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Abstract: The primary objective of this article is to estimate the unknown parameters of stationary linear processes based on a fuzzy

time series approach to observations that follow AR (1) processes. Predicted observations are obtained using fuzzy time series. Both

actual and forecasted observations are utilized to study various classic method’s estimators for the autoregressive parameter. The

comparisons between actual and forecasted observations in all estimating processes are discussed based on the mean squared errors.

Furthermore, to investigate the extent to which fuzzy time series can enhance estimates produced by traditional estimating techniques.

Based on these comparisons, it is possible to explore how fuzzy time series contribute to the improvement of classical methods’

estimations.
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1 Introduction

Since Zadeh proposed the fuzzy set/group in 1965,
significant progress has been noted in both theory and
applications. Fuzzy sets are the sets whose elements have
degree of membership. Let R be the universe of
discourse, R = r1, r2, ..., rn and let D be a fuzzy set in
the universe of discourse R defined as follows:

D = fD(r1)/(r1)+fD(r2)/(r2)+...+fD(rn)/(rn), (1)

where fD is the membership function of D,
fD : R → [0, 1], fD(ri) indicates the grade of
membership of ri in the fuzzy set D, fD(ri) ∈ [0, 1], and
1 ≤ i ≤ n,. If there exists a fuzzy relationship K(t− 1, t)
, such that F (t) = F (t − 1) × K(t − 1, t), where ×
represents an operator, then F (t) is said to be caused by
F (t − 1). The relationship between F (t) and F (t − 1) is
denoted by F (t − 1) → F (t). If F (t − 1) = Di and

F (t) = Dj , the logical relationship between F (t) and
F (t − 1) is denoted by Di → Dj , where Di is called the
left hand side and Dj the right hand side of the fuzzy
relation. One such application in the field of time series
entitled fuzzy time series (FTS). Let
Yt(t = ..., 0, 1, 2, ...), a subset of real numbers, be the
universe of discourse on which fuzzy sets
fi(t)(i = 1, 2, ...) are defined. If F (t) is a collection of
fi(t)(i = 1, 2, ...), then F (t) is called a FTS on
Yt(t = ..., 0, 1, 2, ...). Based on FTS, statisticians can
predict time series values that contain linguistic features,
which is not the case in the case of classical time series.
The FTS technique based on fuzzy set theory was first put
forth by [1], [2] and [3]. [4] and [5] used fuzzy group
relation in determination of fuzzy relations stage. For
modelling time series with a trend component, [6]
developed a novel FTS modelling approach. [7] and [8]
presented a novel method that optimize the length of
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intervals in FTS. [9] suggested using FTS to estimate
enrollments with a greater forecast accuracy rate. [10]
suggested a new FTS forecasting technique. Using fuzzy
logical relationships and similarity metrics, [11] proposed
a strategy for forecasting FTS data. [12] put out a
brand-new forecasting technique built on FTS, which can
manage point, interval, and distribution forecasts while
utilizing stochastic and fuzzy patterns in the data. The
combined resilient FTS technique for time series
forecasting was shown in [13]. [14] advised conducting
research on the most effective machine learning methods
for high order forecasting. [15] unveiled a brand-new
long-short-term memory-based deep intuitionistic fuzzy
time series forecasting technique. [16] proposed using
fuzzy time series algorithms to forecast (IN) direct
short-term solar electricity. [17] explored the effects of
fuzzy approaches on spectral analysis estimators. [18]
investigated how FTS affected the INAR(1) process’
smoothing estimates.

This paper’s primary goal is to apply FTS as a novel
way to enhance the conventional methods’ estimations of
the unknown parameters of stationary processes. This
procedure is done on stationary AR(1) model. So, the
method suggested in [19] is utilized to transform the time
series that follow AR(1) model into FTS whose
observations are fuzzy observations. The fuzzy
observations are converted using Chen method also to
numerical observations and called forecasted
observations. These two categories of observations are
substituted in the classic method’s estimators ”maximum
likelihood (MLE), moments, and ordinary least squares
(OLS)” for the autoregressive parameter. The
comparisons between the actual and forecasted
observations in all estimating processes based on mean
squared error (MSE). In all of the aforementioned
estimating approaches, the MSE is used to compare the
estimations arising from the actual observations with the
forecasted observations.

The structure of this paper is as follows: In Section 2,
the fundamentals of fuzziness and FTS are presented. The
standard techniques, such as MLE, OLS, and moments,
are used in Section 3 to estimate the unknown parameter
of the AR(1) model. In Section 4, a brief illustration of
how to transform the AR(1) series into a FTS is provided.
Further, in this section, the simulation experiments using
a range of sample sizes and various values for the AR(1)
parameter as the default parameter values is constructed.
The paper’s conclusion is provided in Section 5.

