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Abstract: This paper presents two new portmanteau tests to evaluate the goodness of fit of ARMA models. The tests are 
based on exponential weights of the residual autocorrelation function and the residual partial autocorrelation function. A 
review of previous work on portmanteau tests is given. The performance of the new portmanteau tests is compared with 
previous portmanteau tests via the use of Monte Carlo experiments with 10,000 replications. The empirical size simulations 
show that, when an AR(1) process is fitted by an AR(1) model, most portmanteau tests from previous studies do not have 
significance levels that are stable with respect to lag length. The new residual partial autocorrelation function test is shown 
to outperform previous tests in terms of its power and its stability with respect to lag length. 

Keywords: autoregressive process, moving average process, Monte Carlo experiment, portmanteau test. 

 

1 Introduction 

Diagnostic checking is the third stage of the Box and Jenkins methodology. The adequacy of a statistical model is 
examined, by considering the model’s residuals, then the autocorrelation and partial autocorrelation functions are used as 
diagnostic tools to test the goodness of fit of the model. A portmanteau test is an important method of diagnostic checking, 
which is used to test the goodness of fit of an ARMA model of a time series, which has been studied by both Box and 
Pierce [1]and Ljung and Box [2]. 

A portmanteau test is calculated by summing the residuals of the autocorrelation or partial autocorrelation function of the 
fitted model. Then the value of the portmanteau test is compared with a critical value. If the value of the portmanteau test is 
less than the critical value, it means the model is appropriate for the data, and if bigger then the model is considered 
inappropriate for the data.  

Suppose that a time series {z!} is generated by a stationary and invertible ARMA(p, q) process  

𝜙(B)z! = 𝜃(B)e! 

where {e!} is a white noise process of mean zero and constant variance 𝜎"#, and 𝜙(B) and	𝜃(B) are polynomials given by 
𝜙(𝐵) = 1 − 𝜙$𝐵 −⋯−𝜙%𝐵& and 𝜃(𝐵) = 1 − 𝜃$𝐵 −⋯− 𝜃'𝐵', has been fitted by maximum likelihood estimates 
4𝜙5, 𝜃56 obtained for the parameters, then it is possible to identify the residuals as 

𝑒̂( = 𝜃5)$(𝐵)𝜙5(𝐵)𝑧( ,                  (1) 

The residuals are computed recursively using Equation (2) in the following form 

 𝑒̂( = 𝑧( −:𝜙5*

&

*+$

𝑧()* +:𝜃5*

'

*+$

𝑒̂()* 							𝑡 = 1,2,⋯ , 𝑛 (2) 

These residuals e?! from the ARMA model will be random if the model is correct, this means that the autocorrelation of the 
residuals 𝜌, will be zero at all lags 𝑘. This gives the null hypothesis for all lags 𝑘 

𝐻-:	𝜌, = 0     versus    𝐻$:	𝜌, ≠ 0 

When considering the partial autocorrelation 𝜙,, of the residual at lags 𝑘, the hypothesis test can be given in the equivalent 
form 

𝐻-:	𝜙,, = 0    versus   𝐻$:	𝜙,, ≠ 0 
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All the following tests will use one of the given forms of the hypothesis, depending on whether the statistic relies on 𝜌, or 
𝜙,,. 

The rest of the article is organized as follows. In Section 2, provides a review of previous studies of portmanteau tests in 
univariate time series. Section 3 introduces the new portmanteau tests, which are based on the residual autocorrelation 
function and the residual partial autocorrelation function combined with exponential weights. In Section 4, the simulation 
study compares the new portmanteau test statistics with those from previous studies by using the empirical size and the 
power level methods. In Section 5, we close this article with the conclusion. 

2 Previous studies of portmanteau tests  

2.1. Box and Pierce, Ljung and Box, and Monti tests 
Portmanteau tests have been developed by several researchers, such as, Box and Pierce [1], Ljung and Box [2] and Monti 
[3]. These tests provide a measure of the accuracy of a fitted model. In the following tests 𝑛 is the number of observations 
and 𝑚 is the maximum lag taken into account.  

The sample autocorrelation function can be obtained by  

𝜌?,(𝑒̂) = : 𝑒̂(𝑒̂(),

.

(+,/$

:𝑒̂(#
.

(+$

G  

where 𝑒̂( is the residual of the estimated models. Box and Pierce [3] in 1970 showed that if the fitted model is appropriate 
then the portmanteau test statistic is given by 

 𝒬I0% = 𝑛:𝜌?,#
1

,+$

(𝑒̂) (3) 

Ljung and Box [2] in 1978 proposed a modified form of the portmanteau test statistic given by 

 𝒬I20 = 𝑛(𝑛 + 2):(𝑛 − 𝑘))$
1

,+$

𝜌?,#(𝑒̂) (4) 

Monti [3] in 1994 suggested the following portmanteau test statistic 

 𝒬I3 	= 𝑛(𝑛 + 2):(𝑛 − 𝑘))$
1

,+$

𝜙5,,# (𝑒̂) (5) 

where 𝜙5,,(𝑒̂) is the residual partial autocorrelation at lag 𝑘.  

All three of these tests are asymptotically distributed as a chi-squared variable with (𝑚 − 𝑝 − 𝑞) degrees of freedom. 

