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Abstract: This paper presents an innovative approach to solve equal-width time-fractional-order equations that describe the behavior

of waves in a certain physical system, using the Caputo operator to express the fractional derivative by improving the Taylor series

expansion.Its convergence theorem is proven, and the error between the exact and approximate solutions is estimated; the resulting

solutions are illustrated using graphs for different values of the fractional derivative order and time.The primary objective of this study

is to demonstrate the effectiveness of the method in reducing computational effort for solving nonlinear fractional partial differential

equations (NFPDEs).
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1 Introduction

During the past three decades or so, fractional evaluation
equations have drawn the interest of many academics due
to their broad use in a variety of modern research fields
and industry. It has been demonstrated that
time-fractional equations can be used to clarify a wide
range of physical processes and address a number of
problems. Applications for fractional calculus need to be
more inventive [1, 2]. The fractional Caputo derivative
was discovered by Ford and Simpson to be the most
effective way for locating fractional problems because it
constantly includes the preliminary conditions that are
unavailable in various specific models [3, 4]. Since partial
evaluation equations have a enormous range of
applications in several technological and scientific fields,
many academics have been working on them recently.
The fractional equations have the potential to describe a
multitude of intriguing phenomena within various fields,
such as fluid and quantum mechanics, electrodynamics,
material science, plasma physics, and waves and optical
fiber, among others [5, 6]. One of the most important
nonlinear partial differential equations is fractional equal
width equation (FEWE), which express many intircate

nonlinear phenomena in several fields, including science
and engineering, for example plasma waves, chemical
physics, fluids mechanics, material science, and other
fields. The Equal-Width equations explained the
behaviour of nonlinear waves in a number of nonlinear
systems, such as shallow water waves, acoustic waves in
enharmonic crystals, surface waves in compressible
fluids, cold plasma, and others [7, 8]. The FGEWEs,
obtained forlengthy waves that travel in the positive x

direction takes the form [9, 10]:

D
α
t ϖ + aϖxϖ p − µϖxxt = 0, x ∈ [l,m], t > 0, 0 < α 6 1,

(1)
The equation you provided is a fractional-order partial
differential equation that describes the behavior of waves
in a certain physical system. In this equation, ϖ
represents the wave amplitude, a and µ are physical
parameters that affect the wave behavior, and p is a
positive integer p ∈ Z+ that determines the nonlinear
behavior of the wave. The fractional-order derivative Dα

t

represents a fractional time derivative of order α , where
0 < α 6 1. This means that the equation takes into
account the memory effects of the system, where the
behavior of the wave at a given time depends not only on
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the current time but also on its past behavior. The term
aϖxϖ p represents the nonlinear behavior of the wave,
where the wave amplitude affects its own propagation.
The term µϖxxt represents the dispersion of the wave,
where the wave behavior depends on its spatial curvature.
The physical boundary conditions of the equation require
that the wave amplitude approaches zero as x goes to
infinity, which ensures that the wave does not have an
infinite energy or amplitude in the physical system.
Overall, this equation provides a mathematical model for
understanding the behavior of waves in a nonlinear and
dispersive medium with memory effects.
When we substitute p = 1 into the equation(1), we get an
equation the time fractional-order equal-width equations
(FEWE) and when we substitute p = 2, we get the
fractional modified equal width wave (FMEWE)
equation, for further details, see [11, 12].
Many different techniques have been used to solve
nonlinear differential equations of fractional order by
many researchers, including numerical and analytical
ones, for example finite difference method [13]. In their
research, K. M. Owolabi and A. Atangana utilized the
Fourier pseudo-spectral method to solve the
time-dependent fractional Schrödinger equation, both in
its linear and nonlinear forms [14]. Similarly, Kh. K. Ali
and M. Maneea employed the similarity method to solve
the fractional Schrödinger equation in their own
study [15]. Fractional differential transform
method(FDTM), perturbation methods, differential
transform method (DTM), Adomian decomposition
technique, homotopy analysis method (HAM), New
iterative technique, etc., see [16, 17] for more details.
Various techniques have been employed to obtain
solutions for Fractional Equal-Width equations (FEWE).
For example, in [18], the variational-iteration method was
utilized by Youwei Zhang. The new iterative method
(NIM) and homotopy perturbation method (HPM) were
employed with the aid of Laplace transform and
Caputo-Fabrizio operators in [19]. The
homotopy-perturbation Sadik transform method
(HPSTM) was utilized to solve equations containing
Caputo-Prabhakar fractional derivatives in [20]. Also, the
time-fractional-order non-linear equal width equations are
solved utilizing the HPTM. By integrating the Yang
transform with the homotopy perturbation method, the
homotopy perturbation transform method (HPTM) is
developed, as shown in [21]. The new auxiliary equation
methodology (NAEM) was utilized in [22] to investigate
various types of single wave solutions of the fractional
modified equal-width wave equation (FMEWE). NFPDEs
are a popular choice for modeling systems with
long-range dependence and memory effects, due to their
ability to capture complex nonlinear behavior. However,
solving NFPDEs is computationally demanding, requiring
the use of sophisticated methods. In this paper, we present
an innovative technique for solving equal-width
time-fractional-order equations using the Caputo operator.
The method improves the Taylor series expansion to

