t
(τ − t)n τα−1 f (τ)dτ,

(28)

9 Conclusion

In this paper, we have overcome the problem of multiple previous definitions of fractional calculus by putting an accurate
definition of the α− calculus using the normal way. We concluded from this definition that:

1.the fractional calculus is a complex valued function and that it does not depend on gamma function, but the gamma is
set in the definition just for normalization.

2.the definition here depends on the principal root of the real number t (positive or negative) but the definition ([15] ) is
given for a positive real number only.

3.here we have overcome the deficiency in the definition of Riemann -Liouville(see table 3 and table 4 ).
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Table 3: Comparison between the definition of α derivative with the concept of Riemann-Liouville and our concept

Comparisons Our Concept Riemann-Liouville Concept

Derivative

operator Dα ,

0 < α ≤ 1

One definition for all t ∈ ℜ

(Dα f (t)) := Γ (α +1). lim
τ→t

f (τ)− f (t)

τα − tα
.

If f is differentiable, then

(Dα f (t)) := Γ (α).t1−α f ′(t)

Two definitions (left and right)

for all t ∈ [t0, t f ]

(Dα f (t)) :=
1

Γ (α)
.

d

dt

(∫ t

t0

(t − τ)α−1
f (τ)dτ

)

(left),

(

D
α

f (t)
)

:=
1

Γ (α)
.

d

dt

(∫ t f

t
(τ − t)α−1 f (τ)dτ

)

(right)

Dα (constant) Dα (constant) = 0 Dα (constant) 6= 0

Product Rule Dα (u.v) = Dα (u).v+u.Dα (v) Dα (u.v) 6= Dα (u).v+u.Dα (v)

Dα function It is a complex valued function He did not explain the result of Dα f (t) when t is

negative or what mean by (t − τ)α−1 when t − τ < 0

Whenα = 1 It is completely identical to classical

calculus when α = 1.

It does not coincide with classical calculus when α = 1.

Higher derivative

operator Dβ ,

β = α +n

One definition for all t ∈ ℜ
(

Dβ f (t)
)

:= Dα

(
dn f (t)

dtn

) Two definitions (left and right)

for all t ∈ [t0, t f ]
(

Dβ f (t)
)

:=
1

Γ (α)
.

dn+1

dtn+1

(∫ t

t0

(t − τ)α−1
f (τ)dτ

)

,

(

D
α

f (t)
)

:=
1

Γ (α)
.

dn+1

dtn+1

(∫ t f

t
(τ − t)α−1

f (τ)dτ

)
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Table 4: Comparison between the definition of α integral with the concept of Riemann-Liouville and our concept

Comparisons Our Concept Riemann-Liouville Concept

Integral operator

Iα , 0 < α ≤ 1

For all t ∈ [t0, t f ]

(Iα f (t)) :=
1

Γ (α +1)
. lim
n→∞

lim
|P|→0

n

∑
i=1

f (t∗i )
(
tα
i−1 − tα

i

)
,

Where P = {t0, t1, . . . , tn = t f } is any partition of

[t0, t f ]. For a continuous function f on [t0, t f ],
we define lower and upper integral operator for

t ∈ [t0, t f ]. by:

(Iα f (t)) :=
1

Γ (α)

(∫ t

t0

(τ)α−1
f (τ)dτ

)

,

(

I
α

f (t)
)

:=
1

Γ (α)

(∫ t f

t
(τ)α−1 f (τ)dτ

)

Two definitions (left and right)

for all t ∈ [t0, t f ]

(Iα f (t)) :=
1

Γ (α)

(∫ t

t0

(t − τ)α−1
f (τ)dτ

)

,

(

I
α

f (t)
)

:=
1

Γ (α)

(∫ t f

t
(τ − t)α−1

f (τ)dτ

)

Iα function It is a complex valued function He did not explain the result of Iα f (t) when t

is negative or what mean by (t − τ)α−1
when

t − τ < 0

Higher integral

operator Iβ ,

β = α +n

For a continuous function f on [t0, t f ], we define

lower and upper integral operator for t ∈ [t0, t f ], by:
(

Iβ f (t)
)

:=
1

Γ (α)

(∫ t

t0

(t − τ)n−1 (τ)α
f (τ)dτ

)

,

(

I
β

f (t)
)

:=
1

Γ (α)

(∫ t f

t
(τ − t)n−1 (τ)α f (τ)dτ

)

Two definitions (left and right)

for all t ∈ [t0, t f ]
(

Iβ f (t)
)

:=
1

Γ (α)

(∫ t

t0

(t − τ)n+α−1
f (τ)dτ

)

,

(

I
β

f (t)
)

:=
1

Γ (α)

(∫ t f

t
(τ − t)n+α−1 f (τ)dτ

)
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