2.2. Peña and Rodríguez, and Mahdi and McLeod tests 
Peña and Rodríguez [4] in 2002 showed that the portmanteau goodness-of-fit test statistic is based on a general measure of 
multivariate dependence. Denote the correlation matrix up to order lag 𝑚 of residual 𝑒̂( from the fitted ARMA(𝑝, 𝑞) model 
by 

𝑅51(𝑒̂) =

⎣
⎢
⎢
⎢
⎡
1										𝜌?$(𝑒̂)								𝜌?#(𝑒̂)							⋯					𝜌?,(𝑒̂)
𝜌?$(𝑒̂)								1													𝜌?#(𝑒̂)							⋯			𝜌?,)$(𝑒̂)
𝜌?#(𝑒̂)					𝜌?$(𝑒̂)											1												 ⋯			𝜌?,)#(𝑒̂)
		⋮												⋮																		⋮ 												⋯ 							 ⋮						
𝜌?,(𝑒̂)				𝜌?,)$(𝑒̂)			𝜌?,)#(𝑒̂)			⋯ 							1							 ⎦

⎥
⎥
⎥
⎤

 

Their proposed portmanteau test statistic is based on the determinant of this correlation matrix, a general measure of 
dependence in multivariate analysis, and is given by 

 𝐷U1 = 𝑛V1 − W𝑅51(𝑒̂)W
$ 1⁄

X (6) 

where 𝑛 is a length of time series. If the model is correctly identified, then 𝐷U1 is asymptotically distributed as a linear 
combination of chi-squared random variables and is approximately a gamma distribution random variable for large value of 
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𝑚 with parameter 𝛼 and 𝛽. The distribution of 𝐷U1 can be approximated by the gamma distribution [4]. 

Peña and Rodríguez [5] in 2006 provided a new portmanteau test statistic, which is the log of the determinant of the 𝑚th 
autocorrelation matrix  

 𝐷1∗ = −
𝑛

𝑚 + 1 logW^𝑅
51^W (7) 

where 𝑅51 is the residual correlation matrix of order 𝑚. The gamma distribution is the approximation distribution of 𝐷1∗ ,  

Mahdi and McLeod [6] in 2012 introduced another test statistics based on the residual correlation matrix 𝑅51, given by 

 𝒬I33 = −
3𝑛

2𝑚 + 1 logW𝑅
51W (8) 

They show that for large 𝑛, this portmanteau test statistic’s distribution can be approximated by a chi-squared distribution. 

2.3. Fisher and Gallagher (2012) and Gallagher and Fisher (2015) tests 
Fisher and Gallagher [7] in 2012 introduced a new portmanteau test statistic 𝒬I6720 that is based on the square of the 𝑚th-
order autocorrelation matrix. 

 𝒬I6720 = 𝑛(𝑛 + 2):
(𝑚 − 𝑘 + 1)

𝑚

1

,+$

𝜌?,#

𝑛 − 𝑘 (9) 

where 𝜌?,# is the autocorrelation at lag 𝑘. The statistic is a weighted sum of the squares of the sample autocorrelation 
coefficients, where the weights consist of a convolution of the Ljung-Box standardizing weights with the sequence 

`
1
𝑚 ,

2
𝑚 ,… ,

𝑚 − 1
𝑚 , 1b. 

The 𝒬I6720 is approximately distributed as a gamma distribution [4].  

 

Gallagher and Fisher [8] in 2015 introduced new portmanteau test statistics created by taking general weighted sums of the 
first 𝑚 = 𝑚(𝑛) squared sample autocorrelations: 

 𝑄8 = 𝑛:𝑤,𝜌?,#
1

,+$

 (10) 

where 𝑤, are the weights, 𝑛 is the number of observations and 𝑚 is the maximum lag taken into account. They considered 
several schemes for the weights 𝑤,, in particular, the kernel-based weights and data adaptive weights:  

Gallagher and Fisher [8] proved that the theoretical asymptotic distributions of all weighting schemes of the form given in 
Equation (10) approach the normal distribution for large values of n. 

Kernel-Based Weights 

Gallagher and Fisher [8] introduced a new portmanteau test employing a kernel weight. It is based on the square of a kernel 
function and blended with the Ljung-Box standardizing terms to construct sequence of weights 𝑤, = 4(𝑛 + 2)/(𝑛 −
𝑘)6[𝒦(𝑘 𝑚⁄ )]#, where 𝒦(∙) is the Daniell kernel function, which is defined as.  

 𝒦(𝑘 𝑚⁄ ) = l
sin V√3𝜋(𝑘 𝑚⁄ )X

√3𝜋(𝑘 𝑚⁄ )
				 ∶ 		 |𝑘 𝑚⁄ | < 1

						0																			 ∶ 		 |𝑘 𝑚⁄ | ≥ 1
v (11) 

The use of the Daniell kernel function was based on the work of Hong [9, 10] who the first to use it to test a residual series 
from an unknown distribution. The asymptotic distribution of this test is the normal distribution approximation [8]. 

Data Adaptive Weights 

In this portmanteau test Gallagher and Fisher [8] use the sample partial autocorrelation function 𝜌? to define  
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 𝒬I769 = 𝑛:
𝑛 + 2
𝑛 − 𝑘

1:

,+$

𝜌?# + 𝑛 : 𝑤,

1

,+1:/$

𝜌?#, (12) 

The first 𝑚- terms obtain the standardizing weight (𝑛 + 2)/(𝑛 − 𝑘)	from the Ljung-Box statistic, and they choose the 
remaining weights to be summable  

V𝑤, = − log41 − W𝜙5,,W6 	and				𝑚- = min	(log(𝑛),𝑀)X, 

where 𝑀 is a finite bound.  

Approximation Distribution  

Gallagher and Fisher [8] consider the asymptotic behaviour of general weighted portmanteau statistics satisfying Equation 
(10). The gamma approximation is used for geometrically decaying weights and data adaptive weights, in particular, it has 
distribution  𝛤(𝛼, 𝛽) with shape parameter 

 𝛼 =
(∑𝑤,)#

2(∑𝑤,# − 𝑝 − 𝑞)
 (13) 

and scale parameter 

 𝛽 =
2(∑𝑤,# − 𝑝 − 𝑞)

∑𝑤,
 (14) 

as given in [5]. 