approximate the fractional derivative and proves its
convergence and error bounds. By applying this method
to solve NFPDEs, we aim to reduce the computational
complexity and increase the accuracy of the solutions.
Our main objective is to demonstrate the effectiveness of
this method in solving NFPDEs and reducing
computational effort. This technique include using
fractional taylor series as a functional tool for solving the
nonlinear partial differential equations, which has been
advanced by [23, 24]. In another study, M. Sultana et al.
employed a new analytic method to solve the fractional
derivatives of Kortewege-DeVries Equations, as described
in their research [25]. Similarly, Kh. K. Ali and M.
Maneea utilized the same method to solve the
Kudryashov Sinelshchikov equation in their study [26].
The article is structured as follows:
The second section of the paper provides a
comprehensive overview of fractional derivatives and
their properties. Section three details the current approach
and its application to non-linear FPDEs, while section
four focuses on discussing the convergence of the
proposed method. In section five, examples are presented,
demonstrating how the current technique can be applied
to time fractional (EWEs). Section six introduces
graphical representations of the solutions obtained in
section five. Section seven presents a discussion about the
findings and their implications. Finally, section eight
concludes the research.

2 Basic Conceptes about Fractional -Calculus

This section introduces some fundamental concepts of
fractional calculus [27, 28].
Definition 1.A real function V (T ), where T > 0, is
considered to be in space Cυ , for υ ∈ R, if there exists a
real number ρ > υ such that V (T ) = T ρV1(T ) where

V1(T ) ∈ C(0,∞). It is said to be in the space C
ℵ
υ , for

ℵ ∈N.
Definition 2. The fractional integral of
Riemann-Liouville of order α , α > 0 of a function V (T )
is defined as:














Jα V (T ) =
1

Γ (α)

∫ T
0 (T −ζ )(α−1)V (ζ )dζ , α > 0,T > 0,

J0 V (T ) = V (T ),

Some properties of Jα are : For γ,α > 0,υ >−1 given by

Jα Jγ
V (T ) = Jα+γ .

Jα
T

ψ =
Γ (ψ + 1)

Γ (ψ +α + 1)
T

ψ+α .

Definition 3. Caputo fractional derivative [29] is defined
as:

D
α
V (T ) = Jm−α

D
m
V (T ),

=
1

Γ (α)

∫

T

0
(T − ζ )(m−α−1)

V
m(ζ ) dζ .
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For m− 1 < α 6 m, m ∈ N, T > 0.
Lemma 1. If m− 1 < α 6 m, m ∈ N, and V (T ) ∈ Cm

−1.











Dα Jα V (T ) = V (T ),

JαDα V (T ) = V (T )−∑m−1
k=0 V (k)(0)T k

k!
.

For further details, see [30]. We utilize the Caputo
fractional derivative because it enables the formulation of
our work to include conventional initial and boundary
conditions.

3 Methodology of the modified fractional

Taylor expansion

Now, We discuss the main concepts for developing The
current method for highly nonlinear fractional(PDE) in
this section.

D
2α
t ϖ(x, t) = F (ϖ ,ϖx, ,D

α
t ϖ ,Dα

x ϖ , ...), 0 < α 6 1,
(2)

with initial condition and

ϖ(x,0) = ψ0(x), D
α
t ϖ(x,0) = ψ1(x). (3)

By applying the fractional integral to both sides of
equation (2) from 0 to η , we obtain:

D
α
t ϖ(x, t)−D

α
t ϖ(x,0) = I

α
t F [ϖ ],

D
α
t ϖ(x, t) = ψ1(x)+I

α
t F [ϖ ], .

