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Abstract: In this paper, I obtain some new fractional dynamic inequalities of Hardy and reversed Hardy via time scales. The main
outcomes achieved through utilizing inequality of Holder and reversed Holder on fractional time scales. The inequalities obtained will

lead to the classical inequalities which are established earlier.
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1 Introduction

Hardy in [1], established inequality
o (1 B B B o
Y (—Zh(z’)) < (—1) Y P,
n=1 \"ti=1 B B=1

where B > 1 and h(n) > 0 for n > 1. Hardy in [2],
demonstrated continuous inequality

o0 n B B e
/ (l/ /l(n)dn) dn < (L) / AP(m)dn
0 \MJo —\p-1 0 ’
2
for B > 1, A > 0, integrable on any interval (0,7), AP is

integrable and convergent over (0,e). The constant
B/ (B- 1))’3 in (1) and (2) is the best possible.

Hardy in [3], to generalize inequality (1), he deduced
that if B > 1 and A be non-negative for n > 0, then

/(fn—y(/o"Ms)ds)ﬁdns

B e
(L) /0 nP12P(m)an, fory>1, (3

y—1
/Omn-y([z(s)ds)ﬁdns

BN s
(1—}/) /0 n° AP (n)dn, fory < 1. “4)

and

The constants (B /(y— 1))ﬁ and (B/(1— y))ﬁ are the best
possible.

Sulaiman in [4], proved that if A >0, u >0, n/u(n)
be a non-increasing function, § > 1 and 0 < @ < 1, then

= ([ aman )"
/o (0 u(m) ) =
1 = (nim)\’
a)(l—w)ﬁ‘l(ﬁ—l)/o (u(n)) -

and also if A >0, u > 0, n/u(n) be a non-decreasing
function, 0 < f < 1 and @ > 0, then

[ [aaman\”
/o (0 ) ) =

1 = (nim)\’
w(1+m)ﬁ—1(1—ﬁ)/o <u(n)> - ©

Sroysang in [5], proved that if A >0, u > 0, n/u(n) be
a non-increasing function,0 < @ < 1,3 >1land ¢ > f8 —
o(f—1), we get
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= (g A (m)dn)”
/o pa(n) n=
! = (nA(m))”
(1w)ﬁ‘((w1)(ﬁ1)+q1)/o ua(n) an
)

and also if A >0, u > 0, n/u(n) be a non-decreasing
function, 0 < B < 1,® >0 andg >+ ®(f — 1), then

= (f2(n)dn)"
b=
1 = (nA(n))P
(1+w)B'((w+1)(1B)+ql)/0 ua(n) an
8)

Mehrez in [6], proved that if A >0, u >0, n/u(n) be a
71)

non-increasing function, f > 1,0 < o < 1, g > %

and A(n) = [y 1t(n)dn, then

= (J' A (n)dn)”
= ey =
1 = (nA(n))P
(1—w)ﬁ'((ﬁ—l)(w—1)+2q—1)/0 Ac(mn) an
®

and also if A >0, u > 0, n/u(n) be a non-decreasing
function, 0 < f < 1, ® >0, g > % and A(n) =
Jo! 1 (1)dn, then

“ (f2 A (n)dn)”
JA S xamy 92
1 = (nA(n))P
(1+w)[’1((w+1)(1—ﬁ)+2q—1)/0 Ac(n) an
(10)

Hilger established time scales theory, this notion was
introduced in his thseis of Ph.D. to combine the discrete
and continuous theorems into a single theorem [8]. Rehak
in [7], employed a technique introduced by Elliott [9] and
established the Hardy inequality on a time scale (2). In
specifically, he was demonstrated that if the integral
f;(é(t))ﬁAt, exists (finite number), B > 1 and & be a
non-negative rd-continuous, then

e[ 0)

)7
<%)ﬁ/:(é(t>>’*m- (1

Additionally, if £(1)/n — 0 as 11 — oo, the constant is the
best one.

lately, a variety inequalities that extend and generalize
Hardy inequality have been established on a time scale T.
For extra details about Hardy dynamic inequalities via
time scales; see [10]. For extra details about time scale
analysis; see ([11], [12]) that organize and summarize
most time scale calculus.

