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Abstract: In this paper we present a new method for solving the fractional Burgers equation

uα
t −uuα

x = uαα
x , (1)

where u is a continuously differentiable function on [0,∞). In this method an exact solution is obtained to the above equation using

tensor product techniques. Exact solutions of nonlinear partial differential equations similar to this one are hard to find.

Keywords: Conformable fractional derivative, Burgers equation, tensor product, atomic solution.

1 Introduction

In 1915 an English mathematician named Harry Bateman [1], while studying the motion of viscous fluid, introduced a
very important nonlinear partial differential equation.

∂u

∂ t
− u

∂u

∂x
= v

∂ 2u

∂x2
. (2)

After that in 1948, a Dutch physicist Johannes Martinus, Burgers [2], studied this equation extensively, later named after
him as Burgers equation.

Burgers equation forms a standard test problem for PDE solvers. In addition, it is used in boundary Layer calculation of
a viscous fluid flow and in other various fields such as gas dynamics, aspect turbulence, nonlinear wave propagation, traffic
flow shock wave theory, cosmology, and molecular interfaces. Burgers equation has been solved numerically by different
methods see [3,4,5,6,7,8]. Fractional Burgers equation has also attracted many Mathematicians who gave numerical
solution by different techniques see [9,10,11,12].

In this paper we tackle the fractional Burger’s equation by using the tensor product techniques to get an exact solution.

2 Fractional derivative

In recent years, many differential equations have been generalized to a random (non-integer) order as fractional differential
equations. Due to their ability to model complex phenomena, they attracted much attention and were used widely in
engineering, science, and other fields.

Fractional derivatives got different definitions as Riemann-Liouville, Caputo, Caputo-Frabrizio, Hadamard, and others
[13]. In this paper, we focus on the conformable derivative which was originally defined by Khalil and others, [14,15]
using the limit approach. Here, we briefly recall some definitions and properties of such fractional derivative.
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Definition 1. [15] Let h be a function defined from [0,∞) into R. The αth order fractional derivative of h is defined by

Dα(h)(t) = lim
ε→0

h(t + εt1−α)− h(t)

ε
, (3)

for all t > 0, α ∈ (0,1]. If h is α−differentiable in some (0,b), b > 0 and lim
t→0+

Dα(h)(t) exists, then

Dα(h)(0) = lim
t→0+

Dα(h)(t).

Let h(α)(t) stands for Dα(h)(t). If α = 1, Definition 1, turns to be the definition of usual first order derivative,

h′(t) = lim
ε→0

h(t + ε)− h(t)

ε
. (4)

In 2017, S.H. Al-Sharif and A. Malkawi gave a generalization of the previous definition as follows.

Definition 2. [14] Let h be a function defined from [0,∞) into R, the αth order fractional derivative of h is defined by

h(α)(t) = lim
ε→0

h(tq(εt−α))− h(t)

ε
, (5)

where q is any positive continuously differentiable function such that q(0) = q′(0) = 1, for all t > 0, α ∈ (0,1].

If h is α−differentiable in (0,b),b > 0 and lim
t→0+

h(α)(t) exists, then h(α)(0) = lim
t→0+

h(α)(t).

Theorem 1. [14] Let α ∈ (0,1], h and w be two α−differentiable functions at a point t > 0. Then

1. (sh+ zw)(α)(t) = sh(α)(t)+ zw(α)(t), for all s, z ∈R.

2. K(α) = 0, for all constant functions h(t) = K.

3. (tn)(α) = ntn−α .

4. (hw)(α)(t) = w(t)h(α)(t)+ h(t)(w)(α)(t).

5. Dα( h
w
)(t) =

w(t)h(α)(t)− h(t)w(α)(t)

w2(t)
.

6. If h is differentiable, then h(α)(t) = t1−α d
dt
(h(t)).

As a consequence of Theorem 1, we have the following theorem.

Theorem 2. [14] Let b ∈ R and α ∈ (0,1]. Then

1. (ebt)(α) = bt1−αebt .

2. (sin(bt))(α) = bt1−α cos(bt).

3. (cos(bt))(α) =−bt1−α sin(bt).

4. ( 1
α tα)(α) = 1.

Let P∗, Q∗ be the duals of the two Banach spaces P and Q respectively. For (p,q) ∈ P×Q, define the linear operator
p⊗ q by

p⊗ q : P∗ −→ Q,

as
(p⊗ q)(p∗) = 〈p, p∗〉q, (6)

where 〈p, p∗〉 denotes p∗(p). The expression p⊗q is called an atom. It can be shown easily that p⊗q is bounded and has
a norm ||p⊗ q||= ||p|| ||q||.