(4)

where F [ϖ ] = F (ϖ ,ϖx,ϖxx,D
α
t ϖ ,Dα

x ϖ ,D2α
x ϖ , ...).

Then, When using integration again on both sides of
equation (4) from 0 to t, we obtain,

ϖ(x, t)−ϖ(x,0) = ψ1(x)
tα

Γ (α + 1)
+I

2α
t F [ϖ ],

ϖ(x, t) = ψ0(x)+ψ1(x)
tα

Γ (α + 1)
+I

2α
t F [ϖ ].

(5)

The extended fractional Taylor series includes about t = 0,

F [ϖ ] =
∞

∑
k=0

Dkα
t F [ϖ0]

Γ (kα + 1)
tkα , α > 0.

F [ϖ ] = F [ϖ0]+
Dα

t F [ϖ0]

Γ (α + 1)
tα +

D2α
t F [ϖ0]

Γ (2α + 1)
t2α

+
D3α

t F [ϖ0]

Γ (3α + 1)
t3α + ...+

Dkα
t F [ϖ0]

Γ (kα + 1)
tkα + ...

(6)

substitute from (6) into (5), we obtain

ϖ(x, t) = ψ0(x)+ψ1(x)
tα

Γ (α + 1)
+I

2α
t [F [ϖ0]+

Dα
t F [ϖ0]

Γ (α + 1)
tα +

D2α
t F [ϖ0]

Γ (2α + 1)
t2α

+
D3α

t F [ϖ0]

Γ (3α + 1)
t3ρ + ...],

ϖ(x, t) = ψ0(x)+ψ1(x)
tα

Γ (α + 1)
+

F [ϖ0]

Γ (2α + 1)
t2α+

Dα
t F [ϖ0]

Γ (3α + 1)
t3α +

D2α
t F [ϖ0]

Γ (4α + 1)
t4ρ + ...

(7)

This series can be expressed as follows:

ϖ(x, t) = a0 + a1
tα

Γ (α + 1)
+ a2

t2α

Γ (2α + 1)
+

a3
t3α

Γ (3α + 1)
+ ...+ ak

tkα

Γ (kα + 1)
+ ...,

(8)

where

a0 = ψ0(x) = ϖ(x,0),

a1 = ψ1(x) = D
α
t ϖx,0),

a2 = F [ϖ0] = D
2α
t ϖ(α,0),

a3 = D
2α
t F [ϖ0] = D

3α
t ϖ(x,0),

a4 = D
3α
t F [ϖ0] = D

4α
t ϖ(x,0), ... and so on.

And so we can simply get the required approximate
solution.

4 Convergence Analysis of The Current

Technique

Consider as FPDE

ϖ(x, t) = A (ϖ(x, t)), (9)

In which A is nonlinear operator. The done result is
congruent to the following sequence when using the
techinque described

ϑn =
n

∑
i=0

ϖi =
n

∑
i=0

ρi
(∆ t)i

i!

Theorem 1. Let ϖ(x, t) be the exact solution of Equation
(9), and let ϖ(x, t) ∈ H , 0 6 ρ < 1, where the Hilbert
space show byH . Then, the solution acquired ∑n

i=0 ϖi

will convergence ϖ if ‖ϖi+1‖6 ρ‖ϖi‖ ∀i ∈ ℵ∪{0}.
Proof
Our goal is to demonstrate that the Cauchy Sequence
{ϑn}∞

n=0 has a limit,

‖ϑn+1 −ϑn‖= ‖ϖn+1‖6 ρ ‖ϖn‖6 ρ2‖ϖn−1‖
6 ...6 ρn‖ϖ1‖6 ρn+1‖ϖ0‖ .

(10)
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||ϑn −ϑm||= ||(ϑn −ϑn−1)+ (ϑn−1 −ϑn−2)

+ ...+(ϑn−1−ϑm+1)||
6 ||ϑn −ϑn−1||+ ||ϑn−1 −ϑn−2||
+ ...+ ||ϑm+1−ϑm||
6 ρn‖ϖ0‖+ρn−1‖ϖ0‖+ ...+ρm+1‖ϖ0‖
6 (ρm+1 +ρm+1 + ...+ρn)‖ϖ0‖

= ρm+1 1−ρn−m

1−ρ
||ϖ0||.