3 New weighted portmanteau tests  

3.1. Exponential weighted portmanteau tests 
This paper introduces two new portmanteau tests that are based on exponential weights. The first new test is a development 
of Ljung and Box’s test and the second test is a development of Monti’s test. These new portmanteau test statistics are 
defined as 

 𝒬I;<20 = 𝑛(𝑛 + 2):𝑤,
𝜌?,#

𝑛 − 𝑘

1

,+$

. (15) 

 𝒬I;<3 = 𝑛(𝑛 + 2):𝑤,
𝜙5,,#

𝑛 − 𝑘

1

,+$

, (16) 

where 𝜌?,#  is the sample autocorrelation and 𝜙5,,#  is the sample partial autocorrelation at lag 𝑚, and 𝑤, is an exponential 
weight. 

3.2 Derivation of the exponential weight 𝑤!  
Consider an exponential function of the form  

𝑓(𝑥) = 𝑎=,    0 < 𝑎 < 1,    0 ≤ 𝑥 < 1 

where 𝑎 is the base and x is the exponent. 

Constrain x to the values (𝑘 − 1)/𝑚, that is, terms from {0, 1/𝑚, 2/𝑚,… , (𝑚 − 1)/𝑚	}, where 𝑘 is the length of lag used 
in the autocorrelation function and the partial autocorrelation function, and 𝑚 is the maximum lag. 

Also, constrain 𝑎 to take the value $
1

. 

The exponential function now takes the form  

𝑓 �
𝑘 − 1
𝑚 � = �

1
𝑚�

>?@AB C

 

this can be rearranged as,   
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						= 𝑒D.>
A
BC

>?@AB C

 

							= 𝑒>
?@A
B C D.> ABC 

						= 𝑒)>
?@A
B C D.1 

Since, 𝑓 V,)$
1
X is now only a function of the variable 𝑘, and 𝑚 is a constant, it can be rearranged as a function of the lag 𝑘, 

𝑤(𝑘). This can be written as the exponential weight 𝑤, as in Equations (16) and (17). 

This exponential weight has similar distribution behaviour to the weights employed by Fisher and Gallagher [7, 8]. 

3.3 Approximation distribution for the New Portmanteau Tests  
The new portmanteau tests have a gamma distribution, which can be shown by application of Theorem 3 from Gallagher 
and Fisher [8]. The exponential weights and squared exponential weights are summed, and the shape and scale are 
calculated from Equations (13) and (14). The distribution is similar to those of Peña and Rodríguez, Fisher and Gallagher. 

4 Monte Carlo experiment  

4.1 Generating Gaussian Random Numbers 
Normally distributed N(0,1) pseudo random numbers were generated using the R program. This package employs the 
Mersenne-Twister generator [11] to generate uniformly distributed pseudo random numbers. These numbers are then 
transformed into normally distributed numbers N(0,1) by the application of the Box-Muller [12] transformation. 

 𝑦$ = (−2 log 𝑥$)$ #⁄ cos 2π𝑥$ (17) 

 𝑦# = (−2 log 𝑥$)$ #⁄ sin 2π𝑥# (18) 

where y$ and y# are a Gaussian (or normal) distribution, and 𝑥$, 𝑥# are independent random variables from the same 
rectangular density function on the interval (0,1). 

4.2 Simulation studies 
The aim of the simulation study was to compare the new exponential portmanteau tests against the portmanteau tests used 
in previous studies, developed by Ljung and Box 𝒬IEF, Monti 𝒬IG, Mahdi and McLeod 𝒬IGG, Fisher and Gallagher  𝒬IHIEF, 
Gallagher and Fisher Kernel-based weights 𝒬IIHJ and Data Adaptive Weights 𝒬IIHK. The empirical size and the power level 
of the tests were investigated by conducting simulations studies using the R program. 

4.3 Empirical size 
A Monte Carlo experiment was conducted with 10,000 replications. The aim was to simulate n = 100 observations under an 
AR(1) process, 𝑧( − 𝜙	𝑧()$ = 𝑒(, employing different parameters, 𝜙 = 0.1, 0.3, 0.5, 0.7 and 0.9. Next, an AR(1) model 
was fitted to the generated data producing an estimate 𝜙5 of the underlying parameter 𝜙. The method employed to obtain the 
fitted model uses the maximum likelihood function, using Approximation 2 from Box, Jenkins and Reinsel [13]. 

 (𝑛 − 2)(𝑛 − 1))$:𝑧(𝑧()$

.

(+#

:𝑧(#
.)$

(+#

G  (19) 

Following this, the autocorrelations of the fitted model were calculated using the residuals 𝑒̂( = 𝑧( − 𝜙5	𝑧()$	(𝑡 = 2	, … , 𝑛). 
The test statistics 𝒬I20, 𝒬I3, 𝒬I33, 𝒬I6720, 𝒬I76L, 𝒬I769, 𝒬I;<20 and 𝒬I;<3 were subsequently calculated. This was repeated for 
lags of autocorrelations and partial autocorrelations for maximum lags m = 10 and 20.  

Method of a Monte Carlo experiment to calculate the empirical size of a range of portmanteau tests 

Below are the steps of a Monte Carlo experiment in which data are generated by an AR(1) process, 𝑧( = 𝜙	𝑧()$ + 𝑒(, then 
fitted under an AR(1) model to find the empirical size of the following portmanteau tests  𝒬I20, 𝒬I3, 𝒬I33, 𝒬I6720, 𝒬I76L, 
𝒬I769, 𝒬I;<20 and 𝒬I;<3. 

1. Select the value of the process parameter 𝜙 and maximum lag m. In this example, 𝜙 = 0.1 and m = 10. 

2. Generate n = 100 values from a normal distribution (𝑒( white noise). 
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3. Use the 𝑒( values to generate observations 𝑧( from an AR(1) process with parameter 𝜙. 

