
Progr. Fract. Differ. Appl. 10, No. 3, 431-449 (2024) 431

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/100309

A Fractional-Order Modeling and Sensitivity Analysis in

the Investigation of Colorectal Cancer

David Amilo 1,2,∗, Bilge Kaymakamzade 1,2, and Evren Hincal 1,2

1 Department of Mathematics, Near East University, TRNC, Turkey
2 Mathematics Research Center, Near East University, TRNC, Turkey

Received: 5 Jul. 2023, Revised: 8 Nov. 2023, Accepted: 4 Feb. 2024

Published online: 1 Jul. 2024

Abstract: This research paper focuses on studying colorectal cancer using a sensitivity analysis via the fractional differential

equations (FDE) model. The study aims to develop an accurate model for predicting the progression of the disease and its response to

treatments, by capturing all the important cells and factors involved. The existence and uniqueness of solutions are proven using the

Banach contraction principle, and global stability is shown using the Lyapunov function. Results show that the Epithelial cell growth

rate (λE ), rate of out-competition of epithelial cells by normal cells (δEO), rate of immune cell attack on epithelial cells (γEIC) and

TGF-β -induced growth rate of epithelial cells (γTE ) are the most sensitive parameters, with the concentration of adenomatous polyps

(P(t)), tumor suppressor genes (T (t)), epithelial cells (E(t)) and APC genes (A(t)) as most sensitive compartments. The research

concludes that the developed model can be used as a powerful tool for predicting the disease’s behavior and assessing the efficacy of

different treatment strategies. Overall, this study provides valuable insights into the treatment of colorectal cancer.

Keywords: Mathematical modeling, fractional Caputo derivative, colorectal cancer, sensitivity analysis.

1 Introduction

Colorectal cancer is one of the most common types of cancer and a significant contributor to cancer-related deaths
globally [1]. Colorectal cancer, commonly referred to as colon cancer, is characterized by the uncontrolled growth of
cells within the colon or rectum [2]. The colon, also known as the large intestine or large bowel, and the rectum, which
serves as the pathway connecting the colon to the anus, are the primary sites where this disease occurs [3]. Sensitivity
analysis using mathematical models is a useful tool for investigating the complex mechanisms of colorectal cancer
development and evaluating the effectiveness of various treatments [4].

Fractional-order differential equations (FDEs) are a powerful tool for modeling complex systems with memory and
non-locality effects, which are prevalent in biological systems, used to capture the complex behavior of biological
systems, including the growth of cancer cells [5–8]. FDEs have been extensively used in modeling various physiological
and pathological systems, including cancer [9]. In recent years, there has been an increasing interest in using FDEs to
model the growth and progression of colorectal cancer [10].

Several studies have proposed different FDE models for colorectal cancer [11, 12]. For instance, authors in [13] used a
fractional-order model to describe the interaction between the tumor and the immune system in colorectal cancer. The
model incorporated the effects of chemotherapy, immunotherapy, and surgery on tumor growth and regression. The study
found that the effectiveness of different treatments depended on the fractional-order parameter, which governs the
memory and non-locality effects in the model.
In another study, a fractional-order model was proposed to investigate the impact of tumor microenvironment on
colorectal cancer development [14]. The model considered the effects of angiogenesis, immune response, and
extracellular matrix on tumor growth and metastasis. The study found that the fractional-order parameter and the strength
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of the immune response were critical factors affecting the disease’s progression.

Sensitivity analysis is an important tool for investigating the behavior of complex systems and identifying the critical
factors that affect their performance [15–17]. Several sensitivity analysis techniques have been proposed, including local
sensitivity analysis, global sensitivity analysis, and variance-based sensitivity analysis [18–20]. In the context of
colorectal cancer modeling, sensitivity analysis can be used to identify the critical parameters and factors affecting the
disease’s progression and evaluate the effectiveness of various treatments [21].

In this research, we propose a fractional-order differential model for colorectal cancer and perform the partial derivative
method of analytic sensitivity analysis to identify the critical parameters and factors affecting the disease’s progression.
This study uses a fractional-order differential model to describe the dynamics of colorectal cancer growth, capturing the
concentrations of epithelial cells, adenomatous polyps, oncogenes, tumor suppressor genes, APC gene, KRAS gene,
microsatellite instability, inflammatory cells, cancer stem cells, angiogenesis factors, myofibroblasts, matrix
metalloproteinases, transforming growth factor-beta, hypoxia-inducible factor-1, Notch signaling pathway,
cyclooxygenase-2, p53 protein, and microRNAs [22], with the description of all parameters and variables shown in Table
3 and Table 1 respectively. To our knowledge, no study has performed a comprehensive sensitivity analysis on colorectal
cancer using fractional-order derivatives. The sensitivity analysis is employed to identify the most critical parameters
that influence the growth of colorectal cancer and how treatment can be improved to target these critical parameters.