Theory of fractional calculus has a significant impact
in mathematical analysis and applications. The research
field of fractional calculus back to Riemann, Liouville
and Abel; see [13] .

In [14] and [15], authors enlarged fractional order
calculus into conformable calculus and presented new
derivative definition.

Saker et al. in [16], gave conformable fractional
version of Hardy inequality and shown, if a funtion &, is a
non-negative over (0,), 0 < a@ <1, f > 1 and
n®~1&(n) is continuous on [0, ), then

/0°° (% _/(;n §(S)daS) pdan <

(52) [ o stmpan.

In [17] and [18], authors formed fractional calculus
via time scales by combining a time scales calculus with a
conformable fractional calculus.

The important question currently: Is it achievable to
demonstrate new fractional generalization of Hardy and
reversed Hardy inequalities via time scales? The paper
goal is providing affirmative response to the above
question. The following indicates how the paper is
structured. The second section includes the basics of time
scales calculus also some preliminaries about calculus of
the conformable fractional on time scales. The third
section we derive some extensions of inequalities Hardy
and reversed Hardy via fractional time scales, in addition
to conclusion section.

2 Preliminaries and Basic Lemmas

A time scale T defines as a non-empty closed subset of R
(real line). The operators of backward and forward jump
are presented as:

p(y):=sup{6 €T:8 <7y}

and
o(y):=inf{lé6€T:6 >y}

respectively, with infT =sup@. y € T, is known as
right-dense when o(y) = y and y < supT, left-dense
when p(y) = ¥ and y > infT, right-scattered when
o(y) > yand left-scattered when p(y) < 7.

u: T — R named right-dense continuous function
(rd-continuous) whene U continuous at points of
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left-dense and right-dense in T, limits of left hand are
finite and exist. C,y(T) indicated to all rd-continuous
functions set.

The graininess function (t on T defined as:

u(y):=o(y)-r=0,
each A : T — R, A°(y) indicates to A(o(y)).Suppose
supT = oo, and define [, 7|1 as [n,7|r := [n,7]NT.
Define A% (y) that number (if exists) with for anygiven
€ > 0 there exist a neighborhood N to y where

2 (a(1) = A(8)] =2 (Mo (y) - 8] <
glo(y)—68|, Vé6€EN,

and we indicate to A4(y) as A-derivative to A at y and A
be A-differentiable at y. For A-differentiable functions A
and pt, (where uu® # 0 and u® is the [ o 6), we have

(A)* =2+ 20 = Aut +2%u°.

() -
0 pue

Through the paper, A-integral is specified as, if 84 (y) =
¢ (7), the Cauchy integral of ¢ is defined as

[ 03048 := 07)— 0.

If ¢ € Cyu(T)then the Cauchy  integral
0(y) = _[%¢(6)A5 exists, 9% € T and satisfies

04 () = ¢(y). v € T: see [11].
The chain rule over T; (see [11, Theorem 1.87]), is
presented b

(Lol (y)=u (£ (r) & (y), wherer € [y,6 (7)),

where { : T — R be A-differentiable and u : R — R be
continuously differentiable.

The Keller chain rule; (see [11, Theorem 1.90]), is
presented by

1
() =7 [ 1)+ (1= )]~ i (7).
0
The integration by parts form over T to 0, ¢ € T, is
presented by

k k
| emetmar=ememli- [ 6*me°mar.
| (12)
Fubini theorem over T was presented in coming
lemma; (see [19]).

Lemma 1. Suppose that (H,M,0,), (G,L,n,) are finite
dimensional measured spaces over time scales, if ) : H X
G — R is A-integrable and define functions

03— / 2(r,8)d64(r), for § €G,

and

w(r) = /5 2 (r.8)dna(8), for reH,

then y is A-integrable over H, ¢ is A-integrable over G
and

[ 4051 [ 2(:8)dna(3)= [ ana(d) [ x2(:6)a0s(r).

