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Abstract: This paper provides insights to researchers when conducting a survey and the response rate is very low, and it is 
of interest to increase response rate and to estimate the optimal population mean. The paper considers a population that 
consists of two strata, respondents, and non-respondents. The sampling design is to select a random sample of size n, then 
when only r observations respond to the survey, select an optimal random sample of size m that minimizes the expected loss, 
from the remaining (n-r) observations. A truncated  Bayesian approach  sampling plan is considered [1], such that the posterior 
distribution of the first stage is treated as a prior to the second stage, and an over-all mean is estimated. The paper illustrates 
Ericson approach to two random data sets with two sets of priors where the estimated overall mean is obtained for each stage 
and the expected loss is computed for the two prior sets. It is concluded that priors on means affect the optimal estimate for 
the mean; under the selected two priors, the final covariance matrix is approximately the same, and the losses are 
approximately equal when the r responses are more than 20%. 
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1 Introduction 

When conducting a survey, researchers decide on the sample size, using one of sample size determination formulas; and then 
send the survey either by mail, email or online to respondents. When the response rate is less than 100%, then Nonresponse 
error exists, that may lead to biased estimates [2]. Web-bases surveys are relatively easy and costless, but they suffer from 
low response rate that those conducted in the traditional way [3]. The size of non-response error is a function of the proportion 
of nonrespondents [4-6], and causes higher variability for the estimates, as the sample size you end up is smaller than the size 
you originally had determined; and thus the need for a second stage sample.  

One of the approaches to solve the problem of non-response rate is the follow-up approach that involves contacting a random 
sample of non-respondents and having them complete the survey [7, 8]; or withdraw a second random sample of only 
nonrespondents. Used estimation methods for this scenario include ignorable maximum likelihood (IML) (e.g., [9]), Bayesian 
approach (i.e.,[10, 11]), and multiple imputation (e.g., [12]). 

The objective of this paper is to estimate the mean of variable using responses from both samples: on how to determine the 
optimal second sample size that minimizes the losses and on how to combine all responses to reach the optimal estimate for 
the population mean. Bayesian algorithms that consider prior information for both samples [13]; prior information could be 
some results from pilot studies or previous research findings are recommended. The Bayesian approach is an extremely 
powerful approach for estimating or modeling uncertainty of a random variable especially when data is limited, and the 
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researcher is worried about overfitting [14] Bayesian selection models which utilize the additional data from phase II and 
develop an efficient Markov chain Monte Carlo algorithm for the posterior computation were introduced (i.e., [15, 16]).  

 This paper is an application of the Bayesian approach developed by Ericson [1] for the estimation of population mean from 
a truncated sequential two- stage sampling plan. Thus, the purpose of this paper is to apply Ericson`s approach using some 
prior information and show how is to estimate the population mean from a first stage sampling plan with r [ r=0(10)150] 
responses, how to assign the second sample size from the remaining (n-r) observations, and how to incorporate prior 
information from both samples to  reach an optimal estimate for the population mean. Section 2 , gives the sampling situation; 
Section 3 gives the theoretical frame work for the prior  and the posterior distributions in phase I and II; section 4 gives  the 
optimal second stage sample size and the optimal estimate for the mean ; and Section 5 gives discussions on computations 
results   discussion; conclusions and recommendations are given in Section 6. 

2 Sampling Situation 

It is assumed that the population consists of two strata; in a sense that the first stratum has subjects, who will respond on the 
first contact, it has  an  unknown mean	𝜇# and known variance 𝜎#%; the second stratum is composed of subjects who did not 
response on the first trial with unknown  mean	𝜇% and known variance 𝜎%%.  The researcher selected a random sample of size 
n.  The sampling model involves a truncated sequential sampling plan [1, 13] in a sense that the first sample has obtained   𝑟  
responses, with responses 𝑥#, 𝑥%, …𝑥* and conditional on the sample results, an optimal fixed size second sample of size m 
from the remaining (n-r) respondents is chosen. Thus, the choice of the optimal m will depend on the random outcome of the 
first sample; and m is a random quantity which is determined only when the outcome of the first sample is known [1]. 

Based on the researcher prior information which could be based on pilot studies that yield   estimate for 𝜇# , 𝜇% , 𝜋 , where  
𝜋  is an expected response rate. Applying Bayes approach, the joint distribution of  𝜇# , 𝜇% , 𝜋 is obtained. The first posterior 
distribution is used to determine the optimal sampling of nonrespondents. The second sample is withdrawn yielding more 
information about 𝜇#  and 𝜇% ;and the first posterior distribution is used as a prior distribution and with combination   with 
the second sample data; a final distribution of 𝜇# , 𝜇% , 𝜋 is obtained. A detailed discussion on the topic is given in [1, 17-19]. 

The over-all population mean to be estimates as: 

𝜇 = 𝜋𝜇# + (1 − 𝜋)𝜇%                                                                                     (1) 

Where 𝜋 is an unknown proportion of respondents in the first stage, (1- 𝜋) is the unknown proportion of nonrespondents, and 
there is a joint prior distribution for (𝜇# , 𝜇% , 𝜋).With 𝜋 being independent of  (𝜇#, 𝜇%),  and if 𝜋 is as given in Equation 
(1),then using Lemma (1) in [1]:  

		

𝐸(𝜇) = 𝑝𝜇# + (1 − 𝜋)𝜇%
𝑉𝑎𝑟(𝜇) = ℎ 89		𝜇# − 	𝜇%:

% +	𝜈## + 𝜈%% − 2𝜈#%	= + 𝑝%𝜈##
	(1 − 𝑝	)%𝜈%% + 2𝑝(1 − 𝑝)𝜈#%

𝑝 =
𝑟
𝑛 					and		ℎ =

𝑟(𝑛 − 1)
𝑛%	(𝑛 + 1) ⎭

⎪
⎬

⎪
⎫

													(2) 