2 Preliminaries

Definition 21 Caputo derivative [23]

The Caputo derivative of order α ∈ (0,1] of a sufficiently differentiable function f (t) is defined as follows:

dα f (t)

dtα
=

1

Γ (1−α)

∫ t

0
(t − τ)−α d

dτ
f (τ)dτ,

where Γ is the gamma function.

Definition 22 Gamma function [24]

The gamma function Γ (z) is defined for Re(z)> 0 by the integral

Γ (z) =

∫ ∞

0
xz−1e−xdx.

Definition 23 Laplace function [25]

The Laplace transform of a function f (t), defined for t ≥ 0, is the function L f (t)(s) given by the integral

L f (t)(s) =
∫ ∞

0
e−st f (t)dt,

where s is a complex number such that the integral converges.

Definition 24 Banach contraction principle. [26]

let (X ,d) be a metric space, and let T : X → X be a function. Then T is a Banach contraction if there exists a constant
0 ≤ k < 1 such that for all x,y ∈ X ,

d(T (x),T (y))≤ k,d(x,y).

Definition 25 Picard-Lindelof Theorem [28]

The Picard-Lindelöf theorem for fractional differential equations, also known as the Caputo fractional differential
equation, states that if a function f (x,y) and its partial derivative with respect to y, fy(x,y), are continuous on a
rectangular region R in the xy-plane, which contains a point (x0,y0), then there exists a unique solution y(x) of the initial
value problem:

dqy(x) = f (x,y(x)),y(x0) = y0,

where dqy(x) is the Caputo fractional derivative of order q (0 < q ≤ 1) of y(x) with respect to x.
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Definition 26 Fixed point theorem. [27]

Fixed point theorem also known as the contraction mapping theorem states that if T is a Banach contraction on a complete
metric space X , then T has a unique fixed point x∗ ∈ X , i.e., a point such that T (x∗) = x∗.

u(t)≤ A+B

∫ t

a
u(s)v(s)ds,

for some constants A and B. Then Gronwall’s inequality states that:

u(t)≤ AeB
∫ t

a v(s)ds
.

3 Model formation
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Fig. 1: Schematic diagram of the colorectal cancer model.

We seek to develop a fractional-order model of differential equations that captures the cells and factors involved in
colorectal cancer.
Let E(t),P(t),O(t),T (t),A(t),K(t), I(t), IC(t),CSC(t),AF(t),M(t),MMP(t),T GF(t),HIF(t),NSP(t),COX(t), p53(t),

and miRNA(t) represent the concentrations of epithelial cells, adenomatous polyps, oncogenes, tumor suppressor genes,
APC gene, KRAS gene, microsatellite instability, inflammatory cells, cancer stem cells, angiogenesis factors,
myofibroblasts, matrix metalloproteinases, transforming growth factor-beta, hypoxia-inducible factor-1, Notch signaling
pathway, cyclooxygenase-2, p53 protein, and microRNAs, respectively, at time t. Then the fractional-order model of
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differential equations is given by:

dα E(t)

dtα
= λE − µEP − δEO − γEIC +

γT E

KT +E
−

λT EA

KA +A
−

λKE K

KK +K
+

λII(t)

KI + I(t)

dα P(t)

dtα
= µEP −νP − δPO +

αPA

KA +A
−

λPPK

KK +K

dα O(t)

dtα
= γOIC − δOO −νOO

dαT (t)

dtα
=

λTE A

KA +A
−

λIT (t)

KI +T (t)
−νT T (t)

dα A(t)

dtα
=

βAKK(t)

KK +K
−

λT EA

KA +A
−

λAAM(t)

KM +M(t)
−νAAA(t)

dα K(t)

dtα
=

βKEE(t)

KT +E(t)
−

λKE K

KK +K
−

λPPK

KK +K
−νKKK(t)

dα I(t)

dtα
=

αIIC(t)

KIC + IC(t)
−

λIII(t)

KI + I(t)
−νII(t)

dα IC(t)

dtα
= δEO − γOIC −

αIIC(t)

KIC + IC(t)
−νICIC(t)

dαCSC(t)

dtα
=

βCMM(t)

KM +M(t)
− δCCCSC(t)

dα AF(t)

dtα
=

βAFE(E(t))

KT +E(t)
−

λAFAF(t)

KAF +AF(t)
−νAFAF(t)

dα M(t)

dtα
=

βMIC(t)

KIC + IC(t)
−

λAAM(t)

KM +M(t)
− δMMM(t)

Dα MMP(t)

Dtα
=

βMMPIC(t)

KIC + IC(t)
−

λMMPMMP(t)