Definition 1. Suppose a function A : T— R be a real
valued over T and o € (0,1], y € T. Then, for y> 0, we
define T2 A(y) be the number (provided exist) with for
any given € > 0,there exist a neighborhood N of Yy where

A =A@~ ~TZAM(o(n) - 8)| <
glo(y)—9d)[, VYEN.
T4 A(y) is named conformable fractional derivative to A
of order o at 'y over T and TAA(0) = limy_,o T2 A(y).

Theorem 1.Suppose that o € (0,1] and Q, @ : T — R are
a-fractional differentiable. Then

(i)The sum Q2 + @ : T — R be a-fractional differentiable
and
T3 (Q+®) = T3 (Q) + T (P).

(ii)For n € R, nQ : T — R be o-fractional differentiable
and
T2 (nQ) =nTH(Q).

(ii))If  and @ are rd-continuous we get QP : T — R be
a-fractional differentiable and
TA(Q®) = T2(2)® + (20 0)T2 (®)
=T3(Q)(Poo)+QTE(P).

()If Q is rd-continuous, then 1/Q be o-fractional
differentiable and

(1) 1A
*\Q Q(Qoo)
WIf Q and ® are rd-continuous, then Q/® is
a-fractional differentiable and
TA ()P — QTL (D)

TR (0 @) = S S,

valid Yy € T for ®(y)(®(c(y) #0.

Lemma 2. Suppose that o € (0,1], ® : R—>R is
continuously  differentiable and @ : T —-R be
o-fractional differentiable. we get (© o @) : T — R also
o-fractional differentiable with

T2(00®)(8) =
1
/@’ (qb(s) +h<15(6)8“"T(f(<15)(8)) dh| TA(@)(5).
0
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Lemma 3. Let a € (0,1], @ : T — R be continuous and
a-fractional differentiable at § € TF, and © : R — R be
continuously differentiable, we get d € [5,0(0)],with

T2 (00 ®)(8) = O (P(d))T4 (P)().

Definition 2. Let 0 < a < 1 and function A : T — R be a
regulated. Then o-fractional integral of A, is defined as

/A(S)A“S:/A(S)SO‘*MS.

Theorem 2.Let h, k, c€ T, B eRand A, u: T — R are
rd-continuous functions. Then

(i) i [2(8) + (8)]A%S = [ A(8)A%S + [ u
(ii) [F BA(8)A%S = B [FA(5)A%S.

(iii) [f 2 (8)A%S = — [l L(8)A%S.

(iv) [FA(8)A%S8 = [A(8)A%S + [ A (8)A%S.

(V[ A(8)4%5 = 0.

Lemmad.let h, k € T with h < k and A, u are

a-fractional differentiable, then the integration by parts
form is presented by

(8)A%5.

/kl(S)To?u(S)A"‘S:
h .
6”2_.//1 WO () TAA(8)A%S.  (13)

Lemma 5.Let h, k€T, oo € (0,1] and A, u : T — R are
rd-continuous, then inequality of Holder is presented by

[
[/}lkm(n)'ﬁAan]ﬁ [/h |M(77)|YAOCT7V, 0

where B > 1 and 1/B + 1/y = 1. This inequality is
reversedif 0 < B <1landif B <0ory<O.

n)jA%n <

3 Generalization of Hardy’s type inequalities

on fractional time scales

Theorem 3. Assume & > 0, non-decreasing and Q(n) =
Jols'%E(s)A%s. Let ¢ > 0, non-decreasing and 0 < § <
co. Then

[Fo (i) an < [“ogmmacn

When ¢(n) =

/OC (#)ﬁﬂn S/f&ﬁ(n)A“n-

nﬁ, B > 1, we have

Proof.Since

e
- [Foan
~[o(m /“"é‘() )

since & is non-decreasing, then
oz
<[ ( e >/ eats) aty
= [Fotmsmmacy
- [oEmac

The next therory be a generalization to inequality of
Hardy.