4. Fit an AR(1) model to the observations by estimating its parameters using the maximum likelihood function.  

5. Find the residuals 𝑒̂(.   

6. Find the residual autocorrelation and partial autocorrelation functions for the model. 

7. Calculate the various portmanteau test statistics. For example,  𝜙 = 0.1, gives 

𝜙 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
0.1 16.6580 17.0012 11.890 8.120 0.917 8.976 6.744 7.058 

8. Look up the 5 percentage point of the 𝜒1)$#  distribution and the gamma distribution. 

Distributions 𝜒1)$#  Gamma 
Tests 𝒬I20  𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
𝑚 = 10  16.9 14.1 9.92 1.6 11.55 7.764 

Reject the fitted AR(1) model if the value of the portmanteau test is bigger than the critical value in step 7 (using the 
appropriate distribution for each portmanteau test). 

𝜙 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
0.1 Accept Reject Accept Accept Accept Accept Accept Accept 

9. Repeat 10,000 times for steps 1-8. 

10. For each portmanteau test use the number of rejected AR(1) models (out of 10,000) to find the percentage rejected.         

Table 1 and 2 give the results of the Monte Carlo experiment and show the proportion of the test statistics 𝒬I20, 𝒬I3, 𝒬I33, 
𝒬I6720, 𝒬I76L, 𝒬I769, 𝒬I;<20 and 𝒬I;<3 values that are above the upper 5 percentage point of the 𝜒1)$#  distribution or gamma 
distribution. The tables show data fitted under the AR(1) with different parameters, 𝜙 = 0.1, 0.3, 0.5, 0.7 and 0.9, with n = 
100, and autocorrelations and partial autocorrelations lags of m = 10 and m = 20. 

Table 1: Empirical size of the test statistics 𝒬I20, 𝒬I3, 𝒬I33, 𝒬I6720, 𝒬I76L, 𝒬I769, 𝒬I;<20 and  𝒬I;<3 at 5% significance level 
for fitted AR(1) models, 𝑛 = 100 and 𝑚 = 10. 

𝜙 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 

0.1 0.0531 0.0548 0.0294 0.0311 0.0122 0.0301 0.0292 0.0287 

0.3 0.0516 0.0541 0.0347 0.0352 0.0165 0.0336 0.0335 0.0355 

0.5 0.0574 0.0531 0.0312 0.0369 0.0167 0.0357 0.0369 0.0378 

0.7 0.0518 0.0514 0.0308 0.0343 0.0185 0.0317 0.0347 0.0349 

0.9 0.0605 0.0568 0.0429 0.0474 0.0364 0.0475 0.0535 0.0504 

Table 1 shows the values of the significance levels when α = 0.05, n = 100 and m = 10. The value of the 𝒬I20 test is closer 
to the 0.05 significance level in two cases, i.e., when 𝜙 = 0.1 and 0.3. The value of the 𝒬I3 test is closer to 0.05 in two 
cases, i.e., when 𝜙 = 0.5 and 0.7. The value of the 𝒬I;<3 test is closer to 0.05 in one case, i.e., when 𝜙 = 0.9. Overall, the 
𝒬I3 test is superior to the other tests in most cases.  

Table 2: Empirical size of the test statistics 𝒬I20, 𝒬I3, 𝒬I33, 𝒬I6720, 𝒬I76L, 𝒬I769, 𝒬I;<20 and 𝒬I;<3 at 5% significance level 
for fitted AR(1) models, 𝑛 = 100 and 𝑚 = 20. 

𝜙 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 

0.1 0.0616 0.0557 0.025 0.0412 0.0223 0.0385 0.0353 0.0316 

0.3 0.0616 0.0545 0.0255 0.0398 0.0232 0.0397 0.0344 0.0336 

0.5 0.0622 0.0513 0.0249 0.0438 0.0255 0.044 0.0404 0.0337 

0.7 0.0671 0.0555 0.0281 0.0504 0.0284 0.0465 0.0467 0.0404 
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0.9 0.0706 0.0500 0.0284 0.0514 0.0318 0.0456 0.0491 0.0438 

Table 2 shows the values of the significance levels when α = 0.05, n = 100 and m = 20. The value of the 𝒬IG test is closest 
to 0.05 in four cases, i.e., when 𝜙 = 0.1, 0.3, 0.5	and	0.9. The values of the 𝒬I6720 test is closest to 0.05 in one case, i.e., 
when 𝜙 = 0.7. Overall, the 𝒬I3 test is superior than the other tests in most cases. 

 
Fig. 1. Empirical size for lags from 2 to 20 for a correctly fitted AR(1) model, with data generated by an AR(1) process 
with 𝜙 = 0.5, at 5% significance level, series of length n = 150. 

Figure 1 shows the empirical size of lags from 2 to 20 of the 𝒬I20, 𝒬I3, 𝒬I33, 𝒬I6720, 𝒬I76L, 𝒬I769, 𝒬I;<20 and 𝒬I;<3 tests 
based on a 5% significance level, when data are generated by an AR(1) process 𝜙 = 0.5 and fitted under an AR(1) model 
with n = 150 and 10,000 replications. The 𝒬I20, 𝒬IHIEF, and 𝒬I769 tests’ empirical sizes increase as the lag increases, while 
those of the 𝒬I33, 𝒬IMNEF and 𝒬I;<3 tests also increase but more slowly. The 𝒬I76L test rapidly decreases at lag 3, then 
increases as the lag increases. The 𝒬IG test is unaffected by the lag increase. The 𝒬IIHK test always rejects the correct models 
at lags 2, 3, 4 and 5 (these points are off the scale in Figure 1), then from lag 6 the 𝒬IIHK increases as the lag increases. 

 
Fig. 2. Empirical size for maximum lags for a properly fitted AR(1) model, with data generated by an AR(1) process with 
𝜙 = 0.5, at 5% significance level, series of length n = 150. 

