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Abstract: An accurate bound state eigenvalues are evaluated and plotted utilizing the non–relativistic quark model by using

three different methods. The methods are employed perfectly within the three-dimensional time–independent Schrödinger equation.

Therefore, developing an effective technique to manipulate this well–known equation is the main reason for publishing this study. In

this regard, an extensive comparison of the calculated numerical approaches with experimental data was conducted. In most cases, the

three considered methods reflected optimal results for heavy mesonic family members by satisfying the minimization condition of χ2

values for each.
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1 Introduction

In many scientific fields, including physics and chemistry,
the solution of Schrödinger equation (SE) is considered as
a significant challenge due to the mysterious nature of the
wavefunction. By using Hamiltonian, SE could be solved
to determine the eigenvalues that characterize the relative
motion of quarks and antiquarks in the framework of the
quark model. In physics and quantum mechanics,
numerical methods play an important role, where is often
no empirical solution to the SE. In physical problems, the
exact solution of SE is important because it provides a
deep understanding of the problem of physics[1,2,3,4]
and, in most cases, it is the only method to obtain a usable
solution. In the perturbation methods, relative to the
Hamiltonian of the system, the disturbed potential should
be minimal. The need to solve a set of complex integrals
is one of the problems with perturbation methods. Since
there is no particular limit to the form of this technique,
the numerical solution of SE is on the spot point of
researchers.

On the hypothetical side, the heavy quarkonia analysis
provides data for certain hadronic scales associated with

Quantum Chromodynamic (QCD) and verifies the
validity of perturbative QCD; possible models even lattice
QCD calculations[5]. Theoretically, heavy quarkonia, for
example bottomonium states bb have rich spectroscopy
with several narrow states below those b-b processing
thresholds. Large numbers of such states have not been
experimentally confirmed or understood[5,6,7,8]. The
study of the characteristics of heavy quark and antiquark
mesons offers a very valuable insight into heavy quark
dynamics and a deeper understanding of the constituent
quark masses. There are many papers investigating the
spectroscopy of heavy mesons over the years, as seen in
Refs.[9]-[17]. The non–relativistic model is one of the
most popular models used. The implementation of this
model helps to measure the spectrum on the basis of the
non-relativistic Schr?dinger equation. The goal for this
research is, first, to extract Eigenvalues E and
Eigenvectors ψ numerically in a defined potential model
for the Schr?dinger Wave Equation using three different
methods. Second, to analyze the reliability of those
numerical methods for calculating masses of some heavy
mesons by comparing the experimental data with the
calculated results. Finally, the most effective numerical
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method is picked. These three different methods were
applied to calculate the masses of bb states.

This paper is organized as follows: The
non–relativistic quark model is used to calculate the mass
spectrum as outlined in Section 2. A brief description of
the numerical techniques that was used in this work as
described in Section 3. The mass predictions are given
with numerical agreement between the results obtained
and useful experimental evidence that offers a very
non–trivial proof of the precision and internal consistency
of our calculations in Section 4. And finally a concluding
remarks are given in Sec.6.

2 Non–relativistic quark model

This section is devoted to summarize the model of heavy–
heavy bound state systems (bb) by using SE as per below

[
−h̄2

2µ
∇2 +V (r)]ψ(r) = Eψ(r) (1)

where V (r) is the quark–antiquark potential, and

−h̄2/2µ represents the kinetic energy operator. The sum
of these two terms is of course the non–relativistic
Hamiltonian given by [18]-[22]

H = M+
p2

2µ
+V(r) (2)

M = MQ +MQ (3)

µ =
MQMQ

MQ +MQ

(4)

where MQ/MQ are the quark/antiquark mass
parameters. The relative momentum of each quark is
referred to as p. Solving this equation for radius–centered
potentials in recent years has attracted many researchers.
Non–relativistically, A bound state of interacting quarks
and antiquarks is commonly roughly described as the
meson. This interaction potential composed to as
mentioned in Ref.[22].

V (r) =
−4αs

3r
+ br+

32παs

9mQmQ

(
σ√
π
)3e−σ 2r2

SQ.SQ

+
l(l + 1)

2µr2
+

1

mQmQ

[(
αs

r3
− b

2r
)L.S+

αs

r3
T ] (5)

(6)

where αs is the strong running coupling constant, −4/3r

is the color factor, b is a potential parameter, and SQ.SQ
is the spin–spin contact hyperfine interaction. The spin–
orbit operator is considered to be diagonal on the basis of
|J,L,S〉 associated with the following matrix elements

〈L.S〉= [J(J+ 1)−L(L+ 1)− S(S+1)]/2 (7)

The tensor operator T has non–vanishing diagonal matrix
elements only between L > 0 spin–triplet states, as shown
in Ref.[22].