The following Lemma provides some properties of these atoms.

Lemma 1. [16] For any p, t ∈ P and q, z ∈ Q, then we have,

1. β (p⊗ q) = β p⊗ q = p⊗β q, where β any scalar.

2. (p+ t)⊗ q= p⊗ q+ t⊗ q.

3. p⊗ (q+ z) = p⊗ q+ p⊗ z.
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4. p⊗ 0 = 0⊗ q = 0⊗ 0.

Definition 3. [16] The tensor product P⊗Q := span{p⊗q : p ∈ P, q ∈ Q}, is a subspace of L (P∗,Q); where L (P∗,Q)
denotes the space of all continuous linear operators from P∗ into Q. P⊗Q represents the subspace of finite rank operators

in L (P∗,Q).

Notice that, for any element T ∈ P⊗Q, then T =
m

∑
j=1

p j ⊗q j; p j ∈ P, q j ∈ Q, 1 ≤ j ≤ m, for m ∈N. Moreover, T can

be also represented as,

T =
n

∑
j=1

λ j(p j ⊗ q j), ||p j||= ||q j||= 1, for some n ∈ N and λ ′
j s are scalars.

Two more properties of such operators are the followings,

β
m

∑
j=1

p j ⊗ q j =
m

∑
j=1

β p j ⊗ q j =
m

∑
j=1

p j ⊗β q j, for any scalar β , (7)

and
k

∑
j=1

p j ⊗ q j +
m

∑
j=k+1

p j ⊗ q j =
m

∑
j=1

p j ⊗ q j, for k < m. (8)

In spite of the different norms that can be imposed on P⊗Q, the projective and the injective norms remain the most
popular ones.

Definition 4. [16] Let T =
m

∑
j=1

p j ⊗ q j ∈ P⊗Q, define the projective norm on P⊗Q as

||T ||∧ = inf

{

m

∑
j=1

||p j|| ||q j|| : p j ∈ P, q j ∈ Q

}

. (9)

Definition 5. [16] Let S = ∑m
j=1 p j ⊗ q j ∈ P⊗Q, define the injective norm on P⊗Q as

||S||∨ = sup

{

m

∑
j=1

|〈p j, p∗〉〈q j,q
∗〉|, ∀ p∗⊗ q∗ ∈ P∗⊗Q∗ : ||p∗||= ||q∗||= 1

}

. (10)

Note that, the spaces (P⊗Q, ||.||∨) and (P⊗Q, ||.||∧) are not complete. The completion of P⊗Q with respect to the

injective (respectively, projective) norm, is denoted by P
∨
⊗Q (respectively, P

∧
⊗Q). For more on the theory of tensor

products we refer to [16].

It is known [16], that if S is a compact Hausdorff space and Q is a Banach space, then C(S,Q) is isometrically

isomorphic to C(S)⊗Q. If Q =C(T ) then C(S×T ) is isometrically isomorphic to C(S)
∨
⊗C(T ). Hence, for any u(s, t) ∈

C(S×T ), u(s, t) can be seen as an element of C(S)
∨
⊗C(T ) in the form ∑∞

j=1 R j ⊗Wj; R j ∈C(S) and Wj ∈C(T ). If the sum

is finite, j = 1,2,3, ...,m, then the solution u(s, t) = ∑m
j=1 R j ⊗Wj is represented by a finite rank operator. If m = 1, then

the solution (if exists) to the differential equation, which is represented by one atom u(s, t) = R⊗W , is called an atomic

solution.
It had been proved that atomic solutions for certain ordinary and fractional differential equations exist such as Gardner

equation, first and second order abstract Cauchy problems. For that see [17,18,19]. In this paper, (sections 3 and 4), we
prove that fractional Burgers equation has an atomic solution.

3 Linear form

In this section an atomic solution of a linear form of fractional partial differential equations is presented.
The following Lemma plays a great role in the success of the atomic solution method to prove the existence of analytic

solutions to some partial differential equations.
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Lemma 2. [19] Let p1 ⊗ q1 and p2 ⊗ q2 be two non zero atoms in P⊗Q. Then the following are equivalent:

1. p1 ⊗ q1+ p2 ⊗ q2 = p3 ⊗ q3 is a non zero atom.

2. p1, p2 or q1,q2 are linearly dependent.

Theorem 3. If u ∈C(S×T ), where S, T ∈ {[0,1], [0,∞)} and the second fractional partial derivatives of u exist for some

α in (0,1), then the differential equation

u
(α)
t + u

(α)
x = u

(αα)
x , (11)

has an atomic solution.