Figure 2 shows the empirical size of large lags based on a 5% significance level, when data are generated by an AR(1) 
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process with 𝜙 = 0.5, and fitted by an AR(1) model with n = 100 and 10,000 replications. The 𝒬IEF, 𝒬IHIEF and 𝒬IMNEF tests 
increase as the lag increases. Other tests such as, 𝒬IG, 𝒬IGG and 𝒬IIHJ decrease when the lag increases and the 𝒬IIHK test 
initially increases with increasing lag but then decreases for larger lags. The 𝒬IMNG test remains approximately constant as 
the lag increases. 

 

4.4 Power Studies 
In the power studies, the statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and 𝒬IMNG were compared using the processes 
and parameters employed in Monti [11]. 

Data was generated using a number of alternative ARMA(2,2) processes, 

𝑧( = 𝑒( + 𝜙$𝑧()$ + 𝜙#𝑧()# − 𝜃$𝑒()$ − 𝜃#𝑒()# 

and fitted by an AR(1) model and a MA(1) model. Next the residual of the data was obtained, and the ACF and PACF were 
calculated. For each alternative set of parameters for the ARMA(2,2) process, 10,000 replications of 100 observations were 
generated. For each test the power was computed with lags m = 10 and 20.  

In these experiments the AR(1) model parameter was estimated by using Equation (21). The MA(1) model parameter was 
estimated by using the maximum likelihood function [13], which is 

 ln(𝜃) = −
𝑛
2 ln

(2𝜋) −
𝑛
2 ln

(𝜎#) −:
𝑒(#

2𝜎# .
.

(+$

 (21) 

Table 3: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG where data are generated 
under various alternative ARMA(2,2) processes and fitted by an AR(1) model. 

     𝑚 = 10 
Model 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
1 --- --- -0.50 --- 0.2634 0.3081 0.3886 0.3314 0.3395 0.3266 0.3702 0.4326 
2 --- --- -0.80 --- 0.7444 0.9659 0.9872 0.8995 0.9392 0.9034 0.9336 0.9901 
3 --- --- -0.60 0.30 0.7792 0.9880 0.9935 0.9187 0.9300 0.9275 0.9431 0.9953 
4 0.10 0.30 --- --- 0.4283 0.4269 0.5239 0.5290 0.5424 0.5295 0.5612 0.5619 
5 1.30 -0.35 --- --- 0.7211 0.7088 0.8467 0.8454 0.9089 0.8238 0.8929 0.8972 
6 0.70 --- -0.40 --- 0.5541 0.6179 0.7605 0.6958 0.7821 0.6519 0.7713 0.8263 
7 0.70 --- -0.90 --- 0.9872 1 1 0.9997 1 0.9996 1 1 
8 0.40 --- -0.60 0.30 0.8414 0.9975 0.9992 0.9649 0.9813 0.9669 0.983 0.9992 
9 0.70 --- 0.70 -0.15 0.1742 0.1630 0.1822 0.1929 0.1395 0.2024 0.1999 0.1928 
10 0.70 0.20 0.50 --- 0.7506 0.7456 0.8150 0.8121 0.7543 0.8066 0.8258 0.8322 
11 0.70 0.20 -0.50 --- 0.3915 0.4801 0.6468 0.5482 0.6764 0.5012 0.6489 0.7268 
12 0.90 -0.40 1.20 -0.30 0.7201 0.9735 0.9800 0.8529 0.7698 0.8746 0.8713 0.9813 
 Average  0.6130 0.6979 0.7603 0.7159 0.7303 0.7095 0.7501 0.7863 

Table 3 displays the power levels based on a 5% significance level when data are generated from an ARMA(2,2) process 
and an AR(1) model is fitted, with n = 100 and m = 10. Table 3 shows that the 𝒬IMNG test is the most powerful in 10 of the 
12 cases, being superior to all other tests in 8 cases. In the case of model 8, the 𝒬IMNG was jointly the most powerful with the 
𝒬IGG test. Furthermore, in model 7, the 𝒬IMNG test is equally the most powerful test, alongside tests 𝒬IG, 𝒬IGG, 𝒬IIHJ, 𝒬IMNEF. 
However, the 𝒬IIHJ and 𝒬IIHK tests are each the best test in one case, that is, for models 5 and 9 respectively. Nevertheless, 
the 𝒬IMNG test is still the 2nd and 4th best, with power level values close the leading test in both cases. The average value has 
been taken for each test when data are fitted under an AR(1) model with m = 10, illustrating the superiority of the 𝒬IMNG test 
compared to the other tests. 

Table 4: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG where data are generated 
under various alternative ARMA(2,2) processes and fitted by a MA (1) model. 

     𝑚 = 10 
Model 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
13 0.50 --- --- --- 0.2836 0.2689 0.3215 0.3438 0.3552 0.3369 0.3765 0.3631 
14 0.80 --- --- --- 0.9823 0.9758 0.9903 0.9926 0.9942 0.9921 0.9940 0.9933 
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15 1.10 -0.35 --- --- 0.9961 0.9957 0.9989 0.9989 0.9997 0.9989 0.9993 0.9995 
16 --- --- 0.80 -0.50 0.8389 0.9375 0.9734 0.9415 0.9487 0.9481 0.9584 0.9791 
17 --- --- -0.60 0.30 0.3868 0.4626 0.5940 0.5209 0.6002 0.4784 0.6001 0.6727 
18 0.50 --- -0.70 --- 0.8773 0.8606 0.9365 0.9405 0.9648 0.9338 0.9613 0.9575 
19 -0.50 --- 0.70 --- 0.8933 0.8763 0.9452 0.9516 0.9697 0.9458 0.9660 0.9633 
20 0.30 --- 0.80 -0.50 0.6265 0.7602 0.8378 0.7518 0.7323 0.7807 0.7857 0.8579 
21 0.80 --- -0.50 0.30 0.9786 0.9626 0.9847 0.9897 0.9931 0.9886 0.9928 0.9898 
22 1.20 -0.50 0.90 --- 0.4685 0.7108 0.6157 0.4761 0.1232 0.4932 0.4300 0.5735 
23 0.30 -0.20 -0.70 --- 0.2649 0.2852 0.3491 0.3268 0.3088 0.3237 0.3721 0.3962 
24 0.90 -0.40 1.20 -0.30 0.7888 0.9335 0.9571 0.8958 0.8121 0.9085 0.9076 0.9615 
 Average 0.6988 0.7525 0.7920 0.7608 0.7335 0.7607 0.7787 0.8090 