Theorem 4. Assume é be a non-negative Q-integrable
over (0,00), u >0, ( ) is non-increasing and

o) = ["seEwas

where 0 <ot < 1,0<y<1and ﬁ>ﬁ.Then

[ () s

—_—

LD o o

Proof.Since
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Applying inequality of Holder with indices 8 and B /(B —

1), we get
oo B

INCIRRE

I

u(
. B
i G ) 2
< W/Omsﬁ(la)w(ﬁl)gﬁ(s) <uis))ﬁ

/°° (@ NB=1)-B pap A0

_ %/wsﬁ(la)ﬂ(ﬁl)gﬁ(s)( E))ﬁ
(a—y)" /o pis
_s(a7Y)(ﬁ7

(= (B-1)-

. B . .
since (%) is non- increasing, we have

1)-B+o

B+a
1

(a—pP " (a—p(1-B)+B-a)

) /.wSﬁ(lfot)JrV(ﬁfl)Hafy)(ﬁ ﬁ+a( i(s)) A@
0 w(s)

A%s

then
INGREE
(@7 ((a—7)(1 —BB)+ﬁ—a)
< (i) e

Corollary 1.If ¢ = 1 in theorem 4. We obtain inequality
(5) which is inequality (6) of theorem (2.2) in [4].

Corollary 2./f a = 1,y = 5 and ji(n) =
We get classical inequality of Hardy

/()”(.fonéés)ds>ﬁdn<< )/as

Theorem 5. Assume ’g’ be a non-negative Q-integrable
over (0,00), 1t >0, ( 7 be non-decreasing and

N in theorem 4.

)= ["sag(s)a%

where 0 < o0 < 1,7 >0 and O<ﬁ<y+a i Then
=ram\’ .
J (u(n)) A=
1
(a+7)P " ((a+7)(1-B)+B—a)
(MmN .
J <u(n)> AT (1o
Proof.Since
=(Qm\’ o
/0 w(n ) A=
() g0e) |
I acn
0 p(m)

Applying reversed inequality of Holder with indices 8 and
B/(B—1), we get

/:(M)BM |
(/ (-@10-P)h () )’3>

(£

= [ (fs

a+y\ B-1
(%) an

_(OCT/ B—0)+y(1— ﬁgﬁ()

/ n(o+ B

B 0P1EB )4

“DuP (n)a%n,
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=

since (_(TI_) is non-decreasing, we have Applying inequality of Holder with indices 8 and B/(p —
1), we get

/(%) nz /""Qﬁ(n) o
0

A%n <
oo q
;/ gBll—a)+r(1 gﬁ() wen)
B-1 Jo

- i\ B
S ))B /‘wn(aw)(ﬁfl)fﬁAanAas /0 o <</ e )ﬁ>

sy B

1 " Bl—a)+y(1-B) £B Tyraag) ') 4e

- )ﬁl/o s £B(s) A n
OC*’)/ .