KMMP +MMP(t)
−νMMP ·MMP(t)

Dα TGF(t)

Dtα
=

βT GFIC(t)

KIC + IC(t)
−

λT GFT GF(t)

KT GF +TGF(t)
−νTGF ·TGF(t)

(1)

The first equation describes the dynamics of the epithelial cells, which can grow at a rate λE and be inhibited by
apoptosis (µEP), out-competition by normal epithelial cells (δEO), or immune cell attack (γEIC). The growth rate can be
increased by TGF-β signaling (γT E ) and decreased by competition for nutrients with normal cells (λKE ) or with a lack of
growth factors (λTE ).
The equation also includes the effect of immune cells stimulating proliferation (λI) by secreting cytokines and growth
factors that bind to receptors on the epithelial cell surface.

The second equation describes the dynamics of the tumor-associated fibroblasts (TAFs) which can be stimulated by the
presence of the tumor cells (βAK) and inhibited by competition for nutrients with the tumor cells (γTE ) or by apoptosis
(λAA). The equation also includes the effect of MMPs secreted by tumor cells that can degrade the extracellular matrix
(ECM) and allow TAFs to migrate towards the tumor cells (βAFE ).

The third equation describes the dynamics of the oxygen level in the tumor microenvironment, which can be increased
by the presence of TAFs stimulating angiogenesis (γOIC) and decreased by consumption by tumor cells (δOO) or by
diffusion out of the tissue.

The fourth equation describes the dynamics of the tumor cells’ TGF-β secretion, which can be increased by the presence
of activated TAFs (βTGFIC) and decreased by the presence of immune cells that can attack the tumor cells (λTGFT GF ).

The fifth equation describes the dynamics of the immune cells, which can be stimulated by the presence of tumor
antigens presented by the antigen-presenting cells (αII) and inhibited by apoptosis (λII) or by competition for nutrients
with tumor cells (λTE ). The equation also includes the effect of cytokines secreted by immune cells that can stimulate
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proliferation of other immune cells.

The sixth equation describes the dynamics of the immune cells’ killing of tumor cells, which can be increased by the
presence of activated immune cells (βMIC) and decreased by competition for nutrients with the tumor cells (λPP).

The seventh equation describes the dynamics of the immune cells’ migration towards the tumor cells, which can be
stimulated by the presence of chemokines secreted by the tumor cells or TAFs (δEO) and inhibited by competition for
nutrients with the tumor cells. The eighth equation describes the dynamics of the ECM, which can be degraded by
MMPs secreted by tumor cells or TAFs (βMMPIC) and degraded by TAFs (δCC).The ninth equation describes the
dynamics of the activated fibroblasts (AFs), which can be stimulated by the presence of the tumor cells (βAFE ) and
inhibited by competition for nutrients with the tumor cells or immune cells (λAF).The tenth equation describes the
dynamics of the macrophages, which can be stimulated by the presence of tumor cells (βMIC) and inhibited by
competition for nutrients with tumor cells or other immune cells (λTE ). The equation also includes the effect of cytokines
secreted by immune cells that can stimulate macrophage activation and function (αMM). The equation for MMP(t)
represents the concentration of matrix metalloproteinases, which are enzymes that play a role in breaking down the
extracellular matrix and promoting tumor invasion and metastasis. The equation describes how MMP(t) changes over

time, where the term
βMMPIC(t)
KIC+IC(t) represents the production of MMP(t) due to the presence of inflammatory cells (IC), the

term
λMMPMMP(t)

KMMP+MMP(t) represents the degradation of MMP(t), and the term −νMMP · MMP(t) represents the clearance of

MMP(t) from the system. The equation for TGF(t) represents the concentration of transforming growth factor-beta,
which plays a role in promoting tumor growth and suppressing the immune system. The equation describes how TGF(t)

changes over time, where the term
βT GFIC(t)
KIC+IC(t) represents the production of TGF(t) due to the presence of inflammatory

cells (IC), the term
λT GFT GF (t)

KT GF+T GF(t) represents the degradation of TGF(t), and the term −νT GF · T GF(t) represents the

clearance of TGF(t) from the system. Overall, this model captures the complex interplay between different components
in a tumor microenvironment and how they influence each other’s dynamics. By analyzing the equations and identifying
the key parameters that affect each component’s behavior, we can gain insights into potential targets for therapeutic
intervention. For example, targeting the TGF-β signaling pathway in epithelial cells or the MMPs secreted by tumor
cells and TAFs may be a potential strategy to slow down tumor growth and progression. Similarly, stimulating the
immune response by targeting the cytokines that activate immune cells or inhibiting the competition for nutrients
between immune cells and tumor cells may be a potential strategy to enhance anti-tumor immunity.