(11)

Hence, limn,m→∞ ‖ϑn −ϑm‖ = 0, i.e.,{ϑn}∞
n=0 is a

Cauchy-Sequence in the Hilbert space H . It means
that,∃ϑ .ϑ ∈ H , limn→∞ϑn = ϑ , where ϑ = ϖ .
In actuality, the theorem involves computing

ρn =















||ϖn+1||
||ϖn||

, ||ϖn|| 6= 0

0 otherwise.

(12)

When 0 6 ρi < 1, i = 0,1,2,3, . . . , the series ∑n
i=0 ϖi

converges to the accurate solution ϖ for every
n ∈ ℵ∪{0}. For more information, see [31].

5 Applications

The (FGEW) equation, obtained for long waves that travel
in the positive x direction takes the form

D
α
t ϖ + aϖxϖ p − µϖxxt = 0, 0 < α 6 1. (13)

The equation involves real parameters p, a, and µ , and it
is stated in [17] that the initial condition is expressed as
follows:

ϖ(x,0) =

(

(p+ 1)(p+ 2)c

2a
sech2(

p

2
√

µ
(x− x0))

)
1
p

.

(14)
where x0 and c are constants.

ϖ(x,0) =

(

(p+ 1)(p+ 2)c

2a
sech2(

p

2
√

µ
(x− x0))

)
1
p

.

(15)
where c and x0 are constants. The exact solution at α = 1
is

ϖ(x, t) =

(

(p+ 1)(p+ 2)c

2a
sech2(

p

2
√

µ
(x− ct − x0))

)
1
p

.

(16)
To apply the current method, equation (13) can be written
in the form

D
α
t ϖ = F

[

ϖ ,ϖx,ϖxxt

]

(17)

The initial condition ϖ(x,0) = ψ0(x)

a0 =ϖ(x,0) =

(

(p+1)(p+2)c

2a
sech2(

p

2
√

µ
(x−x0))

)
1
p

.

a1 = F

[

ϖ0

]

=
1√
µ
×a 2−1/p

(

1

a
×

(p+1)(p+2)csech2

(

p(x−x0)

2
√

µ

))1/p

× ...

(18)

To find the coefficient a2:

a2 =Fϖ (a1)+Fϖx(a1)x+Fϖxxt (a1)xxt

By using mathematica, we can compute a2 as follows:

a2 =
a22

− 1
p−1

psech2
(

p(x−x0)
2
√

µ

)

...

µ
+ ...

+
ac2−1/pp2sech2

(

p(x−x0)
2
√

µ

)

...

µ
+ ...

(19)

To find the coefficient a3:

a3 = Fϖ (a2)+Fϖx
(a2)x +Fϖxxt

(a2)xxt +Fϖϖ (a1)
2

+2Fϖϖx
(a1)(a1)xFϖxϖx

((a1x)
2 +2Fϖϖxxt

(a1)(a1)xxt

+2Fϖxϖxxt
(a1x)(a1)xxt +Fϖxxt ϖxxt

((a1)xxt)
2.

Hence a3 becomes:

a3 =
3a32

− 1
p−1

p2sech2
(

p(x−x0)
2
√

µ

)

...

µ3/2
+ ..

+

a32
1− 1

p p2

(

(p+1)(p+2)csech2
(

p(x−x0)
2
√

µ

)

a

)1/p

...

µ3/2
+ ...

(20)

We can express the solution for equation (13) in the
following form by substituting into equation (8):

ϖ(x, t) = a0 + a1

tα

Γ (α + 1)
+ a2

t2α

Γ (2α + 1)

+ a3
t3α

Γ (3α + 1)
+ ...

(21)

where a0, a1, a2, a3, and so on, are constants.

ϖ(x, t) = a0 + a1

tα

Γ (α + 1)
+ a2

t2α

Γ (2α + 1)

+ a3
t3α

Γ (3α + 1)
+ ...

(22)

We can calculate other coefficients, but we will stop at a3

and compare the error results between exact solution and
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the approximate solution obtained from this series.
Now, we can discuss three cases for the proposed
equation. case I : If we take p = 1 at equation (13), we get
the numerical results for FEWE. case II : If we takep = 2
at equation (13), we get the numerical results for
FMEWE. case III : If we take p = 3 at equation (13), we
get the numerical results for FGEWE, for further details,
see [32].