A squared error loss function is considered, and Bayes terminal rule is the mean of the posterior distribution [1, 13].The 
optimal second phase sample is the number that minimizes the expected quadratic risk function, which takes the form: 

𝑅(𝑛, 𝑟,𝑚, 𝑦, 𝑢,J 𝜇) = 𝐾((𝜇 − 𝑢L)% + 𝑐𝑛 + 𝑐#𝑟 + 𝑐%𝑚.                                           (3) 

Where, 𝑅(. )is the loss plus cost; K is constant that gives the trade off between errors of estimation and sampling costs; and  
𝑐, 𝑐#	𝑎𝑛𝑑	𝑐% are non-negative values represent  basic sampling cost (survey design cost,…etc.), cost of one unit of the first 
phase, and cost of one unit of the first phase.  

In this paper, the superscripts (0, 1, 2) to represent priors (0) for prior; (1) for posterior of stage 1; and (2) for posterior of 
stage 2. 
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3 Theoretical Framework 

In this section we give the prior and the posterior distributions for first and second stage samples. 

3.1 The Prior Distribution   
The prior distribution of 𝜋 is given by a beta prior: Beta (𝑟O, (𝑛O − 𝑟O), thus it takes the form [18]: 

𝑓
Q(R⃒TU,*U)

= V(TU)
V*UV(TUW*U)

𝜋TUW#	(1 − 𝜋)TUW*UW# , 

where  𝜋 is the unknown proportion of respondents. The joint prior on 𝜇#, 𝜇%	𝑎𝑛𝑑	𝜋 is a Beta-normal density with known 
parameters 𝑛O   and 𝑟O  [20], and 

																𝑓(XY,XZ	,R) = 𝑓(O)
Q(R⃒TU,*U)

× 𝑓(O)
\(X⃒	XY

(U),XZ
(U),](U)

                                                     (4) 

and 𝑓
\(X⃒	XY

(U),XZ
(U),](U)

	 is a bivariate normal density with: 

𝜇(O) = ^

	

	
𝜇#
(O)

𝜇%
(O)
_         and                𝑉(O) = 8

𝑣## 𝑣#%
𝑣%# 𝑣%%=.                                                   (5) 

 Conditioning on a given value of 𝜋 [Equation (4)], the overall mean has a univariate normal prior density with mean: 

𝑔(𝜋) = 𝜋𝜇#O + (1 − 𝜋)𝜇%O = 𝜋(𝜇#O − 𝜇%O) + 𝜇%O 

And variance  

𝜎%(𝜋) = ℎW#(𝜋) = 𝜋%𝑣##O + (1 − 𝜋)%𝑣%%O + 2𝜋(1 − 𝜋)𝑣#%O  

And the prior distribution of 𝜇   

∝				 ∫ exp	[− #
%	
	ℎ(𝜋)(#

O (𝜇 − 𝑔(𝜋)%]	𝜋*UW#(1 − 𝜋)TU	W*UW#	                                   (6) 

Thus and from (6), the prior distribution on 𝑟 (number of respondents from first stage sampling, follow a binomial random 
variable (	𝐵𝑖𝑛(𝑟, 𝜋) ) and the responses 𝑋`𝑠 follow a normal distribution 𝑁(𝜇, #

o
); thus, the mean of the	𝑋`𝑠		𝑖𝑠	~𝑁(𝜇, #

oY*
), 

(When there are more than two strata, the prior on 𝜋 follows a Dirichlet distribution [17].  

3.2 Stage 1: Posterior 
The likelihood function of 𝜋	 for the first stage sample is [1]: 

𝐿 r𝜇#, 𝜋	⃒𝑛, 𝑟, 𝑥s ∝ 			 𝜋*(1 − 𝜋)TW*	exp	[−
1
2 𝑟ℎ#	(𝜇# − 𝑋*)

% 

The joint posterior distribution for the first stage sample is: 

𝑓(#)(XY,XZ	,R) = 𝑓(O)
Q(R⃒T(Y),*(Y))

× 𝐿 r𝜇#, 𝜋⃒𝑛, 𝑟, 𝑥	s.																																																																										(7) 

Moreover, the distribution of (7) is a Beta-Normal density with parameters: 

𝑟(#) = 𝑟(O) + 𝑟			𝑎𝑛𝑑			𝑛(#) = 𝑛O + 𝑛.                                                                 (8) 

The first-stage estimators for 𝜇#	𝑎𝑛𝑑	𝜇%	 [18] are 
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𝜇̂#
(#) = 	𝜇O# +

	𝑟	𝜈##O 	ℎ#(	𝑥 −	𝜇O#)
𝑑	

𝜇̂%
(#) = 	𝜇O% +

𝑟	𝜈%%O 	ℎ%(	𝑦 −	𝜇O%)
𝑑	 ⎭

⎬

⎫
,																																																																																																	(9) 

where 
𝑑 = 1 + 𝑟ℎw	𝜈wwO							𝑖 = 1,2, 

and the posterior Variance-Covariance matrix for stage 1 is: 

𝑉(#) = #
x
	^
	𝜈##
(O) 	𝜈#%

(O)

	𝜈%#
(O) 																						𝑑	𝜈%%

(O) − 𝑟ℎ#	𝜈#%
(O)%

_.                                                                        (10) 

This yields the first-stage posterior correlation coefficient 𝜇#	, 𝜇% as: 

𝜌(#) = 	zYZ
(Y)

{	zYY	
(Y)	zZZ

(Y)
= 	zYZ

(U)

{	zYY	
(U)	zZZ

(U)
| 	zZZ

(U)

	zZZ
(U)}*oY(	zYY

(U)	zZZ
(U)W	zYZ

(U))Z
.                                                                   (11) 

3.3 Stage 2: Prior 
 For the second sample, with 𝑚 observations, yielding a mean𝑦, the likelihood function [1] becomes: 

𝐿 r𝜇%, 𝜋	⃒𝑚, 𝑦s ∝ 				exp	[	−	
1
2𝑚ℎ%	

(	𝑦 − 𝜇%)%, 

and the likelihood from both samples is: 

∝ 𝜋*(1 − 𝜋)TW*	exp	[−
1
2 	𝑟ℎ#

(	𝑥 − 𝜇#)% −
1
2 	𝑚ℎ%	

(	𝑦 − 𝜇%)%. 