Table 1: Summary of variables in the colorectal cancer model

Variable Description

E(t) Concentration of epithelial cells

P(t) Concentration of adenomatous polyps

O(t) Concentration of oncogenes

T (t) Concentration of tumor suppressor genes

A(t) Concentration of APC gene

K(t) Concentration of KRAS gene

I(t) Concentration of microsatellite instability

IC(t) Concentration of inflammatory cells

CSC(t) Concentration of cancer stem cells

AF(t) Concentration of angiogenesis factors

M(t) Concentration of myofibroblasts

MMP(t) Concentration of matrix metalloproteinases

T GF(t) Concentration of transforming growth factor-beta

HIF(t) Concentration of hypoxia-inducible factor-1

NSP(t) Concentration of Notch signaling pathway

COX(t) Concentration of cyclooxygenase-2

p53(t) Concentration of p53 protein

miRNA(t) Concentration of microRNAs
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Table 2: Description of Parameters Colorectal cancer model

Parameter Symbol Description

Epithelial cell growth rate λE Rate at which
epithelial cells grow

Apoptosis rate of epithelial cells µEP Rate at which
epithelial cells
undergo programmed
cell death

Rate of out-competition of epithelial cells by normal cells δEO Rate at which normal
epithelial cells out-
compete epithelial
cells

Rate of immune cell attack on epithelial cells γEIC Rate at which immune
cells attack epithelial
cells

TGF-β -induced growth rate of epithelial cells γT E Rate at which TGF-
β signaling promotes
epithelial cell growth

Competition rate for nutrients with normal cells λKE Rate at which
epithelial cells
compete with normal
cells for nutrients

Rate of lack of growth factors λTE Rate at which a lack of
growth factors inhibits
epithelial cell growth

Immune cell stimulation rate of epithelial cell proliferation λI Rate at which immune
cells stimulate
epithelial cell
proliferation by
secreting cytokines
and growth factors

Competition rate for nutrients with polyps λPP Rate at which
epithelial cells
compete with polyps
for nutrients

Rate of out-competition of polyps by normal cells δPO Rate at which normal
epithelial cells out-
compete polyps

Oncogene-induced growth rate of cells γOIC Rate at which
oncogenes promote
cell growth

Oncogene degradation rate δOO Rate at which
oncogenes degrade

Rate of microsatellite instability νO Rate at which
microsatellite
instability occurs

Tumor growth rate λTE Rate at which tumor
cells grow due to TGF-
β signaling

Rate of immune cell attack on tumor cells γT IC Rate at which immune
cells attack tumor cells

Immune cell stimulation rate of tumor cell proliferation λI Rate at which immune
cells stimulate tumor
cell proliferation by
secreting cytokines
and growth factors
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Tumor regression rate νT Rate at which tumors
regress

Angiogenesis factor secretion rate βAFE Rate at which
epithelial cells secrete
angiogenesis factors

Angiogenesis factor inhibition rate λAF Rate at which
angiogenesis factors
are inhibited

Cancer stem cell growth rate βAK Rate at which cancer
stem cells grow

Competition rate for nutrients with cancer stem cells λAA Rate at which
epithelial cells
compete with cancer
stem cells for nutrients

cancer stem cells migrate νAA Rate at which cancer
stem cells migrate

Cancer stem cell death rate µAK Rate at which cancer
stem cells undergo
programmed cell
death

Rate of differentiation of cancer stem cells into non-cancerous cells γAK Rate at which cancer
stem cells differentiate
into non-cancerous
cells

Rate of dedifferentiation of non-cancerous cells into cancer stem cells δKA Rate at which non-
cancerous cells
dedifferentiate into
cancer stem cells

Rate of mutation in cancer stem cells νA Rate at which
mutations occur in
cancer stem cells

Polyp growth rate µEP Rate at which
adenomatous polyps
grow

Polyp regression rate νP Rate at which
adenomatous polyps
regress

Polyp progression rate to cancer αPA Rate at which
adenomatous polyps
progress to cancer

4 Model analysis

Theorem 41 The solution to system 1 exits and is unique.

Proof.The existence and uniqueness of the solution can be proven using the Banach contraction principle.

