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Abstract: In this paper, we investigate the solution of fractional Duffing equation. This problem is important since it appears in a

variety of science models, including engineering, biology, and physics. The fractional derivative will give us the chance to consider

the history of the displacement function in the interval [0, t]. A numerical solution of fractional problems with strongly oscillators is

investigated. The spline spaces are used to approximate the solution. It is worth mentioning that the standard basis such as polynomials

will not work with this type of problems since there are strong oscillators. To show the validity of our results, we compare them

with four different methods which are HPM, MHPM, SHPM, and collocation method using polynomials as basis for the approximate

solution. The error in our approximation is 10−10 comparing with other methods which are of 10−6 or more. The numerical results

reveal that our results are accurate and the proposed method can be used for other physical problems.
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1 Introduction

The history of fractional calculus in continuous settings is old, almost as old as ordinary integer order calculus. Recently,
fractional derivatives have been studied in both aspects, not only for their theoretical interest, but also for their applications
[1,2].

The applications of fractional calculus in various disciplines such as Kadomtsov-Petviashili-Benjamin-Bona-Mahony
model [3], and continuum mechanics [4] are of great interest to researchers despite the physical or geometrical challenges
involved in understanding the meaning of fractional operators [5]. It is crucial to learn the methods and techniques that
can be used to solve fractional differential equations due to the complexity of fractional calculus and its applications.

Comparatively speaking to classical calculus, there are numerous non-equivalent definitions for both fractional
derivative and integral operators. The most established and frequently employed definition throughout history is the
Riemann-Liouville fractional derivative. However, it has some inherent drawbacks: for fractional differential equations
in this model, the necessary initial conditions are intrinsically fractional, which makes the model less useful for
applications. Due to its requirement for initial conditions to be in the classical form, the Caputo fractional derivative
emerged as a rival to Riemann-Liouville in the late 20th century [6]. This made it more appropriate for modeling
physical phenomena.

The Duffing equation is employed in a variety of science models, including engineering, biology, and physics. It was
named for Ger-Man Duffing, who found it in 1918. This equation is a good example of strong nonlinear model. This
problem is used in Van der Pol’s equation as a nonlinear oscillation example. This equation is important since it is used in
many models such as mechanical oscillators [7], vibration beams [8], and disease prediction [9].
After several simplifications, Duffing modeled the motion of special types of pendulum problems as

w′′(t)+ a1w(t)+ a2w3(t) = 0 (1)
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with the following initial conditions
w(0) = η ,w′(0) = 0. (2)

The Duffing equation describes the motion of a classical particle in a double well potential. To derive the Duffing equation,
we start with Cauchy problem with offset [10]. Here, w(t) is the displacement function which is the solution of Problem
(1)-(2). To consider the history of the displacement function on the interval [0, t], we use the fractional derivative which
will give better representation to the model. For this reason, in this article, we study the generalization form of Problem
(1)-(2) which is given by

D2α w(t)+ a1w(t)+ a2w3(t) = 0,0.5 < α ≤ 1 (3)

with
w(0) = η ,Dα w(0) = 0. (4)

Several researchers investigated the numerical solution of Problem (3)-(4) using different methods such as HPM [11],
Series solution [12], variational method [13], operational matrix method [14], ADM method [15], and Broyden method
[16]. More details can be found in [17,18,19,20].
We organize this paper as follows. In Section 2, we write some definitions and theorems which we use in this article. In
Sections 3 and 4, we present the method of the solution and some theoretical results while in Section 5, we give some
numerical results and comparisons with other researchers. Discussion for the results is given at the end of the article.

2 Preliminaries

In this paper, we use the Caputo derivatives which is defined as follow.

Definition 1. Let k ∈ N and α ∈R. Define the spaces Cα and Ck
α as

Cα = { f : (0,∞)→R : f (t) = t j f1(t), f1 ∈C[0,∞), j > α}

and

Ck
α = { f : (0,∞)→R : f (k) ∈Cα}.

If k− 1 < α < k , α > 0 , t > 0 , f ∈Ck
−1 , then the Caputo derivative is given by

Dα r(t) =
1

Γ (k−α)

∫ t

0
(t − s)k−1−α

r(k)(s)ds

where Γ is the Gamma function.
A direct result from Definition 1 is the functional power rule which is given by

Dα tµ =
Γ (µ + 1)

Γ (µ −α + 1)
tµ−α

,µ ≥ α > 0

and Dα a = 0, when a is constant.
The notation of functional B-splines (FBS) and their attributes are introduced in this section. Let us start by defining
fractional truncated power functions (FTPFs).