3.4 Stage 2: Posterior 
      The second stage posterior distribution on (𝜇#	, 𝜇%, 𝜋	)  denoted 𝑓(%)

(XY,XZ	,R⃒T,*,	~,�,�)
 is proportional to: 

∝				 𝑓(#)(XY,XZ,R) × 𝐿 r𝜇%, 𝜋	⃒𝑚, 𝑦	s. 

Then,	 𝑓(%)
(XY,XZ	,R⃒T,*,	~,�,�)

  follows a bivariate normal density with parameters : 	µ#
(%)	, µ%

(%) and variance covariance matrix 

V(%), where 

	𝜇#(%) =
1
𝑒 [91 +𝑚ℎ%	𝜈%%

(O):9𝜇#
(O) + 𝑟ℎ#𝑥		𝜈%%

(O): + 	𝑚ℎ%	𝜈#%
(O)(𝑦 − 𝜇%

(O) − 𝑟ℎ#𝑥		𝜈#%
(O))]

𝜇%(%) =
1
𝑒 �91 + 𝑟ℎ#	𝜈##

(O):9𝜇%
(O) + 𝑚ℎ%𝑦		𝜈%%

(O): + 𝑟ℎ#			𝜈#%
(O)9𝑥 − 𝜇#

(O) − 𝑚ℎ%𝑦		𝜈#%
(O):�

	𝑒 = 	 91 + 		𝑚ℎ%	𝜈%%
(O):91 + 𝑟ℎ#	𝜈##

(O): − 9𝑟𝑚ℎ#ℎ%	(𝜈#%
(O))%: ⎭

⎪
⎬

⎪
⎫

	.										(12) 

   The posterior Variance-Covariance matrix for stage 2 is: 
  

𝑉(%) =
1
𝑒 		^

9	𝜈##
(O)(1 +𝑚ℎ%	(𝜈%%

(O) − 	(𝜈#%
(O))%: 	𝜈#%

(O)

	𝜈%#
(O) 																				9	𝜈%%

(O)(1 + 𝑟ℎ#(	𝜈##
(O) −	 	(𝜈%#

(O))%:
_	.				(13) 

 

3.5 Optimal Estimation of μ 
 The estimator 𝜇̂ is chosen to minimize the expected risk [equation 2], thus: 
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𝜇̂ = 	𝑚𝑖𝑛X (𝑘9𝜇 − 𝜇�:
%
) + 𝑐𝑛 + 𝑐#𝑟 + 𝑐%𝑚 

Where expectation is taken with respect to the second stage posterior distribution of𝜇. Using Equation (2), Bayes terminal 
rule is found to be: 

𝜇� =
𝑟 + 𝑟(O)

𝑛 + 𝑛(O)
𝜇#
(%) +

𝑛 + 𝑛(O) − 𝑟 + 𝑟(O)

𝑛 + 𝑛(O)
𝜇%
(%)																																																																		(14) 

3.6 Expected Loss  
The risk function for the posterior distribution is as given in (3). 

𝐿(𝑛, 𝑟, 𝑋*𝑚, 𝑌*) 	= 𝑘	𝑉X
(%) + 𝑐𝑛 + 𝑐#𝑟 + 𝑐%𝑚 

Where 𝑉X
(%)   is the final posterior variance of  𝜇 given in equation (13) and substituting from (2) we get the loss function in 

the second stage as follows: 
	

				𝐿9𝑛, 𝑟, 𝑋*,𝑚, 𝑌�: = 𝐾𝑉X(%) + 𝑐 + 𝑐#𝑟 + 𝑐%𝑚

𝑉X
(%) = {ℎ[r		𝜇#

(%) − 	𝜇%
(%)s

%
+	𝜈##(%) + 𝜈%%(%) − 2𝜈#%(%)] + 𝑝%𝜈##(%)

	(1 − 𝑝	)%)𝜈%% + 2𝑝(1 − 𝑝)𝜈#%

𝑝	 =
𝑟(O) + 𝑟	
𝑛 +	𝑛(O)

		ℎ =
(𝑟 + 𝑟(O))(𝑛 + 𝑛(O) − 𝑟(O) − 𝑟)
(𝑛 +	𝑛(O))%(𝑛(O) + 𝑛 + 1)

𝜈ww		are	elements	of		𝑉(%) ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

		(15) 

4 𝐎𝐩𝐭𝐢𝐦𝐚𝐥	𝐒𝐞𝐜𝐨𝐧𝐝	𝐬𝐭𝐚𝐠𝐞	𝐬𝐚𝐦𝐩𝐥𝐞	𝐬𝐢𝐳𝐞 

The first stage produces (𝑛, 𝑟, 𝑥);	 the optimal number of the remaining (𝑛 − 𝑟) nonrespondents to be sampled at stage 2, is 
the number that minimizing the risk function. The expected loss is given by 

𝐿(	𝑛, 𝑟, 𝑥,𝑚) 	≡ 𝐸�¦9	𝑛, 𝑟, 𝑥,𝑚, 𝑦�:. 