The parameters used in this potential for the heavy
mesons are tabulated in Table 1. These values were
obtained by fitting the masses of twelve known bb states
based on experimental data. These parameters contribute
to a clear definition of the bottomonium masses tabulated
in Table 2. Three different techniques will be utilized to
numerically determine SE with the potential mentioned
above. These methods include the finite difference
approach, the Numerov method, and the Fourier grid
Hamiltonian method. The numerical approaches utilized
in this study will be briefly described in the next section.

3 Numerical methods

The numerical solution of the radial SE in this study
results in an eigensystem that can be resolved using a
variety of techniques, each of which has some strengths
and weaknesses. In most problems of mathematical
integration, the traditional integration approach is
converted into a matrix problem. In some way, it reduces
the estimation of the whole integration into the
’diagonalization’ of the said matrix. Our strategy relies on
choosing the most optimal numerical technique to
examine the static characteristics of heavy mesons. These
methods are as follow; Numerov method, the finite
difference method, and Fourier grid Hamiltonian method.
The numerical approaches utilized in this study will be
briefly described in the next subsection.

3.1 Numerov’s discretization method

A numerical formula to approximate the solution of the
second order differential equation is the Numerov’s
Discretization Method (NDM). The merits of the
Numerov method [23]-[28] have been praised by many
authors. Through the use of arbitrary potentials, this
method is used to determine various solutions for the
radial Schrodinger Equation. Equation ?? can therefore
be resolved by using NDM. Numerov method is a specific
integration formula for a system of numerical integrating
differential equations

ψ ′′(r) = f (r)ψ(r) (8)

where, the time–independent 1D SE can be written as

f (r) =−2m(E −V(r))/h̄2 (9)

Using a lattice of points uniformly spaced by distance of d

to obtain

ψi+1 =
ψi−1(12− d2 fi−1)− 2ψi(5d2 fi + 12)

d2 fi+1 − 12
(10)
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ψi+1 =
12ψi−1 −ψi−1d2 fi−1 − 10ψid

2 fi − 24ψi

d2 fi+1 − 12
(11)

By using Eq.8 one can get

− h̄

2m

ψi−1 − 2ψi+ψi+1

d2
+

Vi−1ψi−1 + 10Viψi +Vi+1ψi+1

12

= E
ψi−1 + 10ψi+ψi+1

12
(12)

By modifying simply the grid number and the matrix
size N, the popular Numerov method can be transformed
into a representation of the matrix form on a discrete
lattice. To achieve that, a column vector with the symbol
will be used (...ψi−1,ψi,ψi+1...) and define matrices

AN,N =
I−1 − 2I0+ I+1

d2
, (13)

BN,N =
I−1 + 10I0+ I+1

12
, (14)

VN = (..,Vi−1,Vi,Vi+1, ..) , (15)

where I−1, I0 and I+1 represent sub, main, and up
diagonal unit matrices, respectively. The matrix form can
be written as per below

− h̄2

2m
AN,Nψi +BN,NVNψi = Ei BN,Nψi (16)

Multiplying both sides by B(N,N)−1, the 3D radial SE
can be deduced as

− h̄2

2m
AN,NB−1

N,Nψi +[VN(r)+
l(l + 1)

r2
]ψi = Ei ψi (17)

The kinetic energy operator is represented by the
Numerov’s formula in the first term, while the potential
energy operator is represented by the second.