Definition 2. For α ∈ R
+, the FTPF is defined by

wα
+ =

{

wα w ≥ 0

0 x < 0

and the FBS is defined by

Sα(w) =
1

Γ (α + 1)

∞

∑
j=0

(−1) j Γ (α + 2)

j! Γ (α − j+ 2)
(w− j)α

+. (5)

Using the power rule of Caputo derivative, one has

DBwα
+ =

Γ (α + 1)

Γ (α −β + 1)
w

α−β
+ ,0 < β ≤ α
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and

Dβ Sα(w) =
∞

∑
j=0

(−1)k Γ (α + 2)

j! Γ (α − j+ 2)Γ (α −β + 1)
(w− j)

α−β
+ .

To get an idea about FBS function, we plot Sα(w) for α = j
5
, j = 0 : 10 in Fig. 1. From Figure 1, we note that Sα(w)

decays very fast when w becomes large.
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Fig. 1: Sα (w) for α = k
5 ,k = 0,1, ...,10.

Also, we plot Dβ S6(w), Dβ S 31
5
(w), and Dβ S 32

5
(w) for β = 1

5
,

3
5
,1 in Figures Fig.2, Fig.3, and Fig.4, respectively.

Also, we notice that Dβ Sα(w) decays to zero when w becomes large.
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3 Method of solution

This section is devoted for deriving the numerical method for solving the following problem

D2α w(t)+ a1w(t)+ a2w3(t) = 0,
1

2
< α ≤ 1,0 < t < tmax (6)

with
w(0) = η , Dα w(0) = 0. (7)

Let t j = j∆ , for j = 0,1, ...,k and ∆ = tmax
k

. From Figure 1, one can see that Sα(t) decay to zero when t becomes large
but it does not have a compact support. This fact suggests that to treat the closed interval [0,M] as a compact support for
Sα(t) where M ∈ N. Define the set

Sα ,∆ = {Sα , j(t) = Sα(
t

∆
− j) : j ∈ I∆ , t ∈ [0, tmax]}

where I∆ = {−M,−M+ 1, ....,K}. Since Sα , j(t) ∈ [0, tmax], we assume that k = M− 1.

Theorem 1. The functions Sα , j(t), j ∈ I∆ = {−M,−M+ 1, ....,M− 1}, are linearly independent functions on [0, tmax].

Proof. For any −M ≤ i ≤ M− 1, we have

Sα(
t

∆
− i) =

1

Γ (α + 1)

∞

∑
j=0

(−1) jΓ (α + 2)

j!Γ (α − j+ 2)
(

t

∆
− i− j)α

+. (8)

Now,

(
t

∆
− i− j)α

+ =

{

( t
∆ − i− j)α ,

t
∆ − i− j ≥ 0

0, otherwise

=

{

(M−1)t
tmax

− i− j,
(M−1)t

tmax
− i ≥ j

0, otherwise
.
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Thus, if j >
(M−1)tmax

tmax
− i = (M− 1)− i ≥ (M−1)t

tmax
− i, for all t ∈ [0, tmax], then

(
t

∆
− i− j)α

+ = 0.

Thus,

Sα(
t

∆
− i) =

1

Γ (α + 1)

M−1− j

∑
j=0

(−1) j Γ (α + 2)

j! Γ (α − j+ 2)
(

t

∆
− i− j)α

+. (9)

Then, Sα(
t
∆ − i) is a piece-wise function with M− i terms. Thus, the result follows directly from the last fact.

Let the spline space be defined by

Sα = span(Sα ,∆).

Then, the dimension of Sα is 2M. Now, we want to solve Equations (6)-(7) in the Space Sα . Let

wM(t) =
M−1

∑
j=−M

w j Sα , j(t) =
M−1

∑
j=−M

w j Sα(
t

∆
− j) (10)

be the approximate solution to Equations (6)-(7). Let

Λ = {t j = jλ : j = 1,2, ...,2M− 2} (11)

where λ = tmax
2M

.