2 AR(1) Parameter: Different Estimation

techniques

Let Yt is a stationary AR(1) process where

Yt = φ1Yt−1 + at, (2)

where Yt observation at time t, and |φ1| < 1
autoregressive parameter and at stochastic error (white

noise) follows a normal distribution which

at ∼ N(0, σ2
a)), then Yt ∼ N(0,

σ2
a

1−φ2
1
). The

autocovariance function of Yt can be formulated as

γk = φ1γk−1, k ≥ 1. (3)

The autocorrelation function (ACF) can listed as

ρk =
γk
γ0

= φ1
k, (4)

where γ0 = V ar(Yt). The partial autocorrelation function
(PACF) can be expressed as

{

Φ11 = ρ1 = φ1,
Φkk = 0, k > 1.

(5)

Now, based on a sample size n, various estimation
approaches on stationary AR(1) can be derived and
discussed.

2.1 MLE technique: Theory and implementation

The most important step to study the MLE method is to
evaluate the sample joint distribution which are also
called the likelihood function. Because the dependence
between all observations Y2, Y3, ..., Yn and the first
observation Y1, the likelihood function cannot written as
multiplication of marginal probability density function
(PDF), but make transformation as following

L = f(Y1, Y2, ..., Yn)

= f(Y2, Y3, ..., Yn|Y1)f(Y1) = f(Y1)f(a2, a3, ..., an)|J |,
(6)

where
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Since Yt ∼ N(0,
σ2
a
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1
) then,
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1
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. (7)

Since at ∼ N(0, σ2
a)), then the joint PDF for stochastic

error can be formulated as

f(a1, a2, . . . , an) =
n
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Since

Y1 = φ1Y0 + a1 → Let′ take Y0 = 0,

Y2 = φ1Y1 + a2 → a2 = Y2 − φ1Y1

Y3 = φ1Y2 + a3 → a3 = Y3 − φ1Y2

...

Yn = φ1Yn−1 + an → an = Yn − φ1Yn−1,

the Jacobian can be listed as

|J | =
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substituting by (7), (8), and Jacobian in (6), the MLE
function for series {Yt} can presented as

L = (2πσ2

a)
−n

2 (1− φ
2

1)
1
2 exp

[

−[(1− φ2

1)Y
2

1 +
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t=n
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]

.

(9)

By taking the logarithm of (9), and the differential with
respect to φ1, then

−φ̂1

1− φ̂2
1

σ2
a +

n
∑

t=2

YtYt−1 − φ̂1

n
∑

t=3

Y 2
t−1 = 0. (10)

After simplistic, the MLE estimator for φ1 can be listed as

φ̂1 =

(n− 2)
n
∑

t=2

YtYt−1

(n− 1)
n
∑

t=3

Y 2
t−1

. (11)

In this part, a technique for Chen [19] which turning
regular time series into fuzzy time series and providing
forecasting observations for the subsequent series is
provided. The six steps that make up this approach are as
follows: Define the discourse universe (a collection of
observations made using the model chosen for this paper)
and divide it into equally long intervals; determine how
many observations are contained in each interval, which
will result in a redistribution for each interval based on
the number of observations in each interval; Depending
on the newly separated intervals, define the linguistic
values that the fuzzy set represents; the real observations
be fuzzed; We next employ a series of rules to assess if
the trend of the forecasting is upward or downward,
which means we defuzzify the fuzzy output into
forecasted output. discover and build fuzzy logical
linkages based on the fuzzified observations.

To properly describe this strategy, which is both
lengthy and challenging, see [19] for additional
information. In the first phase of this procedure, Chen

divided 20 observations into seven intervals of equal
length. Here, we used the number of intervals
K = 1 + 3.322 log n, where n is the actual number of
observations produced by the model discussed in this
study, and this produced better results.

2.2 Moments approach: Theory and

implementation

This method, also referred to as Yule-Walker estimating,
produces accurate estimators for AR models but less
efficient ones for MA or ARMA processes. This method’s
fundamental idea is to solve a series of equations that give
the necessary estimators by equating the population
moments with the sample moments. For instance, the
sample counterpart of the first population moment,
µ = E(Yt), is m1 = Ȳt. This yields µ̂ = Ȳt right away.
To estimate the autoregressive parameters of a model
AR(1) in (11). It is known from (4) that ρ1 = φ1. Now,

take ρ1 = ˆ(ρ1), where ˆ(ρ1) is the sample ACF (see [20]).