Table 4 shows the power levels based on a 5% significance level when data are generated from an ARMA(2,2) process and 
a MA(1) model is fitted, with n = 100 and m = 10. As is apparent in Table 4, the 𝒬IMNG test is again the most powerful test 
in 5 cases. While the 𝒬IIHJ test is the most powerful test in 5 cases, suggesting it is comparable to the 𝒬IMNG test is a close 
second in most cases. The average power level across all models illustrates that the 𝒬IMNG test is consistently superior under 
a MA(1) model with m = 10. 

Table 5: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG where data are generated 
under various alternative ARMA(2,2) processes and fitted by an AR(1) model. 

     𝑚 = 20  
Model 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
1 --- --- -0.50 --- 0.2197 0.2038 0.2688 0.2614 0.3021 0.3434 0.3292 0.3859 
2 --- --- -0.80 --- 0.5932 0.8651 0.9636 0.7804 0.8928 0.9128 0.8919 0.9879 
3 --- --- -0.60 0.30 0.6239 0.9461 0.9838 0.8140 0.9138 0.9363 0.9109 0.9931 
4 0.10 0.30 --- --- 0.3624 0.2908 0.3951 0.4487 0.5105 0.5610 0.5272 0.5175 
5 1.30 -0.35 --- --- 0.6289 0.5488 0.7288 0.7604 0.8337 0.8392 0.8534 0.8537 
6 0.70 --- -0.40 --- 0.4765 0.4828 0.6347 0.6030 0.6810 0.6977 0.7204 0.7861 
7 0.70 --- -0.90 --- 0.9302 0.9992 1 0.9951 0.9998 0.9998 0.9998 1 
8 0.40 --- -0.60 0.30 0.6874 0.9764 0.9960 0.8748 0.9596 0.9682 0.9577 0.9988 
9 0.70 --- 0.70 -0.15 0.1596 0.1192 0.1248 0.1762 0.1770 0.2262 0.1955 0.1806 
10 0.70 0.20 0.50 --- 0.6378 0.5977 0.7210 0.7500 0.7931 0.8247 0.8038 0.8107 
11 0.70 0.20 -0.50 --- 0.3114 0.2987 0.4392 0.4045 0.4870 0.5102 0.5344 0.6194 
12 0.90 -0.40 1.20 -0.30 0.5661 0.8960 0.9604 0.7313 0.8379 0.8851 0.8320 0.9817 
 Average 0.5164 0.6021 0.6847 0.6333 0.6990 0.7254 0.7130 0.7596 

Table 5 shows power levels based on a 5% significance level when data are generated from an ARMA(2,2) process and an 
AR(1) model is fitted, with n = 100 and m = 20. Table 5 shows that once again the 𝒬IMNG test is more powerful than other 
portmanteau tests in 9 of the 12 cases. The average power level across the 12 models shows that the 𝒬IMNG test is 
consistently effective, when data are fitted under an AR(1) model with m = 20. 

Table 6: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG where data are generated 
under various alternative ARMA(2,2) processes and fitted by a MA(1) model. 

     𝑚 = 20 

M
od

el
 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 

13 0.50 --- --- --- 0.2468 0.1816 0.2192 0.2882 0.3194 0.3593 0.3465 0.3197 
14 0.80 --- --- --- 0.9632 0.9310 0.9745 0.9841 0.9911 0.9925 0.9912 0.9891 
15 1.10 -0.35 --- --- 0.9879 0.9840 0.9981 0.9979 0.9994 0.9993 0.9996 0.9994 
16 --- --- 0.80 -0.50 0.7042 0.8146 0.9260 0.8611 0.9313 0.9522 0.9313 0.9678 
17 --- --- -0.60 0.30 0.3168 0.3237 0.4425 0.4110 0.4883 0.5105 0.5340 0.6110 
18 0.50 --- -0.70 --- 0.7930 0.7223 0.8643 0.8933 0.9355 0.9405 0.9425 0.9363 
19 -0.50 --- 0.70 --- 0.8187 0.7520 0.8831 0.9113 0.9463 0.9497 0.9512 0.9451 
20 0.30 --- 0.80 -0.50 0.4959 0.5731 0.7214 0.6417 0.7273 0.7895 0.7385 0.8259 
21 0.80 --- -0.50 0.30 0.9624 0.9124 0.9685 0.9826 0.9899 0.9906 0.9911 0.9864 
22 1.20 -0.50 0.90 --- 0.3866 0.5803 0.6031 0.4463 0.4256 0.5129 0.4570 0.6371 
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23 0.30 -0.20 -0.70 --- 0.2260 0.1939 0.2366 0.2707 0.2964 0.3516 0.3307 0.3466 
24 0.90 -0.40 1.20 -0.30 0.6292 0.8283 0.9189 0.8007 0.8795 0.9141 0.8805 0.9582 
 Average 0.6276 0.6498 0.7297 0.7074 0.7442 0.7719 0.7578 0.7936 

Table 6 shows the power levels based on a 5% significance level, when data are generated from an ARMA(2,2) process and 
a MA(1) model is fitted, with n = 100 and m = 20. It is evident that the 𝒬IMNG test is more powerful than other portmanteau 
tests in 5 cases.  The average power value shows that the 𝒬IMNG test is consistently the most powerful test compared to the 
others. This is supported by the average of 𝒬IMNG being appreciably larger than for the other tests, when data are fitted under 
a MA(1) model with m = 20. 