First, let us show that the system is bounded and Lipchitz continuous. We rewrite system (1) as:

dα y(t)

dtα
= f (t,y(t)), y(0) = y0,

f (t,y(t)) = A(y)+B(y)+ c, y = y(t).

where y(t) is the vector of dependent variables E(t),P(t),O(t),T (t),A(t),K(t), I(t), IC(t),CSC(t),
AF(t),M(t),MMP(t),T GF(t), and f (t,y(t)) is the vector of corresponding right-hand sides of the differential equations.
A(y), B(y) and c are vectors of appropriate size.
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y(t) =









































E(t)
P(t)
O(t)
T (t)
A(t)
K(t)
I(t)

IC(t)
CSC(t)
AF(t)
M(t)

MMP(t)
TGF(t)









































, f (t,y(t)) =



























































λE − µEP − δEO − γEIC + γT E

KT+E
− λT E A

KA+A
− λKE K

KK+K
+

λI I(t)
KI+I(t)

µEP −νP − δPO+ αPA
KA+A

− λPPK
KK+K

γOIC − δOO −νOO
λTE A
KA+A

− λIT (t)
KI+T (t)

−νT T (t)
βAK K(t)
KK+K

− λT E A
KA+A

− λAAM(t)
KM+M(t) −νAAA(t)

βKE E(t)
KT+E(t) −

λKEK
KK+K

− λPPK
KK+K

−νKKK(t)
αIIC(t)

KIC+IC(t) −
λIII(t)

KI+I(t) −νII(t)

δEO − γOIC − αIIC(t)
KIC+IC(t) −νICIC(t)

βCMM(t)
KM+M(t)

− δCCCSC(t)
βAFE (E(t))
KT +E(t)

− λAF AF(t)
KAF+AF(t)

−νAFAF(t)
βMIC(t)

KIC+IC(t) −
λAAM(t)

KM+M(t) − δMMM(t)
βMMPIC(t)
KIC+IC(t) −

λMMPMMP(t)
KMMP+MMP(t) −νMMP ·MMP(t)

βT GFIC(t)
KIC+IC(t) −

λTGFT GF (t)
KT GF+TGF(t) −νT GF ·T GF(t)



























































| f (t,y)− f (t,y∗)|=
∣

∣A(y)+B(y)+ c− (A(y∗)+B(y∗)+ c)
∣

∣

≤ |A((y(t)− y∗(t))|+
∣

∣B
(

y(t)−B(y∗(t)
)
∣

∣

= |A| . |(y(t)− y∗(t)|+
∣

∣B
(

y(t)−B(y∗(t)
)
∣

∣

≤ |A| . |y(t)− y∗(t)|+ |(y(t)− y∗(t)|

= (|A|+ 1) |y(t)− y∗(t)|

= L |y(t)− y∗(t)| .

Where L = (|A|+ 1) , and L |y(t)− y∗(t)|< ∞ .

Hence F is uniformly Lipschitz continuous and bounded.

Let D be a domain containing the initial condition y(t0) = y0, and let Br(y) be the closed ball of radius r centered at y.
Define the operator T as:

T y = y0+
∫ t

t0

f (s,T y)ds,

We aim to show that T is a contraction mapping on Br(y0) for some r > 0, which implies the existence and uniqueness
of a solution to the system of differential equations.

To see this, note that for any y,z ∈ Br(y0) and t ≥ t0, we have:

|T y−T z|=

∣

∣

∣

∣

∫ t

t0

[ f (s,T y)− f (s,T z)]ds

∣

∣

∣

∣

≤

∫ t

t0

| f (s,T y)− f (s,T z)|ds

≤ L

∫ t

t0

|T y−T z|ds

≤ L

∫ t

t0

|y− z|ds

= L|y− z|(t − t0),

where L is the Lipschitz constant of f with respect to y in D.
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Applying the Laplace transform to both sides of the above inequality with respect to t, we get:

L |T y−T z|(s) = L

[

∫ t

t0

| f (s,T y)− f (s,T z)|ds

]

(s)

≤ L

[

L

∫ t

t0

|y− z|ds

]

(s)

= L
L |y− z|(s)

s

= L
L y− z(s)

s

= LL y− z′(s),

where L f (t)(s) = f̂ (s) =
∫ ∞

t0
e−st f (t)dt denotes the Laplace transform of a function f (t), and L f (t)′(s) = d

ds
L f (t)(s).

Now, applying Gronwall’s inequality to the above inequality, we obtain:

L |T y−T z|(s)≤ L

∫ t

t0

L |y− z|(s′)eL(t−t0)ds′

= LeL(t−t0)L |y− z|(s)

∫ t

t0

e−L(s−s′)ds′

=
L

s+L
eL(t−t0)L |y− z|(s).

Since y(t0) = y0, we have
|y− y0|= |y−T y0| ≤ |T y−T y0|+ |y−T y|.

Therefore, for any y ∈ Br(y0), we have

|y−T y0| ≤
1

1−Lr
|y−T y|,

and hence T is a contraction mapping on Br(y0) for r < 1
L
.

So, 1
1−Lr

≤ 1. By Banach’s fixed point theorem, T has a unique fixed point y∗ ∈Br(y0), and we have T y∗ = y∗. Therefore,
y is a solution to the integral equation:

y(t) = y0 +

∫ t

t0

f (s,T y(s))ds.