Then, φ̂1 can be reported as

φ̂1 = ρ̂1 =
n

n− 1

∑n
t=2

YtYt−1
∑n

t=1
Y 2
t

. (12)

2.3 OLS approach: Theory and implementation

This method relies on minimizing the sum of the square
of errors for the observed values with regard to φ1. From
(11), the sum of the square of random errors S(φ1) can be
formulated as

S(φ1) =

n
∑

t=2

a2t =

n
∑

t=2

(Yt − φ1Yt−1)
2. (13)

For the purpose of minimizing the error, the first derivative
of the S(φ1) is derive to get

∂S(φ1)

∂φ1

= 2

n
∑

t=2

(Yt − φ1Yt−1)(−Yt−1) = 0, (14)

φ1

n
∑

t=2

Y 2
t−1 =

n
∑

t=2

YtYt−1, (15)

hence, the OLS estimator for φ1 can be listed as

φ̂1 =

∑n
t=2

YtYt−1
∑n

t=2
Y 2
t−1

. (16)

3 Practical Side: Analyzing and discussing

In order to demonstrate how Chen’s method which is
proposed in this work is applied on AR(1) process, an
example is discussed based on 50 observations only.
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3.1 Numerical implementation under algorithm

diagram

Let us take for example the default values as n = 50,
φ1 = 0.4, σa = 2 and Y0 = 0.3. Now, generate the
random error where at ∼ N(0, σ2

a), and therefore
generate the observations of AR(1) such that
Yt = φ1Yt−1 + at, the generated observations can be
listed in Table 4.

The actual observations will now be converted to
fuzzy observations using Chen’s method, and forecasted
observations will then be obtained. Chen’s approach
consists of six steps as following:

1.Define the discourse universe and divide it into
equally long intervals. Take the minimum and the
maximum value from the actual observations and
symbolized them by symbols Xmin and Xmax,
respectively. After that, the universe of discourse R id
defined as R = [Xmin, Xmax]. From Table 4,
Xmin = −13.9850 and Xmax = 16.7953 then
R = [−13.9850, 16.7953]. Chen take number of
intervals is seven, but length R is
L = 16.7953 − (−13.9850) = 30.7803, then length
of each interval is l = 30.7803/7 = 4.3972, that is
mean dividing R into seven evenly lengthy. The
results can be listed in Table 1.

2.Get the observations number in each interval. In
Table 2 , a summary of the distributions of the
observations across various intervals is presented.

Divide the interval with the most observations into
four equal-length sub-intervals. Take the interval with the
second-highest number of observations and divide it into
three equal-sized sub-intervals. Take the period with the
third-highest number of observations and divide it into
two intervals of equal length. The interval with the fourth
largest number of observations is chosen, the interval
length is left unchanged, and the intervals with no
observations are discarded as shown in Table 3

3.Define each fuzzy set Di based on the re-divided
intervals and fuzzify the observations which in Table
4, where fuzzy set Di denotes a linguistic value of the
observations represented by a fuzzy set, and
1 ≤ i ≤ 16. To express the fuzzy sets, expressions or
vocabularies are used, for example, D1 =very very
very very very small, D2 =very very very very small,
D3 = very very very small, D4 = very very small,
D5 = very small, D6 = small, D7 = moderate, D8 =
after moderate, D9 = , D10 = much much, D11 =
much much much, D12 = too much, D13 = too much
much, D14 = too much much much, D15 = too much
much much much, D16 = too much much much

much much, defined as follows

D1 =1/r1 + 0.5/r2,1 + 0/r2,2 + ... + 0/r7,2,

D2 =0.5/r1 + 1/r2,1 + 0.5/r2,2 + 0/r3,1 + ...+ 0/r7,2,

D3 =0/r1 + 0.5/r2,1 + 1/r2,2 + 0.5/r3,1 + 0/r3,2 + ...

+ 0/r7,2,

D4 =0/r1 + 0/r2,1 + 0.5/r2,2 + 1/r3,1 + 0.5/r3,2 + 0/r3,3

+ ...+ 0/r7,2,

D5 =0/r1 + 0/r2,1 + 0/r2,2 + 0.5/r3,1 + 1/r3,2 + 0.5/r3,3

+ 0/r4,1 + ... + 0/r7,2,

D6 =0/r1 + ...+ 0/r3,1 + 0.5/r3,2 + 1/r3,3 + 0.5/r4,1

+ 0/r4,2 + 0/r4,3 + ... + 0/r7,2,

D7 =0/r1 + ...+ 0/r3,2 + 0.5/r3,3 + 1/r4,1 + 0.5/r4,2

+ 0/r4,3 + ... + 0/r7,2,

D8 =0/r1 + ...+ 0/r3,3 + 0.5/r4,1 + 1/r4,2 + 0.5/r4,3

+ 0/r4,4 + ... + 0/r7,2,

D9 =0/r1 + ...+ 0/r4,1 + 0.5/r4,2 + 1/r4,3 + 0.5/r4,4

+ 0/r5,1 + ... + 0/r7,2,

D10 =0/r1 + ...+ 0.5/r4,3 + 1/r4,4 + 0.5/r5,1 + 0/r5,2 + ...