< s )ﬁ _la+n(B-1)+a—B e :/m” </ (B (B-1) g ) A )
uis)) (a+y)(B-1)-p+o 0
1 B-1
— 5 N A%n
(a+7)" ((a+y)(1-B)+p—a) ay
X/wsﬁ(l—a)wty(l B)+(a+y)(B—1)+a— [3( é‘(s)) A%, :%/msﬁ(lfa)ﬂ(ﬁfl)éﬁ(smas
0 p(s) (a—y)" /o
then / @ NE-Dy=4(n) A%y,
/m <ﬂ> A%n > . n \9. . . N
0 \ M 77)1 since (W) is non- increasing, we have
(et 9P (@t 1) (1= )+ —a) /wﬁ (1) 4o
/”(né(n))ﬁAa Jo wr(m)” T
X — oo
o \ u(m) L ﬁ/ BU—a)+v(B éﬁ()
Corollary 3.If o« = 1 in theorem 5. We obtain inequality (o
(6) which is inequality (7) of theorem (2.3) in [4]. (a=7)(B=1)—gpapy A0
(s 77 n
Theorem 6. Assume 5 be a non-negative a-integrable
over (0,00), L >0, be non-increasing and = 7/ Bll—a) +V(ﬁ*l)§ﬁ(s)
( ) _ 2B Jo
. (a—7)
Q) = /0 S1OE () A% ( s )q —s@ B e
' uis)) (@=y)(B-1)—g+a
where0 < a<1,0<y<l,g>af—v(B—1)and B> 1
1.Th = =
N " (a-7P (=) (B-D+g-a)
20QPM) o o B
/0 LT AT < X/o BU-a)y BT +(a—r)(B—1)-B+a (;i((i))) A%,
1
(=P (r-a)(B-1)+q-a) then
oo B
/ Lf )" je. (17) /‘°° QF () poy <
Jo M (77) 0 I_ﬂ(rl) -
Proof.Since 1
0B () (a=9f (r-a)(B~1)+g-0)
——=A%n = 0o
|, A e
B—1 B—1 B 0o ue (77) .
(st U) g )
A%. Corollary 4.If o« = 1 in theorem 6. We obtain inequality
J0 pa(mn) (7) which is inequality (3) of theorem (2.1) in [5].
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Corollary 5.If o = 1, v = % B=gqand u(n) =n in
theorem 6. We obtain classical inequality of Hardy

/: (W)ﬁdn < <%)ﬁ/oméﬁ(n)dn

Theorem 7. Assume & be a non-negative a-integrable over
(0,00), >0, —L~ iy be non-decreasing and

)= ["seg(s)a%

where 0 <o <1,y>0,g>y(B—1)+af and 0<f <
1. Then

=QF(m)
/o uq(n)A =
! /(né(n)) apn.
(@+9P " ((@+n(1-B)+g—a) o pt(n)
(18)
Proof.Since
=QPm) o _
/o uq(n)A =

[ ( / ”slaSV(%‘M(ﬁﬁ')é(s)A"‘s)ﬁA“ﬂ-

Applying reversed inequality of Holder with indices 8 and
B/(B—1). we get

=QP(n)
/o pa(n) A

/‘” <</' B(1—a)+y(1— éﬁ() >é>ﬁ
(0"
= [T ([ g gans)
() o

(aﬂ/B ]/ GBU-00+1-B)gB () A

K n(@B-Ny=a(n)A%n,

n=

q
since (#_?m) is non-decreasing, we have

=QP(n) 4
/0 uq(n)A n=

. [31/ BU—a)+y(1— 513()

o) oo

- W/ SBU-a)t7(1-B) B ()

s \4 _gla+nB-1)+a—q Lo

(u@)) (@+)B-)—gt+a” "’
1

(a+7)P " ((a+7)(1-B)+2g— )

x/wsﬁufa)w(l Brr@nB-niapBE6)P o
0

JZIA%NA%s

pi(s) ©
then
=QP(n) 4
/ouq(n) m=
1 =mEm)? 4
(a+7)ﬁ'((a+y)(l—ﬁ)+q—a)/o pa(m) A

Corollary 6.If o« = 1 in theorem 7. We obtain inequality
(8) which is inequality (4) of theorem (2.2) in [5].

Theorem 8. Assume ’g’ be a non-negative Q-integrable
over (0,00), t >0, ( y be anon-increasing,

A(N)= ./0‘17 ST (s)A%s and Q(n) = ./0‘17 sITEE(5)A%s

whereO<a§1,0<7<1,q>%and B>1.
Then

=P () 4

o AT 1S

! =mEm)P .
(a—y)ﬁ‘((y—a)(ﬁ—1)+zq_a)/o A(n) A

(19)

Proof.Since

=QP(n) 4

o AT 1T

[aom ( /O"SIasV(‘Hﬂ(ﬁﬁ')é(s)A"‘s)BA“"-
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Applying inequality of Holder with indices 8 and B/(p —