Substituting the collocation points in Equation (6), we get the following system

D2α wM(t j)+ a1 wM(t j)+ a2 w3
M(t j) = 0 for j = 1,2, ..,2M− 2.

Thus,

M−1

∑
j=−M

w j D2α Sα(
ti

∆
− j)+ a1

M

∑
j=−M

w j Sα(
ti

∆
− j)+ a2

(

M

∑
j=−M

w j Sα(
ti

∆
− j)

)3

= 0 (12)

for i = 1,2, , ...,2M− 2. Using the first initial condition, we get

η = wM(0) =
M−1

∑
j=−M

w j Sα(− j). (13)

Theorem 2. For j ∈ {−M,−M+ 1, ...,M+ 1}, we have

Sα(− j) =

{

1
Γ (α+1) ∑

− j−1
i=0

(−1)iΓ (α+2)
i!Γ (α−i+2)

(−i− j)α
, i f j ∈ {−M,−M+ 1, ...,−1}

0, otherwise
.

Proof.Since

(− j− i)α
+ =

{

(− j− i)α
, − j > i

0, − j ≤ i
.

Then, we have two cases:

1.If j ∈ {0,1,2, ...,M − 1}, then − j ≤ i for any i ∈ {0,1,2, ...}. Thus, (− j− i)α
+ = 0 for all i ∈ {0,1,2, ...}. Hence,

Sα(− j) = 0.
2.If j ∈ {−M,−M+ 1, ...,−1}, then − j > i which implies that i ∈ {0,1, ...,− j− 1}. Thus,

(− j− i)α
t =

{

(− j− i)α
, i f i ∈ {0,1, ...,− j− 1}

0, otherwise
.
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Hence

Sα(− j) =
1

Γ (α + 1)

− j−1

∑
i=0

(−1)i Γ (α + 2)

i! Γ (α − i+ 2)
(− j− i)α

.

From Equation (7), we get
η = w−MSα(M)+w−M+1 Sα(M− 1)+ ...+w−1Sα(1). (14)

Now

0 = Dα wM(0) =
M−1

∑
j=−M

w j Dα Sα(− j). (15)

From Equations (12) and (14)-(15), we get a nonlinear system of 2M equation in 2M unknowns. We use Mathematica to
solve it and generate wi for i ∈ {−M,−M+ 1, ...,M− 1}.

4 Stability of the B-spline basis

In this section, we show that the B-Spline functions are stable.

Definition 3. A basis(S j) of a normed linear space W is said to be stable with respect to the norm ‖.‖ if there exists to

small positive numbers β1 and β2 such that

‖(wi)‖

β1

≤ ‖∑
i

wiSi‖ ≤ β2‖(wi)‖. (16)

Let β ∗
1 and β ∗

2 be the smallest values that satisfy Equation (16), then the condition number of this basis is

k(S j) = β ∗
1 β ∗

2 .

The first result is given in the following theorem.

Theorem 3. If the basis (S j) of a normed linear space W is stable with respect to the norm ‖.‖ and

f1 = ∑
i

wiSi(t), f2 = ∑
i

viSi(t),

then
‖ f1 − f2‖

‖ f1‖
≤ k(S j)

(wi − vi)‖

‖(wi)‖
. (17)

Proof. Since (S j) is stable basis, then by equation (16), we get

‖(wi − vi)‖

β ∗
1

≤ ‖ f1 − f2‖ ≤ β ∗
2 ‖(wi − vi)‖,

‖(wi)‖

β ∗
1

≤ ‖ f1‖ ≤ β ∗
2 ‖(wi)‖. (18)

Then,
‖ f1 − f2‖

‖ f1‖
≤ β ∗

1 β ∗
2

‖(wi − vi)‖

‖(wi)‖
≤ k(S j)

‖(wi − vi)‖

‖(wi)‖
. (19)

Let us define the space V k
A [0,1] for non-negative integer k. Then, f ∈ V k

A [0,1] if f ∈ Ck−1[0,1] and f (k) is continuous on
[0,1] except on the set A ⊂ [0,1]. We define the distance between Sα and f by

dis( f ,Sα ) = inf
g∈Sα

‖ f − g‖.