+ 0/r7,2,

D11 =0/r1 + ...+ 0.5/r4,4 + 1/r5,1 + 0.5/r5,2 + 0/r5,3 + ...

+ 0/r7,2,

D12 =0/r1 + ...+ 0/r4,4 + 0.5/r5,1 + 1/r5,2 + 0.5/r5,3

+ 0/r6 + 0/r7,1 + 0/r7,2,

D13 =0/r1 + ...+ 0/r5,1 + 0.5/r5,2 + 1/r5,3 + 0.5/r6

+ 0/r7,1 + 0/r7,2,

D14 =0/r1 + ...+ 0/r5,2 + 0.5/r5,3 + 1/r6 + 0.5/r7,1

+ 0/r7,2,

D15 =0/r1 + ...+ 0/r5,3 + 0.5/r6 + 1/r7,1 + 0.5/r7,2,

D16 =0/r1 + ...+ 0/r6 + 0.5/r7,1 + 1/r7,2,

In order to keep things simple, the membership values
of fuzzy set Di are either 0, 0.5 or 1 where 1 ≤ i ≤ 16
are assumed. The results can be listed in Table 4.

4.Fuzzify the actual observations. Finding connections
between the actual observations and the fuzzy sets is
the process of ”fuzzification”. Every observation that
is actualize fuzzified based on its highest membership.
If the fuzzy set Dk has the maximum degree of
belongingness for the created observations time
variable, F (t − 1), then F (t − 1) is fuzzified as Dk.
Utilizing this principle. The results can be listed in
Table 5.

5.Identify and establish fuzzy logical relationships. If
the actual observation F (t− 1) is fuzzified as Dk and
F (t) as Dm , then Dk is related to Dm . This
relationship as Dk → Dm is denoted, where Dk the
current state of observation and Dm the next state of
observation. For example, in Table 5, the observation
1 is fuzzified as D9 and the observation 2 is fuzzified
as D14, which provides the following relationship
D9 → D14. All fuzzy logical relationships can be
obtained by applying this reasoning to all
observations as shown in Table 5. For the same
relationships which may appear more than once, this
repetition is ignored.

6.Defuzzify the fuzzy output into forecasted output.
Divide each interval obtained in step two into four
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equal-length sub intervals, and use the 0.25−point
and 0.75−point of each interval as the forecasting’s
downward and upward pivot points. By applying the
following rules, it may be established whether the
trend of the forecasting is upward or downward when
predicting the fuzzified observations. Assume that the
fuzzy logical relationship is Di → Dj where Di

denotes the fuzzified observation number n − 1 and
Dj denotes the fuzzified observation number n, then

I.If j > i and ((Yn−1 − Yn−2)− (Yn−2 − Yn−3)) are

(a)Positive, then the trend of the forecasting will go
up, and to forecast the fuzzified observations rule
two is utilized.

(b)Negative, then the trend of the forecasting will go
down, and to forecast the fuzzified observations
rule three is applied.

II.If j < i and ((Yn−1 − Yn−2)− (Yn−2 − Yn−3)) are

(a)Positive, then the trend of the forecasting will go
up, and to forecast the fuzzified observations rule
two is applied.

(b)Negative, then the trend of the forecasting will go
down, and to forecast the fuzzified observations
rule three is used.

III.If j = i and ((Yn−1 − Yn−2)− (Yn−2 − Yn−3)) are

(a)Positive, then the trend of the forecasting will go
up, and to forecast the fuzzified observations rule
two is utilized.

(b)Negative, then the trend of the forecasting will go
down, and to forecast the fuzzified observations
rule three is used.

As for rule No. 1, apply with the first, second and
third observations. For rules No. 1, 2, and 3, see [19].
Using these rules, the defuzzifcation of fuzzy
observations to forecasted observations can be listed in 7
where this table lists the AR(1) process-actual
observations as well as the forecasted observations that
were predicted using the FTS method.

Figure 1 illustrates the simulated series of
{Yt, t = 1, 2, ..., 300} from AR(1) model at
n = 300, φ1 = 0.4, σa = 2 and Y0 = 0.3. Figure 2
illustrate the simulated series of the forecasted AR(1)’s
observations based on FTS. From Figures 1 and 2, we can
conclude that the process is stationary, so the plot satisfy
the definition of the AR(1) model. Also, it can be
concluded that the FTS does not affect the behavior of the
process, but maintains its properties and behavior.