Proof. Let u(x, t) = R⊗W , R = R(x), and W =W (t). Then u
(α)
t = R⊗W (α), u

(α)
x = R(α)⊗W and u

(αα)
x = R(αα)⊗W.

So, the equation (11) becomes

R⊗W (α)+R(α)⊗W = R(αα)⊗W

R(αα)⊗W −R(α)⊗W = R⊗W (α)

[R(αα)−R(α)]⊗W = R⊗W (α)
.

Now, since two atoms are equal then R(αα)−R(α) = R and W =W (α).

In the first step, we solve W =W (α), as follows.

W−1W (α) = 1
∫

W−1dαW =

∫

dα t

ln(W ) = (
1

α
)tα

W (t) = e
tα

α

As a second step, we solve R(αα)−R(α) = R, equivalently R(αα)−R(α)−R = 0. Let us assume that R = eη xα

α , this

implies R(α) = ηeη xα

α and R(αα) = η2eη xα

α , then

R(αα)−R(α)−R = 0,

η2eη xα

α −ηeη xα

α − eη xα

α = 0,

eη xα

α [η2 −η − 1] = 0.

Since eη xα

α 6= 0, then η2 −η − 1 = 0, and we get the two roots,

η1 =
1+

√
5

2
, and η2 =

1−
√

5

2
.

So R(x) = c1eη1
xα

α + c2eη2
xα

α = c1e(
1+

√
5

2 ) xα

α + c2e(
1−

√
5

2 ) xα

α .

Then u(x, t) = R⊗W , where W (t) = e(
1
α )tα

and R(x) = c1e(
1+

√
5

2 ) xα

α + c2e(
1−

√
5

2 ) xα

α .

Theorem 4. Let u ∈ C(S×T), where S,T ∈ {[0,1], [0,∞)}. If u is twice α− differentiable for some α ∈ (0,1) and f is a

continuous function of the variable t, then the fractional partial differential equation

u
(α)
t + f u

(α)
x = u

(αα)
x , (12)

has an atomic solution.
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Proof. Let u(x, t) = R⊗W , where R and W are functions of x and t respectively, then u
(α)
t = R⊗W (α), u

(α)
x = R(α)⊗W

and u
(αα)
x = R(αα)⊗W

So equation (12) becomes

R⊗W (α)+ f [R(α)⊗W ] = R(αα)⊗W,

R⊗W (α)+R(α)⊗ fW = R(αα)⊗W,

R(αα)⊗W −R(α)⊗ fW = R⊗W (α)
.

Now, by using Lemma 2 we have either R(αα) = R(α) or W =− fW.

Case (1). If W =− fW, then f =−1, implies [R(αα)+R(α)]⊗W = R⊗W (α), then R(αα)+R(α) = R and W =W (α).

For R(αα)+R(α) = R, we may assume R = eη xα

α . This implies R(α) = ηeη xα

α and R(αα) = η2eη xα

α , hence

R(αα)+R(α)−R = 0,

η2eη xα

α +ηeη xα

α − eη xα

α = 0,

eη xα

α [η2 +η − 1] = 0.

But eη xα

α 6= 0, then η2 +η − 1 = 0 which implies η1 = −1−
√

5
2

and η2 = −1+
√

5
2

. So R(x) = c1eη1
xα

α + c2eη2
xα

α where
c1,c2 ∈ R, any two real numbers.

Also, W =W (α), then

W (α) =W

W−1W (α) = 1
∫

W−1dαW =

∫

dαt

ln(W ) =
tα

α

W (t) = e
tα

α .

Therefore, u(x, t) = R⊗W , where W (t) = e
tα

α and R(x) = c1eη1
xα

α + c2eη2
xα

α . But this solution is a special case when
f =−1. We aim to obtain the general form of a solution that is dependent on f (t), hence we have to go through the other
case.

Case (2). If R(αα) = R(α), then assume R = eη xα

α , this implies R(α) = ηeη xα

α and R(αα) = η2eη xα

α , hence

R(αα)−R(α) = 0,

η2eη xα

α −ηeη xα

α = 0,

eη xα

α [η2 −η ] = 0.

Since eη xα

α 6= 0, then η2 −η = 0, which implies η1 = 0 and η2 = 1. So R(x) = c1eη1
xα

α + c2eη2
xα

α = c1 + c2e
xα

α , where
c1,c2 are real numbers.