The optimal 𝑚  is the value that minimizes the expected loss [Eq. 3]. The loss function depends on (𝑛, 𝑟, 𝑥,𝑚, 𝑦), and the 
risk depends on the loss function and the cost; so, both the risk and the loss functions depend on 𝑦 which depends on 𝑚 
(optimal size to be samples in stage 2). Theorem (1) in [1] gives the optimal proportion of the (𝑛 − 𝑟) non-respondents to be 
sampled at second stage as follows: 

𝜙 = ¨
ℎ%𝑊 − 1

𝜐%%
(#)(𝑛 − 𝑟)ℎ%

																𝑛 > 𝑟

0																																𝑛 = 𝑟
­.																																																																																																																	(16) 

Where,  

𝑊 = ( ¯
°ZoZ

)#/%	[𝑃(#)	𝜐#%
(#) + (1 − 𝑃(#))𝜐%%

(#),                                                                                            (17) 

where, 𝑐% is the cost of sampling one observation in stage 2, and	ℎ% =
#
³ZZ

. 

 The optimal second stage sample size is: 

𝑚 = ´
0																																				𝜙 = 0
𝜙(𝑛 − 𝑟)															0 < 		𝜙 < 1.
𝑛 − 𝑟																												𝜙 > 1

                                                                                                      (18) 
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5 Analytic Results 

As [1] has mentioned “While this class of priors and posterior distributions seems analytically in-tractable in several respects, 
lack of simple expressions need not present any practical difficulty given today’s computing hardware”. A customized 
computational algorithm was developed to apply the proposed approach. The following prior information are used: 

𝜇(O) = ¶
	
	4045

·,       𝑉(O) = 812 4
4 9=, 			𝑛 = 150								𝑛O = 10					𝑟O = 2 

𝜎#% = 			 𝜎%% = 16										𝑐 = 1500				𝑐# = 2				𝑐% 	= 5	 

  𝑟 random numbers are generated (0 ≤ 𝑋w ≤ 100)  to represent the responses of the first sample : 𝑥#, 𝑥%	, … , 𝑥*,  and   0 ≤
𝑟 ≤ 𝑛; i.e., from 0% to 100% responses. Sample means 	𝑋*  are computed from the generated data.  Table (1) gives   the 
classical estimation (one stage sampling) for the population point estimates for proportion and mean for 𝑟 = 0(10)150. 
Proportion of respondents 𝑃*	  are estimated in this initial stage as *

T
  . The mean and variance of  𝑋*  and proportions of 

respondents are computed, and 90% confidence intervals are constructed (not considering any priors). 

 
Table 1: Classical Estimation of Proportions and Means for responses   r=0(10)150 

 
r 

Proportions Means 
𝑷𝒓 SE LCL UCL 𝑿𝒓 SE LCL UCL 

0 0.00 0.00 0.00 0.00 0.00 0 0.000 0.00 
10 0.07 0.02 0.03 0.11 50.46 1.265 47.976 52.93 
20 0.13 0.03 0.08 0.19 48.94 0.894 47.187 50.69 
30 0.20 0.03 0.14 0.26 56.94 0.730 55.509 58.37 
40 0.27 0.04 0.20 0.34 48.39 0.632 47.150 49.63 
50 0.33 0.04 0.26 0.41 53.75 0.566 52.641 54.86 
60 0.40 0.04 0.32 0.48 50.25 0.516 49.238 51.26 
70 0.47 0.04 0.39 0.55 52.64 0.478 51.703 53.58 
80 0.53 0.04 0.45 0.61 47.85 0.447 46.973 48.73 
90 0.60 0.04 0.52 0.68 53.40 0.422 52.574 54.23 
100 0.67 0.04 0.59 0.74 50.82 0.400 50.036 51.60 
110 0.73 0.04 0.66 0.80 52.65 0.381 51.902 53.40 
120 0.80 0.03 0.74 0.86 53.39 0.365 52.674 54.11 
130 0.87 0.03 0.81 0.92 52.76 0.351 52.072 53.45 
140 0.93 0.02 0.89 0.97 53.11 0.338 52.447 53.77 
150 1.00 0.00 1.00 1.00 50.20 0.327 49.560 50.84 

5.1 Estimate for population mean for stage one 
Using the obtained means (𝑥*) as given in Table (1); and  applying equations (8)-(11),  Table (2) is obtained 
for r= 0(10)150. Table (2) shows that the estimated population mean is less than sample means 𝑥*,	 except at 
r=0 and r=n;  the correlation coefficient  𝜌(#) at r=0 is the same as 𝜌(O) , computed using the prior covariance 
matrix; the posterior estimated population proportion of respondents for  𝜋 and also thus  𝜎LR% depend mainly on 
the prior information 	𝑛O, 𝑟O	𝑎𝑛𝑑	𝑛; and they are not affected by  changes  of other constants. Also, the larger 
the number of respondents (r) the smaller posterior correlation between (𝜇̂#	𝑎𝑛𝑑	𝜇̂%); and     there is a variance-
covariance matrix for each r, except at r=0, where its variance covariance matrix =𝑉(O), for example, when 
r=60 

			𝑝 =
6 + 20
150 + 10 = .3875	;				 	𝜇(#) = 48.19					𝑎𝑛𝑑					𝑉*½¾O

(#) = 8. 26 . 09
. 09 7.64= 					𝜌 = .0614.	 
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Table 2: Variance-Covariance Matrices and Estimates of	𝜇̂(#) for r= 0(10)150 

𝒓 𝒑 𝝆(𝟏) 𝝊𝟏𝟏
(𝟏) 𝝊𝟏𝟐

(𝟏) 𝝊𝟐𝟐
(𝟏) 𝑿𝒓 𝝁𝟏

(𝟏) 𝝁𝟐
(𝟏) 𝝁J(𝟏) 