 
Fig. 3. Power level for lags from 2 to 20 for a fitted AR(1) model, data generated by a MA(1) process with 𝜃 = −0.8, at 
5% significance level, series of length n = 85. 

Figure 3 shows the power level for lags from 2 to 20 based on a 5% significance level, when data are generated by a MA(1) 
process with 𝜃 = −0.8 and fitted under an AR(1) model with n = 85 (following the simulation of Gallagher and Fisher [5] 
and 10,000 replications. The power of the 𝒬IEF, 𝒬IG and 𝒬IHIEF tests decreases as the lag increases. The 𝒬IGG and 𝒬IMNEF tests 
slowly decrease as the lag increases. The 𝒬IIHJ test rapidly decreases at lags 3 and 4, then rapidly increases as the lag 
increases. The 𝒬IIHK test rapidly decreases at lag 5, then slowly increases as the lag increases. From Figure 3 it is apparent 
that this test rejects all models, even correct ones, for the lags examined. The 𝒬IMNG test has a high-power level and remains 
constant as the lag increases, unlike most of the other tests.  

 
Fig. 4. Power level for lags from 10 to 80 for a fitted AR(1) model, data generated by a MA(1) process with 𝜃 = −0.8, at 
5% significance level, series of length n = 85. 
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Figure 4 shows the power level of large lags based on a 5% significance level, when data are generated by a MA(1) process 
with 𝜃 = −0.8 and fitted under an AR(1) model with n = 85 and 10,000 replications. The power of the 𝒬IIHK, 𝒬IMNEF and 
𝒬IMNG tests slowly decreases as the lag increases. The 𝒬IEF and 𝒬IHIEF tests have similar behaviour to each other, initially 
slowly decreasing and then remaining constant as the lag increases further. The power of the 𝒬IG, 𝒬IGG and 𝒬IIHJ tests 
decreases as the lag increases. In all cases, the 𝒬IMNG is the most powerful test. 

The next study is similar to Gallagher and Fisher [8], where data are generated under an ARMA(2,2) process and are fitted 
by an ARMA(1,1) model, see Tables 7 and 8. Following on from previously published research in this area, m was set at 10 
and 20, and n was set at 100, and in each case, the critical value was determined from the corresponding asymptotic 
distribution.  

Table 7: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG where data are generated 
under various alternative ARMA(2,2) processes, and fitted by an ARMA(1,1) model	𝑚 = 10. 

     𝑚 = 10 
Model 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
4 0.10 0.30 --- --- 0.2988 0.2681 0.3252 0.3497 0.2951 0.3310 0.4343 0.4148 
5 1.30 -0.35 --- --- 0.1183 0.1292 0.123 0.1105 0.0659 0.1001 0.1552 0.1651 
9 0.70 --- 0.70 -0.15 0.1180 0.1121 0.1032 0.1107 0.0534 0.1068 0.1483 0.1446 
10 0.70 0.20 0.50 --- 0.1663 0.1538 0.1737 0.1863 0.1528 0.1715 0.2490 0.2407 
12 0.90 -0.40 1.20 -0.30 0.3856 0.3902 0.4289 0.4338 0.2873 0.4325 0.5132 0.5032 
15 1.10 -0.35 --- --- 0.1428 0.1460 0.1193 0.1168 0.0201 0.097 0.1383 0.1459 
16 --- --- 0.80 -0.50 0.3664 0.4477 0.4691 0.3859 0.1234 0.4323 0.4412 0.5085 
17 --- --- -0.60 0.30 0.1194 0.1179 0.1188 0.1151 0.0598 0.1033 0.1565 0.1679 
20 0.30 --- 0.80 -0.50 0.3986 0.4626 0.4941 0.4332 0.1756 0.4683 0.4867 0.5383 
21 0.80 --- -0.50 0.30 0.1195 0.1329 0.1241 0.1062 0.0364 0.0955 0.1421 0.1619 
22 1.20 -0.50 0.90 --- 0.4549 0.7459 0.6585 0.4605 0.0500 0.4703 0.4895 0.6768 
23 0.30 -0.20 -0.70 --- 0.1836 0.1829 0.1896 0.1948 0.0894 0.2044 0.2391 0.2412 
 Average 0.2339 0.2741 0.2773 0.2503 0.1174 0.2511 0.2995 0.3257 

Table 7 shows the power levels based on a 5% significance level, when data are generated from an ARMA(2,2) process and 
an ARMA(1,1) model is fitted, with n = 100 and m = 10. Table 7 demonstrates that the 𝒬IMNG test is more powerful than 
other portmanteau tests in 7 cases, but the 𝒬IMNEF test is better in 4 cases, and the 𝒬IMNEF and  𝒬IG tests are best in 1 case 
each. The average value has been taken for each test, which illustrates that the 𝒬IMNG test is better than other tests. This 
means that the new 𝒬IMNG test is more powerful than other tests when data are fitted under an ARMA(1,1) model with m =
10. 

Table 8: Power level of the test statistics 𝒬IEF, 𝒬IG, 𝒬IGG, 𝒬IHIEF, 𝒬IIHJ, 𝒬IIHK, 𝒬IMNEF and  𝒬IMNG when data are generated 
under various alternative ARMA(2,2) processes, and fitted by an ARMA(1,1) model 𝑚 = 20. 