Therefore

R(αα)⊗W −R(α)⊗ fW = R⊗W (α)
,

R(α)⊗W −R(α)⊗ fW = R⊗W (α)
,

R(α)⊗ [W − fW ] = R⊗W (α)
.

Now, since we have two atoms are equal then R(α) = R and [W − fW ] =W (α).

First step, when R(α) = R then we must take c1 = 0, and hence we have R(αα) = R(α) = R = c2e
xα

α .
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Second step, for W (α) = [W − fW ], we get

W (α) = [1− f ]W

W−1W (α) = [1− f ]
∫

W−1dαW =

∫

[1− f ]dα t

ln(W ) =
∫

[1− f ]dα t

W (t) = e
∫

[1− f ]dα t
.

Now to verify that R⊗W is a solution of (12). Set R(αα) = R(α) = R, then

R⊗W (α)+ f [R(α)⊗W ] = R(αα)⊗W (α)+R(αα)⊗ fW

= R(αα)⊗ [W (α)+ fW ]

and since W (α) = [W − fW ] implies W =
[

W (α)+ fW
]

, then

R⊗W (α)+ f [R(α)⊗W ] = R(αα)⊗W.

Therefore, the atomic solution of (12) is u(x, t) = R⊗W , where W (t) = e
∫

[1− f ]dα t and R(x) = c2e
xα

α .

4 Fractional non-linear Burgers equation

Theorem 5. Let u ∈C(S×T ), where S,T ∈ {[0,1], [0,∞)}. If the second fractional partial derivatives of u exist for some

α ∈ (0,1), then the differential equation

u
(α)
t + uu

(α)
x = u

(αα)
x , (13)

has an atomic solution.

Proof. Let u(x, t) = R⊗W , where R and W are functions of x and t respectively, then u
(α)
t = R⊗W (α), u

(α)
x = R(α)⊗W

and u
(αα)
x = R(αα)⊗W . So, equation (13) becomes

R⊗W (α)+[R⊗W][R(α)⊗W ] = R(αα)⊗W,

R⊗W (α)+RR(α)⊗W 2 = R(αα)⊗W,

R(αα)⊗W– RR(α)⊗W 2 = R⊗W (α)
. (14)

Now, by using Lemma 2, we have either R(αα) = RR(α) or W 2 =W .

Case (1). If R(αα) = RR(α), then equation (14) becomes

RR(α)⊗W −RR(α)⊗W2 = R⊗W (α)
,

RR(α)⊗ (W −W2) = R⊗W (α)
.
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Hence, RR(α) = R and W −W 2 =W (α), since R(αα) = RR(α). Now, let R(α) = y then R(αα) = y(α) and by chain rule we

have y(α) = y′(R)R(α) = y′y. So

R(αα) = RR(α)
,

y′y = Ry,
∫

dy =

∫

RdR,

y =
1
2

R2
,

R(α) =
1
2

R2
,

∫

R−2dα R =
1
2

∫

dα x,

−R−1 = (
1

2α
)xα

,

R =−2αx−α
.

Since R =−2αx−α then R(α) = 2α2x−2α and R(αα) =−4α3x−3α .
This implies

RR(α) = (−2αx−α)(2α2x−2α) =−4α3x−3α = R(αα) 6= R.

That gives a contradiction.

Case (2). If W 2 =W then we have either W = 1 or W = 0. If W = 0 then we get a zero solution. On the other hand, if

W = 1 then we have W (α) = 0 and so we get,

R(αα)⊗W– RR(α)⊗W2 = R⊗W (α)
,

R(αα)⊗ 1− RR(α)⊗ 1 = R⊗ 0,

(R(αα)− RR(α))⊗ 1 = 0.

This gives that 1 = 0 or R(αα)−RR(α) = 0, but 1 6= 0 then R(αα)−RR(α) = 0, which implies that R(αα) = RR(α). Similarly
as above we get R =−2αx−α .

Now, to verify that R⊗W is a solution of (13), set W = 1 and R =−2αx−α then

R(αα)⊗W– RR(α)⊗W 2 = R(αα)⊗W − R(αα)⊗W2

= R(αα)⊗ (W −W2).

Since W =W 2 then we have,

R(αα)⊗W– RR(α)⊗W2 = R(αα)⊗ 0

= 0

= R⊗ 0

= R⊗W (α)
.

Hence, u(x, t) = R⊗W , where W (t) = 1 and R(x) =−2αx−α , is the required atomic solution of (13).

5 Conclusion

In this paper, we studied the existence of an analytic solution to the fractional Burgers equation

u
(α)
t + uu

(α)
x = u

(αα)
x .

We proved that an atomic solution exists for this equation.
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