3.2 Stages of constructing the simulation

Seven stages make up the simulation experiments for this
part which was coded in the program (see Appendix).

1.Stage of selecting the sample size n and the default
value for the AR(1) parameter as the default parameter
values.

Fig. 1: Simulated series of AR(1) model at n = 300, φ1 = 0.4,
σa = 2 and Y0 = 0.3.

Fig. 2: Simulated series of forecasted AR(1)’s observations based

on fuzzy time series.

2.Stage of generate the observations: Generate the
observations by generating the random errors
according to normal distribution and therefore the
observations (Y1, Y2, ..., Yn) can be obtained.

3.Take the actual observations AO in stage II and
transform them to fuzzy observations and then to
forecasted observations FO as in the previous
example.

4.Both types of observations can be substituted in the
estimator produced from all the estimation methods.

5.Repeat this experiment 1000 once, and thus produces

1000 value for φ̂1 in case of actual observations and
forecasted observations for each one of the different
estimation methods.

6.Using MSEs to compare between the φ̂1’s which
mentioned in the previous step.
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Fig. 3: Diagram for Chen method and some of stages of

constructing the simulation.

7.Repeat this comparison numerous times using various
sample sizes and various default values.

Figure 3 is a diagram of the mechanism for converting
the actual observations from the AR(1) model into fuzzy
observations and then into forecasted observations using
Chen method, and also depicts the comparison between
the estimators of the three classical methods in both cases.

3.3 Performance of estimation techniques

In this segment, the MSE of the MLE, moments, and OLS
approaches is reported for the AR(1) parameter based on
actual and forecasted observations. According to Table 8,
some significant results can be lised as follows: Whenever
the sample size increases, the MSE decrease; the MSE for
(φ1) results in case of forecasted observations are less
than the MSE for (φ1) results in case of actual
observations along the table, which demonstrates that the
three estimate methods’ estimator values were enhanced
using the FTS technique; and when looking at the results
of the three estimation methods, can be noted:

–The MSEs of MLE are less than the MSEs of OLS,
while the MSEs of OLS are less than the MSEs of
Moments, which gives the preference to the MLE,
OLS and Moments respectively.

–When the sample size increases, the MSEs for the three
estimation methods may be coincides.

4 Conclusions

In light of the effort to identify the best parameter
estimators, a novel method for doing so, called fuzzy
logic is proposed. In this study, fuzzy time series (FTS)

Table 1: Equally lengthy intervals.

Interval No. Interval range

r1 [-13.985,-9.5878]

r2 [-9.5878,-5.1906]

r3 [-5.1906,-0.7934]

r4 [-0.7934,3.6038]

r5 [3.6038,8.0010]

r6 [8.0010,12.398]

r7 [12.398,16.795]

Table 2: The distribution of the observations in intervals.

Interval No. Interval range No. of obs in each interval

r1 [-13.985,-9.5878] 1

r2 [-9.5878,-5.1906] 3

r3 [-5.1906,-0.7934] 12

r4 [-0.7934,3.6038] 17

r5 [3.6038,8.0010] 12

r6 [8.0010,12.3981] 2

r7 [12.398,16.795] 3

Table 3: Redivided intervals based on number of observations.

Interval No. Interval range

r1 [-13.98,-9.587]

r2,1 [-9.587,-7.382]

r2,2 [-7.382,-5.190]

r3,1 [-5.190,-3.721]

r3,2 [-3.721,-2.254]

r3,3 [-2.254,-0.793]

r4,1 [-0.793,0.305]

r4,2 [0.305,1.405]

r4,3 [1.405,2.504]

r4,4 [2.504,3.603]

r5,1 [3.603,5.061]

r5,2 [5.061,6.5321]

r5,3 [6.5321,8.001]

r6 [8.001,12.39]

r7,1 [12.39,14.59]

r7,2 [14.59,16.79]

were employed to improve estimate of the stationary
AR(1) process’s unknown parameter using traditional
estimation methods ”MLE, OLS and moments”. The
estimators of these techniques were studied and discussed
for both the actual observations generated by the model
and the observations estimated by the FTS. Utilizing the
mean squared error, these comparisons were made. The
results showed a preference in the estimated observations
over the actual observations in all three estimation
approaches. This shows that employing FTS as opposed
to conventional approaches can improve the estimation of
unknown parameters in stationary time series models.
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Table 4: The actual observations.