0 0.0125 0.3849 12.00 4.00 9.00 0.00 40.000 45.00 44.94 
10 0.0750 0.1416 1.41 0.47 7.78 50.46 49.594 46.67 46.89 
20 0.1375 0.1037 0.75 0.25 7.70 48.94 48.717 46.28 46.62 
30 0.2000 0.0857 0.51 0.17 7.67 56.94 56.868 48.96 50.54 
40 0.2625 0.0747 0.39 0.13 7.66 48.39 48.444 46.14 46.74 
50 0.3250 0.0671 0.31 0.10 7.65 53.75 53.929 47.95 49.90 
60 0.3875 0.0614 0.26 0.09 7.64 50.25 50.428 46.78 48.19 
70 0.4500 0.0569 0.22 0.07 7.64 52.64 52.900 47.60 49.98 
80 0.5125 0.0533 0.20 0.07 7.64 47.85 48.030 45.97 47.03 
90 0.5750 0.0503 0.18 0.06 7.63 53.40 53.733 47.87 51.24 
100 0.6375 0.0478 0.16 0.05 7.63 50.82 51.105 46.99 49.61 
110 0.7000 0.0456 0.14 0.05 7.63 52.65 52.998 47.62 51.38 
120 0.7625 0.0437 0.13 0.04 7.63 53.39 53.773 47.88 52.37 
130 0.8250 0.0420 0.12 0.04 7.63 52.76 53.136 47.66 52.18 
140 0.8875 0.0405 0.11 0.04 7.63 53.11 53.506 47.78 52.86 
150 0.9500 0.0391 0.11 0.04 7.63 50.20 50.515 46.79 50.33 

 

To determine the size of the optimal second stage sample size, 𝑚,   Equations (16) - (18) are applied. The value of 𝑚 depends 
on: a) the value of k in the risk function (Equation (3), b) the variance of the population of non-respondents, c) the percentage 
of respondents in stage (1)	𝑝	(#), and d) the initial variance covariance matrix  𝑉	(O) . Table (3) give the effect of k on  
𝜙, 𝜌	𝑎𝑛𝑑	𝑚 for	𝑟 = 0(10)150. 

Examination of Table (3) reveals the following: 

1. The second stage sample size, 𝑚, is very sensitive to the quantity (𝑘ℎ%/	𝑐%	 ; the smaller this quantity the smaller 𝜙; 
this quantity affects W ( equation (17)); which in turns affects 𝜙. Thus, the larger the variance of non-respondents, 
the smaller 𝜙 (given 𝑐%  is constant); and the higher 𝑐%   the smaller 𝜙 and the smaller 𝑚 (given 	𝑘ℎ%  is constant). 

2. The larger  𝑟 the smaller the  𝑚 

3. 𝜙 Is sensitive to, 𝑟,as 𝑟 increases the percentage assigned for non-respondents increase, for fixed 𝑊. 

4. As 𝑟 increases, the value of 𝑊  decreases ( all other elements in equation (17) are held constants)  

5. 𝑊ℎ𝑒𝑛	𝑟 = 𝑛	(	𝑚 = 0); no second stage sampling is needed , then  Equations  in (12)  depend on   priors of means 
and the prior covariance matrix and the variance of the population of  respondents, and equations (12)   are reduced 
to: 

𝜇#(%) =
1
𝑒 	
[𝜇#O + 𝑟ℎ#𝑥		𝜈#%O ]		 

𝜇%(%) =
1
𝑒 	
[𝜇%O + (1 + 	𝑟ℎ#		𝜈##O ) + 𝑟ℎ#	𝜈#%O (𝑥 − 𝜇#O] 

and,  

𝑒 = 	 (1 + ℎ#		𝜈##O ). 
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Table 3: The effect of K on W,ϕ, ρ	and	m forr = 0(10)150. 

r 𝑷(𝟏)  
	𝝆(𝟏) 

k=50 K=500 K=1000 

W ϕ m W ϕ m W ϕ m 

0 0.0125 0.3849 112.58 0.07154 11 356 0.2519 38 503.46 0.3611 54 
10 0.0750 0.1416 106.25 0.07163 10 336 0.2540 36 475.18 0.3644 51 
20 0.1375 0.1037 99.93 0.07173 9 316 0.2564 33 446.89 0.3683 48 
30 0.2000 0.0857 93.60 0.07186 9 296 0.2593 31 418.61 0.3728 45 
40 0.2625 0.0747 87.28 0.07200 8 276 0.2626 29 390.32 0.3781 42 
50 0.3250 0.0671 80.95 0.07217 7 256 0.2667 27 362.04 0.3845 38 
60 0.3875 0.0614 74.63 0.07238 7 236 0.2716 24 333.75 0.3923 35 
70 0.4500 0.0569 68.31 0.07265 6 216 0.2778 22 305.47 0.4020 32 
80 0.5125 0.0533 61.98 0.07299 5 196 0.2857 20 277.19 0.4146 29 
90 0.5750 0.0503 55.66 0.07344 4 176 0.2963 18 248.90 0.4313 26 
100 0.6375 0.0478 49.33 0.07407 4 156 0.3111 16 220.62 0.4547 23 
110 0.7000 0.0456 43.01 0.07502 3 136 0.3333 13 192.33 0.4898 20 
120 0.7625 0.0437 36.68 0.07660 2 116 0.3704 11 164.05 0.5483 16 
130 0.8250 0.0420 30.36 0.07977 2 96 0.4444 9 135.76 0.6654 13 
140 0.8875 0.0405 24.03 0.08926 1 76 0.6667 7 107.48 1.0164 10 
150 0.9500 0.0391 17.71 0.00000 0 56 0.0000 0 79.20 0.0000 0 

 

5.2 Estimate for population mean for stage two 
When 𝑚 > 0,  𝑚 random  numbers are  generated to represent the responses of the second stage sampling: 𝑦#, 𝑦%	, … , 𝑦�,  ; 
the second sample mean 𝑦  is computed from the generated data; then  applying the  Equations  in ( 12  ) to estimate 𝜇 using  
the prior information, and first posterior estimate for the mean and  𝑦#, 𝑦%	, … , 𝑦�		second stage responses. 