5.1 Case I: p = 1

By choosing suitable values of x0, µ , c and a = p(p+ 1),
we can display the exact and approximate results and the
error estimation for various values of x, t, and α .
Table 1 presents the precise and estimated solutions, as
well as the absolute error, for different x and α values at
t = 10. These results are calculated at a = 2, µ = 1,
c = 0.001 and x0 = 0.
Table 1 indicates that the estimated solution is in good
agreement with the exact solution, as the maximum
absolute error is only (2.98355 E-6), which is an
acceptable value. Moreover, the outcomes are more
accurate when the value of α is closer to an integer order.
By selecting suitable values for x0, µ , c, and
a = p(p + 1), the current method enables us to provide
precise and approximate solutions, as well as error
estimations, for different x, t, and α values.
Table 2 shows the exact and approximate solutions and
the absolute error for x =−4,x = 6 at different values of t

when α = 0.8. From Table 2, we observe that the absolute
error is still small when the time is increased up to t = 20,
so we conclude that our method is very successful.

5.2 Case II: p = 2

We get the solution of the time-fractional modified equal
width equation by substituting p = 2 in the equation(13).
At varying x, t, and α values, Table 3 displays the precise
and estimated solutions, along with the error estimation,
for Case II. We can see from Table 3 that the error
estimation is acceptable because the maximum value of
the absolute error is (1.74618 E-5). Moreover, when α is
closer to the integer order, the results are better. Table 4
displays the precise and estimated outcomes of the
FMEW equation (13) using the current method, as well as
the absolute error, for different x and t values at α = 0.7.
The Table 4 reveals that the absolute error remains small
even when the time reaches t = 20, indicating that the
current method is very effective.

5.3 Case III: p = 3

The solution of equation (13) with p = 3 gives us the
time-fractional GEWE solution. Table 5 shows the

comparison between the exact and approximated
solutions and their absolute errors for various values of α
at t = 2. As Table 5 shows, the approximate solution is
close to the exact solution because the highest value of the
absolute error is (9.89236E − 5), which is a reasonable
value. Moreover, when α is closer to the integer order, the
results are better. The exact and approximate results of
the FGMEW equation (13) using the current technique
are displayed in Table 6, together with the absolute error
for α = 1 at different values of x, t. The absolute error’s
maximum value is (9.89236E − 5), which shows that the
approximate solution is close to the exact one. This value
is acceptable Table 6. Furthermore, when α is nearer to
the integer order, the results are better.

6 Graphical illustrations

The use of graphs is a powerful method for illustrating the
relationship between the various parameters of a solution.
Therefore, in this section, 2D and 3D graphs are utilized
to visually demonstrate the solution ϖ(x, t) for different
values of α and t, and how they affect the solution. The
initial two-dimensional graph displays the soliton wave
solution, illustrating the trajectory of the wave at different
α values by plotting ϖ(x, t) against x.The findings
indicate a convergence of the outcomes obtained via
fractional-order analysis towards those attained through
integer-order analysis. For different values of t, the wave
solutions at α = 1 are shown in the second 2D graph. The
soliton’s amplitude remains unchanged as it moves to the
right. A 3D graph of the solution at α = 1 is shown in the
third plot.
The solution of equation (13) for the time-fractional EWE
at x0 = 0,µ = 4,c = 0.01,a = 2 and p = 1 is shown in
Figure 1. The soliton does not change its amplitude as it
moves to the right. The third plot displays a 3D view of
the solution at α = 1. Figure 2 shows the solution of
equation (13) for the FMEWE at
x0 = 0,µ = 6,c = 0.005,a = 6 and p = 2. The solution of
equation (13) for the FGEWE at
x0 = 0,µ = 4,c = 0.005,a = 12 and p = 3 is shown in
Figure 3.

7 Discussion

In this section, the results of applying the proposed
solution method to the FGEW equation will be presented
and discussed. The performance of the method will be
evaluated by comparing the approximate solutions with
the numerical results obtained using other existing
methods. To verify the accuracy of the proposed method
for obtaining solutions of the nonlinear fractional general
equal width equation, three cases were considered. The
approximate solutions obtained using the proposed
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Table 1: The solutions for p = 1, including the exact and approx. solutions along with the absolute errors at t = 10