1), we get

= QP (n)
A%n <
o Ad(p)” 1=

[ (0
(£
("

B 781 EB (54 )%>B

7/Aq
(7)o
706 },Bl/ ﬁ1a+y 5[3()
/n VAT () A%,

Bl 81128 5%

since ( ) is non- increasing, we have
n

()
Jo Aq()

a [31/ BU—o)+v(B éﬁ()

(A )/n(ay)(ﬁ

L [t

_sle=n(B-1)—2¢+a

sz q o
<A<s>) (Oc—Y)(ﬁ—l)—2q+ocA ’
1

(OC - Y)ﬁil ((7— OC) (ﬁ - 1)+2q— a)
x /:s13<1a)+7(l31)+(ay)([31)ﬁ+a(55(5))BAas

“n <

l)fquanAas

Ad(s) ’
then
= QF (n)
A%n <
/o Acgm)© 1=
1 I ()"’
(=P~ (r-a)(B-1)+2g—a)Jo A7)
Corollary 7.If a = 1 in theorem 8. We obtain inequality
= QF (n)
dn <
o As(m) 1=

1 /w (m&m)P
A= (y-1)(B-1)+2g—1)Jo  A(n)

dn,

which is inequality (6) of theorem (1) in [6].

Corollary8./f a = 1, y = % g="5 and A(n) = n?
theorem 8. We get classical inequality of Hardy

/Om <W>ﬁdn < (%)B/jéﬁ(n)dn

Theorem 9. Assume & be a non-negative a-integrable over
(0,00), L >0, F 7 be a non-decreasing,

A(n)= ./0‘71 s'TU()A%s and Q(n) = /‘TI sITUE(5)A%s

JO

whereO<a§1,}/>0,q>wgnd 0<B<L.
Then

= QP ()
A% >
Jo Acm =
1

@+ 9P ((a+7)(1-B)+2q— )

=(mEM)P 4
X/O T AT (20)

Proof.Since

=02 (n) q
0o A(n)

. (fo"S'“sy(l%>sy(l%>5(S)A“S)ﬁ
0 Ad(n)

Applying reversed inequalityof Holder with indices  and
B/(B—1), we get

= QP (n)
A%n >
o asm S 1=

/“’Aqm)((/ (=@ +0-D)2B 5) 2 )‘;>B

(-1
=/0°°A;<n>(/0"ﬁ<'“” P12 (5)a)
()

_W/ BU—a)+y(1- ﬁgﬁ()

/ (o7

A%,

BUA () A%,
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since ( A )q is non-decreasing, we have
RECAUIR
0 A" )

o ﬁI/ﬁ‘“” PEh(s)

(AS_) / (@ DB-1-20 poy gty

_(a y) 7]/ Blaﬂlﬁgﬁ()

2 \1  _glatn(B-1)+a-2q
( > A%s,
A(s)) (a+y)(B—1)—2q+a

B <a+y>ﬁ'<<a+y1><1—ﬁ>+zq—a>
" /Omsﬁu—a)w(l—ﬁ) (o) (B—1)+o— B(,S\i((ss))) A%,
then
it
<a+y>f“<<a+yl><1—ﬁ>+zq—a>
o[ I ey

Corollary 9.If oc = 1 in theorem 9. We get inequality

O

1 / (n&(n)”
(+9P (49 -B)+2g—1)Jo AT(n)

which is inequality (8) of theorem (2) in [6].

dn,

4 Conclusion

First, we introduced to calculus of time scales and
calculus of conformable fractional via time scales.
Second, we extended some inequalities of Hardy and
reversed Hardy over fractional time scales versions. The
strategy depend on new tools over fractional calculus on
time scales. The obtained inequalities through this paper
will lead to the classical inequalities which are
established earlier in [4], [5]and [6]. Some future works
remain open like:

e Developing results on various forms of fractional
integral operators.

e Creating new outcomes to inequalities like Opial,
Copson, Hilber inequalities.
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