Table (4), gives the posterior Variance-Covariance matrix and the optimal estimates  of population mean at phase 2; and 
since the two means are independent, the estimated variance at second stage, computed  using Equation (14), would be as 
follows: 

𝑉9𝜇�: = r*}*
(U)

T}T(U)
s
%
𝜐##
(%) + rT}T

(U)W*}*(U)

T}T(U)
s
%
𝜐%%
(%). 

Also, the standard error of estimate computed as {ÉÊ*(XJ)(Z)

*}�
  and 95% confidence interval for the optimal population mean, 

for r=0(10)150 is shown in Table (4). 

In Table (4); comparison of estimated means𝑋*,𝜇̂(#)  and𝜇̂(%), it is found that values of 𝑋* (except for r=0) are higher estimates 
for the population mean, followed by 𝜇̂(#) and  𝜇̂(%) is the smallest. Confidence intervals produced are tighter and limits are 
less than those in Table (1). For r=40, m= 32,𝑋 = 48.39, 𝑌 = 49.07, incorporating prior information reveals that  the 
estimated population mean for the first sample  𝜇#

(%)= 42.84 and    for the second sample  𝜇%
(%) =43.47  ; the  estimated over-

all population mean from the two samples= 37.87 with variance =.37. The correlation coefficient between (𝜇#
(%), 𝜇%

(%))= .02 
which is very weak association between the two means, this is due to the very small covariance between the two variables.  

 

 

 

 



J. Stat. Appl. Pro. 12,  2, 571-583 (2023)/     http://www.naturalspublishing.com/Journals.asp                                                          579 
  

 
 
© 2023 NSP 
Natural Sciences Publishing Cor. 

 
 

Table 4: Second Stage sampling results for r=0 (10)150. 

r m 𝑿𝒓 𝒀 𝝊𝟏𝟏
(𝟐) 𝝊𝟏𝟐

(𝟐) 𝝊𝟐𝟐
(𝟐) 𝝁𝟏

(𝟐) 𝝁𝟐
(𝟐) 𝝁J(𝟏) 𝝁J(𝟐) 𝑽𝒂𝒓(𝝁J(𝟐)) 

 𝑺𝒆 𝑳𝑪𝑳 𝑼𝑪𝑳 

0 38 0.00 51.77 0.52 0.17 0.39 61.50 51.26 44.94 44.98 0.40 0.10 44.78 45.18 
10 36 50.46 52.70 1.53 0.03 0.47 45.37 46.27 46.89 40.42 0.43 0.10 40.22 40.61 
20 33 48.94 53.85 0.82 0.02 0.51 43.67 47.26 46.62 40.86 0.41 0.09 40.69 41.03 
30 31 56.94 53.75 0.56 0.01 0.54 50.15 47.38 50.54 42.01 0.39 0.08 41.85 42.17 
40 29 48.39 49.07 0.42 0.01 0.58 42.84 43.47 46.74 37.87 0.37 0.07 37.73 38.01 
50 27 53.75 53.29 0.34 0.01 0.63 47.44 47.07 49.90 41.31 0.34 0.07 41.17 41.44 
60 24 50.25 51.04 0.29 0.01 0.68 44.43 45.25 48.19 39.28 0.32 0.06 39.16 39.40 
70 22 52.64 54.35 0.25 0.01 0.74 46.55 48.04 49.98 41.36 0.30 0.06 41.25 41.47 
80 20 47.85 44.14 0.22 0.01 0.82 42.38 39.93 47.03 36.19 0.27 0.05 36.09 36.30 
90 18 53.40 50.24 0.19 0.01 0.91 47.31 45.05 51.24 40.72 0.25 0.05 40.62 40.81 
100 16 50.82 64.82 0.17 0.01 1.03 45.23 56.36 49.61 42.22 0.23 0.04 42.13 42.31 
110 13 52.65 53.07 0.16 0.01 1.18 46.89 47.58 51.38 41.15 0.20 0.04 41.07 41.23 
120 11 53.39 58.83 0.15 0.01 1.37 47.75 52.11 52.37 42.27 0.18 0.04 42.20 42.34 
130 9 52.76 43.91 0.14 0.01 1.66 47.38 41.71 52.18 41.18 0.16 0.03 41.11 41.24 
140 7 53.11 64.50 0.13 0.01 2.08 48.16 56.40 52.86 42.04 0.14 0.03 41.98 42.10 
150 0 50.20 0.00 0.14 0.04 9.00 51.60 56.82 50.33 44.76 0.17 0.03 44.69 44.83 

 

Table 5: Estimation of m, and Second Stage sampling results for r=0(10)150 and k=500. 

r W 𝝋 m 𝑿 𝒀 𝝊𝟏𝟐
(𝟐) 𝝊𝟏𝟏

(𝟐) 𝝊𝟐𝟐
(𝟐) 𝝁𝟏

(𝟐) 𝝁𝟐
(𝟐) 𝝁J(𝟐) 

𝑽𝒂𝒓 
(𝝁J(𝟐))	

  