α = 0.25 α = 0.6
x Exact Approx. Error Exact Approx Error

-10 2.69665 E-7 2.72375 E-7 2.70964 E-9 2.69660 E-7 2.72374 E-7 2.70927 E-9

-7 5.40708 E-6 5.46120 E-6 5.41263 E-8 5.40708 E-6 5.46106 E-6 5.39770 E-8

-4 0.00010495 0.00010593 9.74801 E-7 0.00010495 0.00010588 9.21148 E-7

-1 0.00117421 0.00117719 2.98355 E-6 0.00117421 0.00117403 1.81199 E-6

5 0.00004028 0.00003989 3.89285 E-7 0.00004028 0.00003990 3.81436 E-7

8 2.03163 E-6 2.01144 E-6 2.01856 E-8 2.03163 E-6 2.0114 E-6 2.01650 E-8

Table 2: The solutions for p = 1, including the exact and approx. solutions along with the absolute errors at α = 0.8
x =−4 x = 6

t Exact Approx. Error Exact Approx. Error

0 0.00010597 0.00010597 0.00000 0.000014799 0.000014799 0.00000

5 0.00010546 0.00010589 4.25568 E-7 0.000014872 0.000014800 7.21155 E-8

10 0.00010495 0.00010583 4.25568 E-7 0.000014947 0.000014802 7.21155 E-8

15 0.00010445 0.00010577 1.32059 E-6 0.000015021 0.000014803 2.18448 E-7

20 0.00010395 0.00010572 1.77195 E-6 0.000015096 0.000014804 2.92303 E-7

Table 3: The solutions for p = 2, including the exact and approx. solutions along with the absolute errors at t = 15

α = 0.35 α = 0.75

x Exact Approximate Abs.Error Exact Approximate Abs.Error

-10 2.82859 E-6 2.87134 E-6 4.27487 E-8 2.82859 E-6 2.87134 E-6 4.27487 E-8

-6 0.000154435 0.000156769 2.33389 E-6 0.000154435 0.000156769 2.33377 E-6

-4 0.001140770 0.001157970 1.72021 E-5 0.001140770 0.001157920 1.71518 E-5

4 0.001175480 0.001158020 1.74618 E-5 0.001175480 0.001158070 1.74116 E-5

6 0.000159138 0.000156769 2.36916 E-6 0.000159138 0.000156769 2.36904 E-6

10 2.91474 E-6 2.87134 E-6 4.33948 E-8 2.91474 E-6 2.87134 E-6 4.33948 E-8

technique were compared with the solutions obtained
using VIM in these cases. The results of the comparison
are presented in Tables (7-10). It was observed that the
approximate solutions obtained using the proposed
method were more accurate and closer to the exact
solutions compared to those obtained using VIM. The
absolute errors of the proposed method were found to be
smaller than those of VIM, as shown in Tables (7-10).
The calculation of absolute errors in these cases confirms
the accuracy and capability of the proposed method in
obtaining solutions of nonlinear fractional general equal
width equations.
Table 7 compares the absolute errors obtained using the
proposed method with those obtained using the
variational-iteration method, as reported in reference [18],
for case I. A comparison of the absolute error calculated
by the variational-iteration method in [18] and the
proposed technique at case II is shown in Table 8. The
variational-iteration method is a way to find the solution
ϖ(x, t) using different values of α and t. The Table
illustrates how the suggested technique performs better
than the variational-iteration method. The absolute error
calculated by the variational-iteration method in [18] and
the proposed method for case III are compared in Table 9
In addition, Table 10 compares the absolute errors
obtained using the homotopy perturbation transform

method, as reported in [21], with those obtained using the
proposed method for t = 0.1, a = 2, µ = 1, c = 1,
α = 0.8,1, x0 = 15, and p = 1. Based on the results
presented in Tables (7-9), we can conclude that the
proposed method is more effective and accurate in
obtaining solutions of FGEWEs compared to VIM.
However, in Table 10, it is observed that the absolute
error values obtained using the proposed method and the
homotopy perturbation transform method are similar
when α = 1, but for values of α less than one, the
proposed method performs better. We presented data in
tables with different values for x and t, as well as various
fractional derivative orders α , to show how our technique
can solve nonlinear fractional partial differential
equations with initial conditions. Through our analysis,
we found that the technique consistently produced results
with minimal error, even when these variables were
changed. This suggests that the technique is highly
efficient and can be easily applied to a variety of
nonlinear fractional partial differential equations with
initial conditions. It also provides a general framework
that can be applied to a variety of physical systems.
However, one potential demerit of the method is that it
may not be suitable for all types of NFPDEs, and the
accuracy of the results may depend on the specific system
being modeled. Additionally, the method’s limitations in
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Table 4: The solutions for p = 2, including the exact and approx. solutions along with the absolute errors at α = 0.7
x =−5 x = 4