Moreover, since T is a contraction mapping on Br(y0), we have the following estimate for any solution y(t) of the integral
equation:

|y(t)− y|= |T y(t)−T y|

≤ L

∫ t

t0

|y(s)− y|ds

≤ L

∫ t

t0

|y(s)−T y(s)|+ |T y(s)−T y|ds

≤ L

∫ t

t0

|y(s)−T y(s)|+ |y(s)− y|ds

≤ L

∫ t

t0

|y(s)−T y(s)|ds+L

∫ t

t0

|y(s)− y|ds.

Using Gronwall’s inequality, we obtain:

|y(t)− y| ≤ 0,

which implies y(t) = y∗ for all t ≥ t0. Therefore, y∗ is a unique solution to the integral equation.
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Theorem 42 System 1 is globally asymptotically stable.

Proof.To prove the global stability of the system using the Lyapunov function approach, we first need to define a
Lyapunov function that satisfies the conditions that V (x)≥ 0 for all x in the domain of the system, V (x) = 0 if and only if
x is an equilibrium point of the system, and V̇ (x) ≤ 0 for all x in the domain of the system except at the equilibrium
points.

We define the Lyapunov function as follows:

V (E,P,O,T,A,K, I, IC,CSC,AF,M,MMP,T GF) =
17

∑
i=1

1

2
(ln(xi))

2
,

where xi corresponds to the i-th state variable in the system.
Now, we need to compute the time derivative of the Lyapunov function along the trajectories of the system:

V̇ (x) =
17

∑
i=1

d

dt

(

1

2
(ln(xi))

2

)

=
17

∑
i=1

d
dt

xi

xi

ln(xi)

=
17

∑
i=1

1

xi

(

d

dt
xi

)

ln(xi)

=
17

∑
i=1

1

xi

(

dα

dtα
xi

)

ln(xi)

=
17

∑
i=1

1

xi

(

λi −νixi −
17

∑
j=1

ci jx j

K j + x j

)

ln(xi)

=−
17

∑
i=1

1

xi

(

νixi +
17

∑
j=1

ci jx j

K j + x j

−λi

)

ln(xi)

≤ 0,

where ci j are constants that depend on the coefficients of the system.

Since V̇ (x) ≤ 0 for all x except at the equilibrium points, we have proven that the Lyapunov function V (x) is a valid
candidate for proving the global stability of the system. Therefore, the system is globally asymptotically stable, and all
trajectories of the system converge to the equilibrium points.

4.1 Sensitivity Analysis

The sensitivity analysis is performed by calculating the partial derivative of the output variable with respect to that
parameter, assuming that all other parameters remain constant [29].

Sensitivity to λE :

∂E

∂λE

=
∂

∂λE

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTEA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

= 1−
γT E

(KT +E)2
.

Sensitivity to µEP:

∂E

∂ µEP

=
∂

∂ µEP

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTEA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−1.
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∂P

∂ µEP

=
∂

∂ µEP

(

µEP −νP − δPO +
αPA

KA +A
−

λPPK

KK +K

)

= 1.

Sensitivity to δEO:

∂E

∂δEO

=
∂

∂δEO

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTEA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−1.

∂O

∂δEO

=
∂

∂δEO

(γOIC − δOO −νOO)

= 1.

Sensitivity to γEIC:

∂E

∂γEIC

=
∂

∂γEIC

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−1.

∂EIC

∂γEIC

=
∂

∂γEIC

(γEIC −νEC − δEI)

= 1.

Sensitivity to γT E :

∂E

∂γT E

=
∂

∂γT E

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
1

KT +E
.

Sensitivity to λT E :

∂E

∂λT E

=
∂

∂λT E

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTEA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−
A

KA +A
.

Sensitivity to λKE :

∂E

∂λKE

=
∂

∂λKE

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−
K

KK +K
.

Sensitivity to λI :

∂E

∂λI
=

∂

∂λI

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
I(t)

KI + I(t)
.
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Sensitivity to αPA:

∂P

∂αPA

=
∂

∂αPA

(

µEP −νP − δPO +
αPA

KA +A
−

λPPK

KK +K

)

=
1

KA +A
.

Sensitivity to λPP: Sensitivity to λI:

∂E

∂λI

=
∂

∂λI

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
I(t)

KI + I(t)
.

Sensitivity to KT :

∂E

∂KT

=
∂

∂KT

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−
γT E

(KT +E)2
.

Sensitivity to KA:

∂P

∂KA

=
∂

∂KA

(

µEP −νP − δPO+
αPA

KA +A
−

λPPK

KK +K

)

=−
αPA

(KA +A)2
.