Observation No. Observation value

Y1 2.2707

Y2 8.2438

Y3 -5.7379

Y4 1.1535

Y5 1.7365

Y6 -4.5362

Y7 -3.5488

Y8 -0.049

Y9 14.294

Y10 16.7953

Y11 1.3186

Y12 12.6671

Y13 7.9685

Y14 2.9352

Y15 4.033

Y16 0.7934

Y17 -0.1792

Y18 5.8871

Y19 7.991

Y20 8.8652

Y21 6.2321

Y22 -2.3371

Y23 1.9341

Y24 7.2946

Y25 4.8734

Y26 6.0881

Y27 5.3428

Y28 0.9234

Y29 1.5448

Y30 -2.5312

Y31 2.5411

Y32 -3.5718

Y33 -5.7042

Y34 -5.5197

Y35 -13.985

Y36 0.1595

Y37 1.3646

Y38 -2.4739

Y39 4.4916

Y40 -5.0494

Y41 -2.4287

Y42 -1.9373

Y43 0.5019

Y44 1.4522

Y45 -2.8786

Y46 -1.2717

Y47 -1.1682

Y48 2.0436

Y49 5.1905

Y50 6.5133

Appendix

The next pseudo code consists of five parts
First part: Choosing default values: n, φ1, σa and Y0.
Second part :Generating the random error

Table 5: Fuzzy logical relationships.

D9 → D14 D14 → D3 D3 → D8 D8 → D9

D9 → D4 D4 → D5 D5 → D7 D7 → D15

D15 → D16 D16 → D8 D8 → D15 D15 → D13

D13 → D10 D10 → D11 D11 → D8 D8 → D7

D7 → D12 D12 → D13 D13 → D14 D14 → D12

D12 → D5 D5 → D8 D8 → D13 D13 → D11

D11 → D12 D12 → D12 D12 → D8 D9 → D5

D5 → D10 D10 → D5 D5 → D3 D3 → D3

D3 → D1 D1 → D7 D7 → D8 D8 → D5

D5 → D11 D11 → D4 D5 → D6 D6 → D8

D6 → D6 D6 → D9 D9 → D12

a = normrnd(0, σ2
a, n, 1) and therefore we can get the

actual observations (Y1, Y2, . . . , Yn).
Third part: Fuzzification the observations by the method
mentioned in this paper.

1.Find the minimum of values Y1, Y2, . . . , Yn and the
maximum of values Y1, Y2, . . . , Yn and take number
of intervals k = 7.

2.Find the length of each interval L=(max(Y)-min(Y))/7
and get all intervals from 1 to 7.
for i from 1 to n and for j from 1 to k
if Y(i) belong to interval(j)
then A(j,1,i)=Y(i);

3.Determine how much an element within each interval
by using the following function
for i from 1 to n
le(i)=length(nonzeros(A(i,:,:)));

4.Sort the intervals r=[sort(interval(:,1)) sort(out(:,2))];
5.Find the middle value and downward, upward and

length for the new intervals r which need to them
when applying the rules.

Fourth part:

for i from 1 to length(r)
if Y(r) belong to r(i)
for j from 1 to length(r)
if Y(r+1) belong to r(j)
if (j>i)
if (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))>0)→ apply Rule 2 ;
elseif (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))<0→ apply Rule 3;
elseif (j<i)
if (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))>0)→ apply Rule 2;
elseif (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))<0)→ apply Rule
3;
else if (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))>0)→apply Rule
2;
elseif (((Y(r)-Y(r-1))-(Y(r-1)-Y(r-2)))<0)→ apply Rule
3.
apply Rule 1 with the first and the second and the third
observations.
Substitute by both the actual observations (which in
second part) and the forecasted observations separately in
the method’s estimators and compare between the results.
Fifth part: Showing results.
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Table 6: Actual and fuzzified observations.