     𝑚 = 20 
Model 𝜙$ 𝜙# 𝜃$ 𝜃# 𝒬I20 𝒬I3 𝒬I33 𝒬I6720 𝒬I76L 𝒬I769 𝒬I;<20 𝒬I;<3 
4 0.10 0.30 --- --- 0.2440 0.1774 0.2106 0.2724 0.2720 0.3615 0.3525 0.3247 
5 1.30 -0.35 --- --- 0.1105 0.0885 0.0704 0.0841 0.0595 0.1131 0.1110 0.1139 
9 0.70 --- 0.70 -0.15 0.1194 0.0899 0.0706 0.1026 0.0742 0.1294 0.1247 0.1078 
10 0.70 0.20 0.50 --- 0.1449 0.1053 0.1052 0.1409 0.1310 0.1954 0.1936 0.1795 
12 0.90 -0.40 1.20 -0.30 0.2996 0.3140 0.3320 0.3461 0.3472 0.4625 0.4367 0.4288 
15 1.10 -0.35 --- --- 0.1298 0.1141 0.0883 0.1119 0.0711 0.1185 0.1233 0.1211 
16 --- --- 0.80 -0.50 0.2940 0.3063 0.3569 0.3201 0.2812 0.4711 0.3888 0.4525 
17 --- --- -0.60 0.30 0.1451 0.1062 0.0999 0.1168 0.0840 0.1375 0.1448 0.1472 
20 0.30 --- 0.80 -0.50 0.3143 0.3168 0.3699 0.3422 0.3120 0.4997 0.4138 0.4635 
21 0.80 --- -0.50 0.30 0.1125 0.0999 0.0795 0.0907 0.0600 0.1115 0.1119 0.1217 
22 1.20 -0.50 0.90 --- 0.3466 0.6033 0.6279 0.3828 0.3069 0.4911 0.4428 0.6838 
23 0.30 -0.20 -0.70 --- 0.1641 0.1307 0.1295 0.1624 0.1384 0.2365 0.2005 0.1938 
 Average 0.2021 0.2044 0.2117 0.2061 0.1781 0.2773 0.2537 0.2782 

Table 8 shows the power levels based on a 5% significance level, when data are generated from an ARMA(2,2) process and 
an ARMA(1,1) model is fitted, with n = 100 and m = 20. Table 8 shows that the 𝒬IMNG test is more powerful than other 
portmanteau tests in 5 cases, but the 𝒬IIHK test is better in 7 cases. The average value calculated for each test illustrates that 
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the 𝒬IMNG test is better than other tests. Generally, the new 𝒬IMNG test is more powerful than other tests in most cases when 
data fitted under an ARMA(1,1) model with m = 10 or 20. 

 
Fig. 5. Power level for lags from 5 to 20 for a fitted ARMA(1,1) model, data generated by an ARMA(2,1) process with 
𝜙$=1.2, 𝜙#= -0.5 and 𝜃 = -0.9, at 5% significance level, series of length 𝑛 = 150. 

Figure 5 shows the power level for lags from 5 to 20 based on a 5% significance level, when data are generated by an 
ARMA(2,1) process with 𝜙$= 1.2, 𝜙#=−0.5 and 𝜃 = −0.9, and fitted under an ARMA(1,1) model with n = 150 and 
10,000 replications. The power of the 𝒬IEF, 𝒬IMNEF and 𝒬IHIEF tests decreases as the lag increases. The	𝒬IG test increases up 
to lag 10, then it slowly decreases as the lag increases. The 𝒬IGG test increases as the lag increases. The 𝒬IIHJ test is stable 
at lags 5, 6 and 7, then rapidly increases as the lag increases. The 𝒬IIHK test rapidly decreases at lag 6, then slowly increases 
as the lag increases further. The power level of the 𝒬IMNG test is approximately constant as the lag increases. In general, the 
𝒬IMNG is the most effective test as it is powerful and less influenced by increasing lag size compared to other tests. 

 
Fig. 6. Power level for maximum lags for a fitted ARMA(1,1) model, data generated by an ARMA(2,1) process with 
𝜙$=1.2, 𝜙#= -0.5 and 𝜃 = -0.9, at 5% significance level, series of length 𝑛 = 150.  

Figure 6 shows the power level for large lags based on a 5% significance level, when data are generated by an ARMA(2,1) 
process with 𝜙$= 1.2, 𝜙#=−0.5 and 𝜃 = −0.9, and fitted under an ARMA(1,1) model with n = 150 and 10,000 
replications. The results of Figure 6 are similar to the results of Figure 4, except in the case of the 𝒬IIHJ test. The value of 
the 𝒬IIHJ test is less than 0.2 at lag 10, rapidly increasing at lag 20 and then decreasing as lag increases further.  
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5 Conclusion  

The empirical size simulations, see Tables 1 and 2, show that the Monti 𝒬I33 test is superior than all other tests when data 
are generated from an AR(1) process and the parameters are fitted under an AR(1) model. The empirical size simulations, 
see Figures 1 and 2, shows that portmanteau tests from previous studies and the new weighted autocorrelation test, 𝒬I;<20, 
do not have significance levels that are stable with respect to lag length, particularly for longer lags. However, the proposed 
exponential weighted partial autocorrelation test, 𝒬IMNG, is not affected by lag length. This stability with respect to lag 
length of the 𝒬IMNG, test provides higher reliability compared with other tests.  

When considering the power of a test when data are generated from ARMA(2,2) process and fitted under an AR(1) ,  a 
MA(1)  and a ARMA(1,1) model the new 𝒬I;<3 test is the most powerful of all the tests examined, see Tables 3, 4, 5, 6, 7 
and 8. This is strongly supported by the analysis which shows that it’s mean power level, across a range of processes and 
models, is always the highest. In addition, analysis of the stability of the power levels, see Figures 3, 4, 5 and 6, shows that 
the 𝒬I;<3 test is again the most stable with respect to lag lengths. This shows that it has an important feature of being able 
to reject incorrect models independent of lag length, a feature not found in other portmanteau tests.    
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