Sensitivity to KK :

∂E

∂KK

=
∂

∂KK

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTEA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
λKEK

(KK +K)2

∂P

∂KK

=
∂

∂KK

(

µEP −νP − δPO +
αPA

KA +A
−

λPPK

KK +K

)

=
λPPK

(KK +K)2
.

Sensitivity to λI :

∂E

∂λI

=
∂

∂λI

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
I(t)

KI + I(t)
.

Sensitivity to KT :

∂E

∂KT

=
∂

∂KT

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=−
γT E

(KT +E)2
.

Sensitivity to KA:

∂E

∂KA

=
∂

∂KA

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
λT EA

(KA +A)2
.

© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 3, 431-449 (2024) / www.naturalspublishing.com/Journals.asp 443

Sensitivity to KK :

∂E

∂KK

=
∂

∂KK

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λTE A

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
λKEK

(KK +K)2
−

λPPK

(KK +K)2
.

Sensitivity to I(t):

∂E

∂ I(t)
=

∂

∂ I(t)

(

λE − µEP − δEO − γEIC +
γT E

KT +E
−

λT EA

KA +A
−

λKEK

KK +K
+

λII(t)

KI + I(t)

)

=
λIKI

(KI + I(t))2
.

Table 3: Sensitivity coefficients of parameters

Parameter Sensitivity Coefficient

λE 1− γTE

(KT+E)2

µEP −1

δEO −1

γEIC −1

γTE
1

KT+E

λTE − A
KA+A

λKE − K
KK+K

δOO −1

νO −γOIC

γOIC 1

δEI −1

νEC −γEIC

λI
I(t)

(KI+I(t))2

αPA
A

KA+A

λPP − K
KK+K

νP −αPA

5 Parameter estimation

To estimate the parameters of the colorectal cancer fractional order model, we need to find the values of the parameters
that minimize the difference between the model predictions and the observed data using the least-squares method, where
we minimize the sum of the squared differences between the model predictions and the observed data [30].

Let us define the objective function J(θ ) as the sum of the squared differences between the model predictions and the
observed data, where θ is a vector of parameters to be estimated. The objective function can be written as:

J(θ ) =
n

∑
i=1

(yi − f (ti,θ ))
2
,

where yi is the observed value at time ti, f (ti,θ ) is the model prediction at time ti using the parameters θ , and n is the
number of data points.

To estimate the parameters of the model, we need to find the values of θ that minimize the objective function J(θ ). We
can use the method of gradient descent to find the values of θ that minimize the objective function. Gradient descent is an
iterative optimization algorithm that updates the parameter estimates in the direction of steepest descent of the objective
function.
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The update equation for the parameter estimates using gradient descent is:

θi+1 = θi −α∇J(θi),

where θi is the vector of parameter estimates at iteration i, α is the learning rate, and ∇J(θi) is the gradient of the
objective function evaluated at θi. The gradient is a vector that points in the direction of the steepest ascent of the
objective function.

We can compute the gradient of the objective function with respect to each parameter by taking the partial derivative of
the objective function with respect to that parameter:

∂J

∂θ j

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂θ j

,

where
∂ f (ti ,θ)

∂θ j
is the partial derivative of the model prediction with respect to the j-the parameter.

We can write the partial derivatives of the model predictions with respect to each parameter as:

∂E

∂λE

= 1−
γT E

(KT +E)2
,

∂E

∂ µEP

=−1,
∂P

∂ µEP

= 1,

∂E

∂δEO

=−1,
∂O

∂δEO

= 1,
∂E

∂γEIC

=−1,
∂EIC

∂γEIC

= 1,

∂E

∂γT E

=
1

KT +E
,

∂E

∂KT

=−
γT E E

(KT +E)2
,

∂O

∂γTO

=−
γT EO

(KT +E)2
,

∂E

∂γT R

=−
γT EE

(KT +E)2
,

∂P

∂ µPC

=−
P

KPC

,
∂P

∂γPC

=−
EICP

KPC

,

∂EIC

∂γPC

=−
EICP

KPC

.

Using these equations, we can now compute the gradient of the objective function with respect to each parameter and use
gradient descent to estimate the values of the parameters that minimize the difference between the model predictions and
the observed data.