Observation No. Actual observations Interval Fuzzified observations

Y1 2.2707 [1.40516,2.50446] D9

Y2 8.2438 [8.0010,12.3981] D14

Y3 -5.7379 [-7.3892,-5.1906] D3

Y4 1.1535 [0.30586,1.40516] D8

Y5 1.7365 [1.40516,2.50446] D9

Y6 -4.5362 [-5.1906,-3.7248] D4

Y7 -3.5488 [-3.7248,-2.2591] D5

Y8 -0.049 [-0.7934,0.30586] D7

Y9 14.294 [12.3981,14.5967] D15

Y10 16.7953 [14.5967,16.7953] D16

Y11 1.3186 [0.30586,1.40516] D8

Y12 12.6671 [12.3981,14.5967] D15

Y13 7.9685 [6.5352,8.0010] D13

Y14 2.9352 [2.50446,3.6038] D10

Y15 4.033 [3.6038,5.0694] D11

Y16 0.7934 [0.30586,1.40516] D8

Y17 -0.1792 [-0.7934,0.30586] D7

Y18 5.8871 [5.0694,6.5352] D12

Y19 7.991 [6.5352,8.0010] D13

Y20 8.8652 [8.0010,12.3981] D14

Y21 6.2321 [5.0694,6.5352] D12

Y22 -2.3371 [-3.7248,-2.2591] D5

Y23 1.9341 [0.30586,1.40516] D8

Y24 7.2946 [6.5352,8.0010] D13

Y25 4.8734 [3.6038,5.0694] D11

Y26 6.0881 [5.0694,6.5352] D12

Y27 5.3428 [5.0694,6.5352] D12

Y28 0.9234 [0.30586,1.40516] D8

Y29 1.5448 [1.40516,2.50446] D9

Y30 -2.5312 [-3.7248,-2.2591] D5

Y31 2.5411 [2.50446,3.6038] D10

Y32 -3.5718 [-3.7248,-2.2591] D5

Y33 -5.7042 [-7.3892,-5.1906] D3

Y34 -5.5197 [-7.3892,-5.1906] D3

Y35 -13.985 [-13.9850,-9.5878] D1

Y36 0.1595 [-0.7934,0.30586] D7

Y37 1.3646 [0.30586,1.40516] D8

Y38 -2.4739 [-3.7248,-2.2591] D5

Y39 4.4916 [3.6038,5.0694] D11

Y40 -5.0494 [-5.1906,-3.7248] D4

Y41 -2.4287 [-3.7248,-2.2591] D5

Y42 -1.9373 [-2.2591,-0.7934] D6

Y43 0.5019 [0.30586,1.40516] D8

Y44 1.4522 [1.40516,2.50446] D9

Y45 -2.8786 [-3.7248,-2.2591] D5

Y46 -1.2717 [-2.2591,-0.7934] D6

Y47 -1.1682 [-2.2591,-0.7934] D6

Y48 2.0436 [1.40516,2.50446] D19

Y49 5.1905 [5.0694,6.5352] D12

Y50 6.5133 [5.0694,6.5352] D12
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Table 7: Actual and forecasted observations.

Observation No. Actual observations Trend the forecasting Forecasted observations

Y1 2.2707

Y2 8.2438 Middle value 10.1995

Y3 -5.7379 Upward; 0.75-point -5.7403

Y4 1.1535 Middle value 0.8555

Y5 1.7365 Middle value 1.9548

Y6 -4.5362 Middle value -4.4578

Y7 -3.5488 Middle value -2.9920

Y8 -0.049 Downward; 0.25-point -0.5186

Y9 14.294 Middle value 13.4974

Y10 16.7953 Middle value 15.6960

Y11 1.3186 Middle value 0.8555

Y12 12.6671 Middle value 13.4974

Y13 7.9685 Middle value 7.2680

Y14 2.9352 Middle value 3.0541

Y15 4.033 Upward; 0.75-point 4.7031

Y16 0.7934 Downward; 0.25-point 0.5807

Y17 -0.1792 Middle value -0.2438

Y18 5.8871 Middle value 5.8024

Y19 7.991 Middle value 7.2681

Y20 8.8652 Downward; 0.25-point 9.1003

Y21 6.2321 Upward; 0.75-point 6.1688

Y22 -2.3371 Middle value -2.9920

Y23 1.9341 Middle value 1.9548
...

...
...

...

Y34 -5.5197 Middle value -6.2899

Y35 -13.985 Upward; 0.75-point -10.6871

Y36 0.1595 Middle value -0.2438

Y37 1.3646 Middle value 0.8555

Y38 -2.4739 Middle value -2.9920

Y39 4.4916 Middle value 4.3366

Y40 -5.0494 Middle value -4.4578

Y41 -2.4287 Middle value -2.9920

Y42 -1.9373 Middle value -1.5263

Y43 0.5019 Middle value 0.8555

Y44 1.4522 Downward; 0.25-point 1.67998

Y45 -2.8786 Middle value -2.9920

Y46 -1.2717 Middle value -1.5263

Y47 -1.1682 Middle value -1.5263

Y48 2.0436 Upward; 0.75-point 2.2296

Y49 5.1905 Middle value 5.8023

Y50 6.5133 Downward; 0.25-point 5.4359
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Table 8: Showing the MSEs for the three methods for the AR(1) parameter in the two cases of actual

observations and forecasted observations.