𝑳𝑪𝑳 𝑼𝑪𝑳 

0 442.18 0.28 42 0.00 46.36 0.23 13.61 0.45 58.49 46.98 41.25 0.47 41.04 41.45 
10 417.03 0.28 40 50.46 47.26 0.03 1.74 0.48 51.54 47.82 42.12 0.44 41.94 42.30 
20 391.87 0.29 37 48.94 43.32 0.02 0.93 0.51 49.50 44.12 39.34 0.42 39.17 39.51 
30 366.72 0.29 35 56.94 56.42 0.01 0.64 0.54 57.24 56.59 49.65 0.39 49.49 49.80 
40 341.56 0.29 32 48.39 55.21 0.01 0.48 0.58 48.90 55.30 46.70 0.37 46.56 46.85 
50 316.40 0.30 30 53.75 53.55 0.01 0.39 0.62 53.98 53.89 47.18 0.35 47.05 47.31 
60 291.25 0.30 27 50.25 49.61 0.01 0.33 0.68 50.49 50.20 44.04 0.32 43.92 44.16 
70 266.09 0.31 25 52.64 52.46 0.01 0.28 0.74 52.82 52.92 46.26 0.30 46.15 46.37 
80 240.94 0.32 22 47.85 51.17 0.01 0.25 0.82 48.08 51.66 43.37 0.28 43.27 43.47 
90 215.78 0.33 20 53.40 46.10 0.01 0.22 0.91 53.48 47.38 44.97 0.26 44.87 45.06 
100 190.62 0.34 17 50.82 46.50 0.01 0.20 1.03 50.94 47.80 43.82 0.23 43.74 43.91 
110 165.47 0.36 15 52.65 49.31 0.01 0.18 1.18 52.75 50.49 45.76 0.21 45.68 45.84 
120 140.31 0.40 12 53.39 46.85 0.01 0.16 1.39 53.46 48.67 46.24 0.19 46.17 46.31 
130 115.16 0.48 10 52.76 49.00 0.01 0.15 1.68 52.84 50.74 46.13 0.17 46.06 46.20 
140 90.00 0.70 7 53.11 37.50 0.01 0.14 2.14 53.14 42.65 46.63 0.15 46.57 46.69 
150 64.85 0.00 0 50.20 0.00 0.04 0.13 8.45 50.32 56.96 43.53 0.17 43.47 43.60 
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5.3 Changing Priors: Priors (2) 
To study the effect of priors on the final estimation process, new hypothetical priors (priors 2) are selected, as: 

𝑉 = 816 5
5 10= , 𝜎#% = 𝜎%% = 20				𝜇#

(O) = 65		, 𝜇%
(O) = 60, 

𝑛 = 150, 							𝑟O = 2					𝑛O = 10 

Table (5) was constructed using the priors above, and K=500 for the estimation of	𝑚, equations (16-18); the second phase 
samples results are as shown in Table (5). 

Examination of Table (5) shows that for r=40, m= 32,𝑋 = 48.39, 𝑌 = 55.21, incorporating prior information reveals that  
the estimated population mean for the first sample  𝜇#

(%)= 48.90 and    for the second sample  𝜇%
(%) =55.30 which is close to  

, 𝑌 ; the  estimated over-all population mean from the two samples= 46.70 with variance =.37. The initial correlation 
coefficient between  ( 𝜇#

(O), 𝜇%
(O))=  .3952  while in phase 2, the correlation coefficient between ( 𝜇#

(%), 𝜇%
(%)=.0189 [ Equation 

(11  )]; so the correlation got weaker in phase 2;  Table (5) also shows a very small standard error and thus the confidence 
limits are very narrow, due to the 𝑉(O) matrix  elements. 

Compares estimates obtained using prior (1) [ Table (4)] and Prior (2) [ Table (5)] at  r=40, m= 29 , 𝑋 = 48.39, 𝑌 = 55.21, 
incorporating prior information reveals that priors (1) yields lower estimates for population 1 and population 2 , and the 
optimal estimated mean. The correlation coefficient between (𝜇#,*½ÔO

(%) , 𝜇%,*½ÔO
(%) )= .0189, which is approximately the same 

under both priors, and thus, the same coefficient is obtained for prior (1).  

Table 6: the Expected Risk for {r and m), K=500. 

 
𝒓 

Losses for Prior (1) Expected Loss for Prior (2) 
𝒎 𝒑 𝒉 Risk 𝒎 𝒑 𝒉 Risk 

0 38 0.013 0.000 2167 42 0.013 0.000 8747 
10 36 0.075 0.000 2875 40 0.075 0.000 3012 
20 33 0.138 0.001 2554 37 0.138 0.001 2638 
30 31 0.200 0.001 2443 35 0.200 0.001 2496 
40 29 0.263 0.001 2392 32 0.263 0.001 2464 
50 27 0.325 0.001 2372 30 0.325 0.001 2411 
60 24 0.388 0.002 2369 27 0.388 0.002 2403 
70 22 0.450 0.002 2380 25 0.450 0.002 2408 
80 20 0.513 0.002 2403 22 0.513 0.002 2437 
90 18 0.575 0.002 2434 20 0.575 0.002 2488 
100 16 0.638 0.002 2580 17 0.638 0.002 2509 
110 13 0.700 0.002 2540 15 0.700 0.002 2569 
120 11 0.763 0.001 2645 12 0.763 0.001 2673 
130 9 0.825 0.001 2784 10 0.825 0.001 2797 
140 7 0.888 0.001 3004 7 0.888 0.001 3066 
150 0 0.950 0.001 6409 0 0.950 0.001 6137 

5.4 Expected Risk of phase two priors 
Applying Equation (15), and variance-covariance estimates from Tables (5), and for K=500, 𝐶=1500,	𝑐# = 3		, 𝑐% = 5	 . The 
expected losses are shown for each combination of [11] as shown in Table (6)}, where 𝑝 and  ℎ  as given in equations (15). 