3.2 Matrix method

One of the simplest methods is the matrix schemes which
extended to the solution of time–independent SE in
spherical symmetric QQ potentials [29]-[32]. Radial SE
in wave function form can be rewritten as

− h̄2

2µ
∇2U(r)+ [E −V(r)]U(r) = 0 (18)

where E represents the overall energy of the
quark–antiquark system, while r represents the distance
between quarks. And hence, Eq.18 can be rewritten as

− h̄2

2µ

δ 2

δ r2
U(r)+ [V(r)+

l(l + 1)

2µr2
]U(r) = EU(r) (19)

The second derivative form of U(r function will be as

−d2U(r)

dr2
=

U(ri+1)− 2U(ri)−U(ri−1)

d2
+O(h2) (20)

where d is the interval between two points

d =
Rmax −Rmin

N
(21)

where Rmax and Rmin are the shortest and the longest
distances between the quark–antiquark, respectively.
Now, when an arbitrary value of r is defined as

ri = Rmin + id (22)

and i = 1,2, ..,N − 1, and from hens we can rewrite SE as
per below

EU(ri) =

−U(ri +d)−2U(ri)+U(ri −h)

2µd2
+[V (r)+

l(l +1)

2µr2
]U(ri) (23)

This equation can be written as

eiU(ri+1)+ diUi + eiU(ri−1) = EU(ri) (24)

di =
1

µ h̄2
+V(r)+

l(l + 1)

2µr2
(25)

e(i) =
−1

2µ h̄2
(26)

Equation 26 could be transformed into a matrix form in
which d(i)(e(i)) represents the diagonal and non–diagonal
elements, respectively.

3.3 Fourier grid Hamiltonian method

A very common way to control boundary–value issues and
solve our differential equations is via what is known as
Fourier grid Hamiltonian (FGH) method. The key features
of the FGH system are reviewed in this subsection. It uses
forward and reverse Fourier transformations to correlate
potential energy at N grid points with kinetic energy in
momentum space[33]-[35].

The N × N symmetric matrix H, obtained by
discretization, has elements in the form of cosine sums.
The task of computing the eigenvalues and eigenfunctions
of the bound state is thus transformed into the task of
finding eigenvalues and eigenvectors of the matrix H. The
equation of eigenvalue for a stationary state is given by

[T +V ] |Ψ >= E |Ψ > (27)

where T is the particle’s kinetic energy which has the
following representation
∫

[< r | T | r′ >+< r |V | r′ >]< r′ |Ψ > dr′ = E < r′ |Ψ >

(28)
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< r |V | r′ >=V (r)δ (r− r′) (29)

The wave function can be decomposed into its central and
orbital components as

< r | ψ >= Rl(r)Ylm(r
′) (30)

The basis states | kλ ν >, which are eigenstates of the
operator p2, are utilized to build the nonlocal
representation of the kinetic energy operator. They are
identified by the existence of excellent orbital quantum
numbers (λ ,ν), that obey the relation

T (p2) | kλ ν >= T (k2) | kλ ν > (31)

And satisfy the orthogonality relation

< k′λ ′ν ′ | kλ ν >= δ (k′− k)δλ ′νδ ν ′ν (32)

These states are represented by in the configuration space
by

< r | kλ ν >= sqrt(2k2/π) jλ (kr)Yλ ν(r
′) (33)

where the function jl(kr) is the Bessel radial function
in a spherical form. Equation 31, which uses the base state
completeness relation | jl(kr)> may be expressed as

< r | T | r′ > =

∫ ∞

0
dk(2k2/π)T (k2)

∞

∑
λ=0

λ

∑
ν=−λ

jλ (kr) jλ (kr′)Yλν (r)Y
∗
λν (r

′) (34)

By introducing the regularized function
ul(r) = r Rr(r), Equation 27 will be introduced as

(2r/π)
∫ ∞

0
dr′r′ul(r

′)
∫ ∞

0
dk′(k2)T (k2) jl(kr) jl(kr′)

+V(r)ul(r) = Eul(r) (35)

Equation 35 provides the foundation for the
three–dimensional Fourier grid Hamiltonian technique.

3.4 Discretization

Now, the continuous variable will be replaced by a discrete
value grid defined by ri where,

ri = i∆ (36)

where i = 1,2, ..N, ∆ is the constant distance between the
grid points and the radial wave function normalization
condition is ∫ ∞

0
dr[ul(r)]

2 = 1 (37)

This integral’s discretization on the grid is provided by

∆
N=−1

∑
i=1

[ul(ri)]
2 = 1 (38)

In the momentum space, the grid spacing ∆k is calculated
by the grid spacing ∆ . Considered the highest possible
value of rN = N∆ , the wave function acts on a sphere
with a diameter of 2rN in the coordinate space. Since this
length specifies the longest wavelength λmax the lowest
frequency ∆k, that may be seen in k–space is

∆k =
2π

λmax

(39)