We define Gd f ∈ Sα for f ∈V 0
A [0,1] by

Gd f (x) = ∑
i

λi( f )Si(x),

where

λi( f ) =
d

∑
k=0

ai,k f (xi,k)
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Table 1: The absolute errors for η = a1 = a2 = α = 1

t e1 e2 e3 e4 e5
1
2 0.006 0.001 0.00004 1×10−6 1×10−9

1 0.06 0.00005 0.00001 1×10−6 1×10−9

2 0.2 0.032 0.00003 1×10−6 1×10−9

7
2 0.37 0.014 0.00002 1×10−6 1×10−9

5 1.1 0.854 0.00002 1×10−6 1×10−9

and (xi,k) are points in [0,1]. Simple calculations implies that

| λi( f ) |≤
d

∑
k=0

ai,k‖ f‖ ≤ Kd‖ f‖, (20)

where Kd depends on d only. Finally, we prove that (S j) is stable.

Theorem 4. Let

f =
m−1

∑
j=−µ

w jSα j.

Then,
‖(w j)‖

βd

≤ ‖ f‖ ≤ 2Mµ‖(w j)‖,

where βd is the degree of Sα j and Sα j is bounded by µ = sup | Sα j |.

Proof. Since Sα j has compact support and bounded by µ , then

‖ f‖= max |
m−1

∑
j=−µ

w jSα j |≤ µmax |
m−1

∑
j=−µ

w j |≤ 2Mµ‖(wi)‖.

Now, since f ∈ Sα , then Gd f = f and λi( f ) = wi. Then, using Equation (22), we get

| wi |≤ βd‖ f‖

which implies that
‖(wi)‖

βd

≤ ‖ f‖.

Therefore, the basis (Sα j) is stable basis.

5 Numerical results

To compare our results with Sibauda and Khider[19] and Syam [20], we solve the problem when η = a1 = a2 = α = 1.
The absolute errors are reported in Table 1. For η = 3

4
, α = 1, a1 = a2 =

3
2
, the absolute errors are reported in Table 2.

Since the exact solution is unknown in such cases, then the full explicit RK methods built-in file in Mathematica is used
as exact solution. Define the absolute errors e1,e2,e3 to be the absolute errors using HPM, MHPM, SHPM as reported in
Sibanda and Khider [19], respectively. Also, we defined e4 to be the absolute error as reported in Syam [20]. Finally, e5 is
the absolute error using the proposed method in this paper.

Table 2: The absolute errors for η = 3
4 ,α = 1,a1 = a2 = 3

2

t e1 e2 e3 e4 e5

1 0.024 0.0004 8×10−6 1×10−6 1×10−10

2 0.079 0.0102 2×10−5 1×10−6 1×10−10

3 0.101 0.0008 6×10−6 1×10−6 1×10−10

4 0.223 0.0388 7×10−5 1×10−6 1×10−10

5 0.505 0.0078 1×10−6 1×10−6 1×10−10
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Figures 5 and 6 present the exact and the approximate solutions for α = 1,η = 1.5, a1 =
1
2
, a2 =

3
2

and α = 1,a1 = 1,
a2 = 1, η = 2, respectively.
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Fig. 5: α = 1,η = 1.5,a1 = 1.5,a2 = 0.5
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Fig. 6: α = 1,η = 2,a1 = 1.5,a2 = 1
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6 Conclusion

In this paper, we investigate the solution of fractional Duffing equation. This problem is important since it appears in a
variety of science models, including engineering, biology, and physics. The fractional derivative will give us the chance
to consider the history of the displacement function on the interval [0, t]. A numerical solution of fractional problems with
strongly oscillators is investigated. The spline spaces are used to approximate the solution. It is worth mentioning that the
standard basis such as polynomials will not work with this type of problems since there are strong oscillators. To show the
validity of our results, we compare them with four different methods which are HPM, MHPM, SHPM, and collocation
method using polynomials as basis for the approximate solution. The error in our approximation is 10−10 comparing
with other methods which are of 10−6 or less. The numerical results reveal that our results are accurate and the proposed
method can be used for other physical problems. From the previous results, we note the following.

1.The error in our approximation is 10−10 comparing with other methods which are of 10−6 or less.
2.There are clear agreements between the approximate and the exact solutions as in Tables (1)-(2).
3.From Figure 5 and 6, we notice that there are agreements between the approximate and the exact solutions.
4.We can implement the proposed method to other problems in physics with nonlinear phenomena.
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