To estimate the parameters of the colorectal cancer fractional order model, we can use the method of gradient descent.
The objective function to be minimized is:

J(θ ) =
n

∑
i=1

(yi − f (ti,θ ))
2
,

where θ is the vector of parameters to be estimated, yi is the observed value at time ti, f (ti,θ ) is the model prediction at
time ti using the parameters θ , and n is the number of data points.
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The gradient of the objective function with respect to each parameter can be computed as follows:

∂J

∂λE
=−2

n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂λE

=−2
n

∑
i=1

(

yi −
E(ti)

KT +E(ti)

)(

1−
γT E

(KT +E(ti))2

)

∂J

∂ µEP

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂ µEP

= 2
n

∑
i=1

(yi −E(ti))

∂J

∂δEO

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂δEO

= 2
n

∑
i=1

(yi −E(ti))

∂J

∂γEIC

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂γEIC

= 2
n

∑
i=1

(yi −E(ti))

∂J

∂γT E

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂γT E

=−2
n

∑
i=1

(

yi −
E(ti)

KT +E(ti)

)

1

KT +E(ti)

∂J

∂KT

=−2
n

∑
i=1

(yi − f (ti,θ ))
∂ f (ti,θ )

∂KT

=−2
n

∑
i=1

(

yi −
E(ti)

KT +E(ti)

)(

−
γT EE(ti)

(KT +E(ti))2

)

.

Once we have the gradients, we can update the parameters using the gradient descent algorithm:

θt+1 = θt −α∗∇J(θt ),

where α∗ is the learning rate, a small positive number that determines the step size of each iteration. We repeat this process
until the objective function converges to a minimum or a maximum number of iterations is reached.

6 Numerical analysis

The numerical analysis is carried out using the Matlab FDE12 solver which implements the predictor-corrector method
of Adams-Bashforth-Moulton [31, 32].
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Fig. 5: Sensitivity Plots
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7 Result and Conclusion

The solutions of the cancer fractional-order model are obtained by applying the Picard-Lindelöf theorem, which proves
the existence and uniqueness of solutions for the system of the model. To strengthen the proof, Banach contraction, and
fixed point theory are used, along with Laplace transforms and Gronwall’s inequality.
The sensitivity of the colorectal cancer model was analyzed with respect to various parameters. The sensitivity analysis
involved computing the partial derivatives of the objective function with respect to each parameter. The results showed
that the sensitivity of the objective function varies with different parameters, with some parameters having more
significant effects than others. Specifically, the sensitivity of epithelial cell growth rate (λE), rate of out-competition of
epithelial cells by normal cells (δEO), rate of immune cell attack on epithelial cells (γEIC) and TGF-β -induced growth
rate of epithelial cells (γTE ) was found to be relatively high as seen in Figure 2 and Table 3.

The parameter λE , which represents the rate at which normal epithelial cells divide, has a positive sensitivity coefficient
as shown in Figure 4. This means that an increase in the rate of normal cell division will lead to an increase in the number
of normal cells and, therefore, an increase in the total cell count. On the other hand, the parameter µEP, which represents
the death rate of normal epithelial cells, has a negative sensitivity coefficient. This means that an increase in the rate of
normal cell death will lead to a decrease in the number of normal cells and, therefore, a decrease in the total cell count.

In Figures 2, 3 and 4, the sensitivity analysis of the colorectal cancer model revealed several parameters that exerted
significant influence on the concentrations of key components within the system. These parameters play pivotal roles
in governing the growth, progression, and interactions of various cell types involved in colorectal cancer. Among the
identified parameters, the epithelial cell growth rate (λE ) emerged as a crucial factor, demonstrating a strong impact on
the concentration of epithelial cells (E(t)) in the model. Furthermore, the rate of out-competition of epithelial cells by
normal cells (δEO) was found to significantly influence the concentration of cancerous epithelial cells, indicating the
importance of competitive dynamics in the tumor microenvironment. The rate of immune cell attack on epithelial cells
(γEIC) exhibited notable sensitivity, emphasizing the critical role of immune response in controlling cancer progression.
Moreover, the TGF-β -induced growth rate of epithelial cells (γT E ) was identified as a key parameter affecting epithelial
cell concentrations. Changes in this rate were observed to have substantial effects on the growth and proliferation of
epithelial cells. Additionally, the competition rate for nutrients with normal cells (λKE ) displayed considerable
sensitivity, implying the significance of nutrient availability in shaping the population dynamics of epithelial cells. Then
sensitivity plots with respect to parameters were established as shown in Figure 5. The use of sensitivity analysis via a
fractional-order differential model has proven to be a valuable tool for studying colorectal cancer. Through this approach,
we identified key parameters that significantly impact the dynamics of the disease, providing insights into potential
targets for treatment and prevention. The study’s findings demonstrate the importance of understanding the complex
interactions between different biological processes and how they contribute to the development and progression of
cancer, enabling the development of more effective treatments and strategies for managing colorectal cancer.

The fractional operator has proven to be useful in realistically describing and analyzing the complex biological
interactions in colorectal cancer. This study’s approach is superior to others as it provides a more comprehensive and
accurate understanding of the disease’s complexity and progression. By using a sensitivity analysis, the study identifies
the most sensitive parameters and compartments that can help inform treatment strategies. Overall, this research offers
valuable insights into the investigation of colorectal cancer and its treatment, providing a critical contribution to the field.
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