Comparing the final estimated mean ( phase 2), using the two different priors for the mean of the two populations [Table (7)], 
reveals that, although the prior means  differ in magnitude for the second prior, the final estimated mean for the second prior 
tends to be closer to in magnitude to the final estimated mean for the first prior . 
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Table (7) shows that the Ø𝜇̂#	
(%) − 𝜇̂%	

(%)Ø >= 5 and 𝜇̂#
(%)	𝑎𝑛𝑑	𝜇̂%

(%) are the optimal means for prior (1) and (2) respectively. Table 
(8) compares the effect of the different prior Covariance matrix on the second stage covariance matrix. Examination of the 
table shows that the values of 𝜐#%

(%) are very close when ≥ 30	𝑓𝑜𝑟	∀	𝑚 ; and thus, the prior covariance matrix has no effect 
on the posterior covariance matrix, and the correlation coefficient between ( 𝜇#

(%), 𝜇%
(%))  reflects very weak association. 

Table 7: Effect of priors on the second stage estimated optimal mean, for r=0(10)150. 

 
r 

Classical 
Mean 
𝝁J = 𝑿 

𝝁𝟏
(𝟎) 	= 𝟒𝟎 

𝝁𝟐
(𝟎)		 = 𝟒𝟓 

𝝁𝟏
(𝟎)	 = 𝟔𝟓 

𝝁𝟐
(𝟎) 	= 𝟔𝟎 

𝒀 𝝁J𝟏𝟏
(𝟐) 𝒀 𝝁J𝟏𝟐

(𝟐) 
0 0.00 51.77 44.98 46.36 41.25 
10 50.46 52.70 40.42 47.26 42.12 
20 48.94 53.85 40.86 43.32 39.34 
30 56.94 53.75 42.01 56.42 49.65 
40 48.39 49.07 37.87 55.21 46.70 
50 53.75 53.29 41.31 53.55 47.18 
60 50.25 51.04 39.28 49.61 44.04 
70 52.64 54.35 41.36 52.46 46.26 
80 47.85 44.14 36.19 51.17 43.37 
90 53.40 50.24 40.72 46.10 44.97 
100 50.82 64.82 42.22 46.50 43.82 
110 52.65 53.07 41.15 49.31 45.76 
120 53.39 58.83 42.27 46.85 46.24 
130 52.76 43.91 41.18 49.00 46.13 
140 53.11 64.50 42.04 37.50 46.63 
150 50.20 0.00 44.76 0.00 43.53 

 

Table 8: The effect of different prior Covariance Matrix, for r=0(10)150 and accompanying m. 

 
r 

V= 8𝟏𝟐 𝟒
𝟒 𝟗= , 𝝈𝟏

𝟐 = 𝝈𝟐𝟐 = 𝟏𝟔 V= 8𝟏𝟔 𝟓
𝟓 𝟏𝟎= , 𝝈𝟏

𝟐 = 𝝈𝟐𝟐 = 𝟐𝟎 

m 𝝊𝟏𝟐
(𝟐) 𝝊𝟏𝟏

(𝟐) 𝝊𝟐𝟐
(𝟐) m 𝝊𝟏𝟐

(𝟐) 𝝊𝟏𝟏
(𝟐) 𝝊𝟐𝟐

(𝟐) 
0 38 0.17 0.52 0.39 42 0.23 13.61 0.45 
10 36 0.03 1.53 0.47 40 0.03 1.74 0.48 
20 33 0.02 0.82 0.51 37 0.02 0.93 0.51 
30 31 0.01 0.56 0.54 35 0.01 0.64 0.54 
40 29 0.01 0.42 0.58 32 0.01 0.48 0.58 
50 27 0.01 0.34 0.63 30 0.01 0.39 0.62 
60 24 0.01 0.29 0.68 27 0.01 0.33 0.68 
70 22 0.01 0.25 0.74 25 0.01 0.28 0.74 
80 20 0.01 0.22 0.82 22 0.01 0.25 0.82 
90 18 0.01 0.19 0.91 20 0.01 0.22 0.91 
100 16 0.01 0.17 1.03 17 0.01 0.20 1.03 
110 13 0.01 0.16 1.18 15 0.01 0.18 1.18 
120 11 0.01 0.15 1.37 12 0.01 0.16 1.39 
130 9 0.01 0.14 1.66 10 0.01 0.15 1.68 
140 7 0.01 0.13 2.08 7 0.01 0.14 2.14 
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6 Conclusions and Recommendations  

  6.1 Conclusions 
This paper presents computations of Ericson`s formulas to estimate the mean of a two-stage sampling plan, using hypothetical 
priors. The following conclusions and recommendations are reached as follows: 

1. The estimated optimal  mean in stage 1 and stage 2 is less than the observed mean for ∀ values of r except for r=0 
and r=n 

2. The estimated optimal means in phases 1 and 2 are affected by the prior means, the optimal means get higher as 
prior means get higher.  

3. The percentage of observations to be selected in phase 2 (m), increases as the (n-r) decreases and 𝜙 is sensitive 
to, 𝑟,as 𝑟 increases the percentage assigned for non-respondents increase, for fixed 𝑊. 

4. The larger  𝑟 the smaller the  𝑚 

5. 𝐾 in the risk function affects the 𝑚, s K increases m increases, 𝑚 also increases.  

6. The variance of the optimal mean decreases as r increases and the confides limits get tighter. 

7. The expected risk is the highest at r=0 and r=n, and it is an increasing function of r. 

8. The covariance matrix is not sensitive to the prior covariance matrix. 

9. The correlation coefficient between the two mean gets weaker as the number of responses get larger. 

10.  𝑊ℎ𝑒𝑛	𝑟 = 𝑛	(	𝑚 = 0); no second stage sampling is needed.   

  6.2 Recommendations 
It is recommended to investigate such approach when the population consists of three strata with unknown variances with 
large sample sizes, and with small sample sizes. In addition, it is recommended to construct tables for standard priors that 
researchers can be referred to for the second sample size given the number of responses in phase 1.  
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