t Exact Approximate Abs.Error Exact Approximate Abs.Error

0 0.00115799 0.00115799 0.00000 0.000426126 0.000426126 0.00000

5 0.00115222 0.00115796 5.74007 E-6 0.000428262 0.000426127 2.13419 E-6

10 0.00114648 0.00115794 1.14633 E-5 0.000430408 0.000426128 4.27968 E-6

15 0.00114077 0.00115793 1.71608 E-5 0.000432565 0.000426129 6.43607 E-6

20 0.00113508 0.00115791 2.28316 E-5 0.000434733 0.000426130 8.60335 E-6

Table 5: The solutions for p = 3, including the exact and approx. solutions along with the absolute errors at t = 2

α = 0.5 α = 1

x Exact Approx. Abs.Error Exact Approx. Abs. Error

-5 0.00046709 0.00046718 9.34126 E-8 0.00046709 0.00046718 9.34238 E-8

-3 0.00345107 0.00345171 6.46521 E-7 0.00345107 0.00345175 6.79894 E-7

-1 0.02468990 0.02459100 9.89066 E-5 0.02468990 0.02467010 1.97560 E-5

1 0.02469880 0.02479770 9.89236 E-5 0.02469880 0.02471860 1.97731 E-5

3 0.00345245 0.00345180 6.46659 E-7 0.00345245 0.00345177 6.80032 E-7

5 0.00046727 0.00046718 9.34313 E-8 0.00046727 0.00046718 9.34425 E-8

Table 6: The exact and approx. , as well as the absolute errors, for p = 3 and α = 1

x =−1 x = 2

t Exact Approx. Abs. Error Exact Approx. Abs. Error

0.2 0.02469390 0.02469350 3.62322 E-7 0.00936834 0.00936817 1.68007 E-7

0.6 0.02469300 0.02469180 1.21248 E-6 0.00936871 0.00936821 5.01163 E-7

1.2 0.02469170 0.02468740 4.25558 E-6 0.00936927 0.00936831 9.60640 E-7

1.6 0.02469080 0.02468130 9.49864 E-6 0.00936964 0.00936845 1.19377 E-6

2.2 0.02468940 0.02466180 2.76133 E-5 0.00937020 0.00936889 1.31006 E-6

2.4 0.02468900 0.02465100 3.78197 E-5 0.00937039 0.00936910 1.25392 E-6
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Fig. 1: The solution of time fractional-order equal-width equation at x0 = 0,µ = 4,c = 0.01, p = 1,a = 2
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Fig. 2: The solution of time fractional-order modified equal-width equation at x0 = 0,µ = 6,c = 0.005, p = 2,a = 6
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Fig. 3: The solution of time fractional-order General Equal-Width equation at x0 = 0,µ = 4,c = 0.005, p = 3,a = 12.

Table 7: Comparison between absolute errors of VIM [18] and the Current Method at t = 1

α = 0.8 α = 1

x VIM error [18] CM error VIM error [18] CM error

0 3.75 E-13 3.4022 E-12 3.75000 E -13 3.0000 E-12

0.1 5.95865 E-6 1.65090 E-9 5.95712 E-6 1.48649 E-9

0.2 2.31632 E-5 3.23706 E-9 2.31603 E-5 2.91354 E-9

0.3 4.97765 E-5 4.69162 E-9 4.97723 E-5 4.22000 E-9

0.4 8.30341 E-5 5.96028 E-9 8.30290 E-5 5.35619 E-9

0.5 1.19629 E-4 7.00129 E-9 1.19624 E-4 6.28402 E-9

0.6 1.56145 E-4 7.78754 E-9 1.56140 E-4 6.97887 E-9

0.7 1.89464 E-4 8.30728 E-9 1.89458 E-4 7.43026 E-9

0.8 2.17082 E-4 8.56344 E-9 2.17077 E-4 7.64125 E-9

0.9 2.37311 E-4 8.57191 E-9 2.37307 E-4 7.62679 E-9

1 2.49334 E-4 8.35898 E-9 2.49330 E-4 7.41133 E-9
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Table 8: Comparison between absolute errors of VIM [18] and the Current Method at t = 1