n φ1 σ Y0

MSE

MLE Moments OLS

AO FO AO FO AO FO

100

-0.3 4.5 2.5 0.0092661 0.00921863 0.0094827 0.0094534 0.0093573 0.0093177

0.1 3 0.8 0.0094529 0.00942243 0.0098318 0.0097003 0.0096316 0.0096003

-0.4 1.6 1 0.008625 0.00852349 0.0087275 0.0087189 0.008646 0.0086007

0.7 2.8 3.9 0.0060178 0.00600065 0.0062388 0.0062099 0.0061484 0.006127

0.2 2.3 4.8 0.0089998 0.00893687 0.0092826 0.0092207 0.0091095 0.0090464

-0.8 3.8 0.7 0.0047336 0.00465002 0.005264 0.004999 0.0047454 0.0047111

0.5 7 1.7 0.0080631 0.00804791 0.008083 0.0080777 0.0080676 0.0080535

-0.9 5.5 4.2 0.0032079 0.0032022 0.0034497 0.0033877 0.0032304 0.0032188

200

-0.3 4.5 2.5 0.0041677 0.00414024 0.0042358 0.00422 0.0041971 0.0041688

0.1 3 0.8 0.0050984 0.00499012 0.0051891 0.00512 0.0051419 0.0050921

-0.4 1.6 1 0.0042642 0.00426013 0.0043157 0.0042968 0.0042903 0.0042785

0.7 2.8 3.9 0.0027698 0.00273933 0.0027848 0.002779 0.0027792 0.0027512

0.2 2.3 4.8 0.0046311 0.00460839 0.0046994 0.004675 0.0046706 0.0046464

-0.8 3.8 0.7 0.0019592 0.00193296 0.0020882 0.001999 0.0019647 0.0019512

0.5 7 1.7 0.0038805 0.003801 0.0039363 0.0039112 0.0038842 0.0038777

-0.9 5.5 4.2 0.0010452 0.00103209 0.0012033 0.0012007 0.0011826 0.0011598

300

-0.3 4.5 2.5 0.0031185 0.00311298 0.0031398 0.0031281 0.0031333 0.0031267

0.1 3 0.8 0.0032582 0.00323003 0.003304 0.0032991 0.0032777 0.0032644

-0.4 1.6 1 0.0029265 0.0028999 0.0029371 0.0029007 0.0029405 0.0029276

0.7 2.8 3.9 0.0017379 0.00168829 0.0017475 0.001713 0.0017503 0.0017333

0.2 2.3 4.8 0.0032457 0.00317653 0.0032539 0.00319 0.0032727 0.0032119

-0.8 3.8 0.7 0.0012664 0.00120939 0.0012668 0.0012498 0.0013213 0.0012809

0.5 7 1.7 0.0025966 0.0025629 0.0025892 0.002577 0.0025944 0.0025901

-0.9 5.5 4.2 0.000822 0.00081199 0.0008239 0.00082 0.0008482 0.0008411

400

-0.3 4.5 2.5 0.0023702 0.00232981 0.0023735 0.002353 0.0023782 0.0023599

0.1 3 0.8 0.0023081 0.00229098 0.0023143 0.0022976 0.002321 0.0023025

-0.4 1.6 1 0.0020885 0.00199837 0.0020891 0.0020377 0.0020919 0.002067

0.7 2.8 3.9 0.0020919 0.00203465 0.0022416 0.0021674 0.0022194 0.0021804

0.2 2.3 4.8 0.0024723 0.00245747 0.002483 0.0024795 0.002493 0.0024848

-0.8 3.8 0.7 0.0009938 0.00096309 0.0009991 0.0009865 0.0010297 0.0009955

0.5 7 1.7 0.0020134 0.00200323 0.0020217 0.002012 0.0020228 0.0020194

-0.9 5.5 4.2 0.0005525 0.00055094 0.0005558 0.0005539 0.0005587 0.0005561

500

-0.3 4.5 2.5 0.00174 0.00171646 0.0017423 0.0017394 0.0017465 0.001742

0.1 3 0.8 0.0020765 0.00207579 0.0020852 0.0020844 0.002094 0.0020932

-0.4 1.6 1 0.0017073 0.00168736 0.001708 0.0016903 0.001717 0.0017023

0.7 2.8 3.9 0.000962 0.00096003 0.0009624 0.000962 0.0009639 0.0009627

0.2 2.3 4.8 0.0019338 0.0019119 0.0019377 0.001915 0.0019424 0.0019192

-0.8 3.8 0.7 0.0007273 0.00070763 0.0007302 0.0007217 0.0007517 0.0007376

0.5 7 1.7 0.0013328 0.0013022 0.0013361 0.0013102 0.0013328 0.0013177

-0.9 5.5 4.2 0.0004126 0.0004119 0.0004144 0.000413 0.0004186 0.0004167
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