A grid in coordinate space and an equivalent grid in
momentum space are available as

ks = s∆k = (sπ/N∆) (40)

where s = 1,2, ..,N. Equation 34 is replaced by an
eigenvalue matrix problem during the discretization
process as

N−1

∑
j=1

Hi jφ
n
j = enφn

j (41)

where s = 1,2, ..,N − 1, and

Hi j = (2π2/N3)i j
N

∑
s=1

S2T (πS/N∆ )2 jl(πSi/N) jl(πS j/N)

+Viδi j (42)

In the next part, the obtained results of the heavy
meson’s masses derived will be explained by using the
previously recognized tri–diagonal matrix techniques.
This will be done with statistical and numerical
investigations to find the preferred numerical scheme
appropriate for studying heavy meson spectroscopy

4 Result and Discussion

Based on the obtained numerical results, these results
were checked to confirm that the predicted values will not
blow up to infinity and that the solutions for the reduced
tri–diagonal self-value issues are acceptable. In the
current study, optimization via reducing the statistical
function is used to show how the computed results and
experiments are consistent. The Particle Data Group
(PDG)[36,37] review is the source of all experimental
masses of several heavy mesons that were chosen for
these comparisons. The statistical function was calculated
from the following formula

χ2 =
1

n

n

∑
k=1

(Mcal.
k −M

exp.
k )2 (43)

The summation runs over some selective samples of n

heavy mesons. M
exp.
k is The observed mass of the meson

with the symbol k in the sample, whereas Mcal.
k is the

calculated one. In addition, one of the most important
motivations for this work is to draw up a road–strategy to
distinguish and decide the best numerical method.
However, there are matching between the three
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considered methods, there have also such remarked
differences. For this purpose, the numerical calculations
of the heavy meson masses are repeated for the three
considered methods. We noticed that our findings deviate
from the published work for S. Godfrey et al.[?]. The
noticed deviation is a significant in some cases and quite
bit for the others. This is primarily due to the chosen
potential; in this work the calculations is done via the
non–relativistic potential, while S. Godfrey and his
research group used the relativistic potential as shown in
Table 1. Although we are interested in how the
predictions vary against the measured points to verify the
reliability of the deduced analytical forms and
satisfactorily reflecting the experimental data. Figures 1, 2
and 3 represent, respectively, the calculated masses of the
considered bottomonium states for FGH, Numerove and
Matrix methos, versus experimental masses.

A numerical comparison between the experimental
data and the calculations for some heavy mesons bb is
given in Table 1. It is remarkable that such high accuracy
results can be achieved with a simple program for each
method. This examination is based on the minimizing of
the χ2 function, which was done previously, to choose the
most strongly experiment–validated approach. The
desired optimization was observed utilizing the three
methods. Consequently, the optimal minimization of
bottomonium states for the FGH, Numerov, and Matrix
methods was 0.012,0.002, and 0.002, respectively.
However, the study indicated that the Matrix and
Numerov approaches are better suited since the results of
the experiments and estimated profile were in agreement,
and the associated minimization for both was 0.002.

In Fig.1, one can see obviously both the mass
trajectories exhibit good behaviors and they are roughly
consistent with the experimental data. From Figs.1 and 2,
it is clear that the Numerov and Matrix methods are the
best choice to evaluate the masses of heavy mesons. Our
findings show that the FGH approach can yields results
that match with experimental data for lower states but
conflict with greater excited levels. The above results can
be applied in different fields [38]-[53].

5 Concluding remarks

In this research work, the 3D SE was solved numerically
by using three different methods. Probably, there may be
some other similar methods which are used popularly in
calculating energy and wave functions, but the simplicity
of the considered methods in the final analytical forms
introduced here make them ideal for the notion of the
wave function and eigenvalue problems. Within the
non–relativistic potential model, highly accurate
numerical methods are employed to estimate the accuracy
of the deduced solution. In practice, Mathematica’s
software packages were used to resolve the eigenvalue
problem for a given matrix. Masses spectra for some
leading–state flavored mesons are calculated, as an

example. To modify the members of the heavy meson
family, the observed numerical forms offer an ideal
approximation. As a result of a persuaded minimization
for χ2 values, each of them demonstrates an acceptable
agreement with experiments. Finally, it could be
concluded that the three considered methods yielded
highly accurate results against the conducted experiments,
and the deviation between them was going to be smaller.
The main advantage of the three methods is their ability
to achieve high accuracy with minimal programming
complexity and a short calculation time.
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