α = 0.5 α = 1

x VIM error [18] CM error VIM error [18] CM error

0 7.07107 E-11 2.47487 E-9 7.07107 E-11 2.47487 E-9

0.1 1.04392 E-4 7.97582 E-7 1.04395 E-4 6.90625 E-7

0.2 3.73951 E-4 1.50510 E-6 3.73957 E-4 1.30254 E-6

0.3 7.03065 E-4 2.04674 E-6 7.03072 E-4 1.76893 E-6

0.4 9.77361 E-4 2.38205 E-6 9.77370 E-4 2.05447 E-6

0.5 1.12255 E-3 2.50674 E-6 1.12256 E-3 2.15565 E-6

0.6 1.12290 E-3 2.44666 E-6 1.12298 E-3 2.09550 E-6

0.7 1.00942 E-3 2.24632 E-6 1.00942 E-3 1.91339 E-6

0.8 8.32649 E-3 1.95646 E-6 8.32655 E-4 1.65410 E-6

0.9 6.40229 E-3 1.62423 E-6 6.40234 E-3 1.35912 E-6

1 4.64536 E-3 1.28735 E-6 4.64540 E-3 1.06155 E-6

Table 9: The exact solution, along with the approximate solutions and absolute errors

α = 0.5 α = 1

x VIM error [18] CM error VIM error [18] CM error

0 3.27593 E-10 3.24312 E-8 3.27593 E-10 3.24316 E-8

0.1 5.96967 E-3 1.59171 E-5 5.96968 E-3 7.21722 E-6

0.2 1.87328 E-2 2.84655 E-5 1.87329 E-2 1.28826 E-5

0.3 2.84744 E-2 3.55705 E-5 2.84744 E-2 1.65431 E-5

0.4 9.93070 E-2 3.70839 E-5 2.99308 E-2 1.65431 E-5

0.5 2.46717 E-2 3.42986 E-5 2.46717 E-2 1.50936 E-5

0.6 1.70609 E-2 2.90516 E-5 1.70609 E-2 1.25316 E-5

0.7 1.03465 E-2 2.29847 E-5 1.03465 E-2 9.62866 E-6

0.8 5.68225 E-3 1.72059 E-5 5.68225 E-3 6.90045 E-6

0.9 2.89539 E-3 1.22815 E-5 2.89539 E-3 4.60543 E-6

1 1.39460 E-3 8.38339 E-6 1.39460 E-3 2.81589 E-6

Table 10: Comparison between absolute errors of HPTM and the Current Method at t = 0.1,a = 1,c = 1,µ = 1, and x0 = 15.
α = 0.8 α = 1

x HPTM error [21] CM error HPTM error [21] CM error

0.5 6.81188E-4 1.09706 E-6 6.25000 E-8 1.09706 E-6

1 2.72475 E-3 1.80873 E-6 2.50000 E-7 1.80874 E-6

1.5 6,13069 E-3 2.98206 E-6 5.63000 E-7 2.98208 E-6

2 1.08990 E-2 4.91648 E-6 1.00000 E-6 4.91655 E-6

2.5 1.70297 E-2 8.10563 E-6 1.56300 E-6 8.10582 E-6

3 2.45227 E-2 1.33632 E-5 2.25000 E-6 1.33637 E-5

3.5 3.33782 E-2 2.20301 E-5 3.06000 E-6 2.20315 E-5

4 4.35960 E-2 3.63160 E-5 4.00000 E-6 3.63198 E-5

4.5 5.51762 E-2 5.98598 E-5 5.06000 E-6 5.98703 E-5

5 6.81188 E-2 9.86511 E-5 6.25000 E-6 9.86797 E-5

terms of the range of values for the fractional derivative
order and time must be considered. Nevertheless, the
presented approach is a valuable contribution to the field
of NFPDEs and provides a promising avenue for future
research.

8 Conclusion

In this paper, we proposed an innovative technique for
finding approximate solutions of the fractional-order
equal-width (FGEW) equation. The technique is based on

the fractional Taylor’s series and Caputo operator, which
reduces the computation effort for solving nonlinear
fractional partial differential equations (FPDEs). We
demonstrated the effectiveness of the proposed technique
by obtaining an analytical approximate solution for the
FGEW equation in the form of a series. The results
obtained were compared with numerical results obtained
by the VIM, HPTM and good agreement was observed.
We showed how our technique can solve nonlinear
fractional partial differential equations with initial
conditions by presenting data in tables with different
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values for x and t, and various orders of fractional
derivative α . Our method can also be applied to other
types of nonlinear fractional partial differential equations
and more complex models, which could improve our
knowledge of physical systems. Moreover, the technique
can be extended to boundary-value problems, which have
various applications.
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