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Abstract: The fuzzy generalized conformable fractional derivative is a novel fuzzy fractional derivative based on the basic limit

definition of the derivative in [1]. We introduce the convolution product of fuzzy mapping and a crisp function. The conformable

Laplace convolution formula is proved under the generalized conformable fractional derivatives concept and used to solve fuzzy integro-

differential equations with a kernel of convolution type. The method is demonstrated by solving two examples, and the related theorems

and properties are proved in detail.
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1 Introduction

Various researchers have proposed many definitions of fuzzy fractional derivatives over the years. The
Riemann-Liouville fuzzy fractional derivative is one of them, and the so-called fuzzy Caputo derivative is the other.
However, they aren’t the only definitions available. A new fractional derivative has recently been discovered. established
in [2,3,4,5,6,7,8,9], and it can be seen that the new derivative proposed in this study meets all of the requirements.
Instead of the normal one fuzzy Conformable fractional derivatives are a new type of defined fuzzy fractional derivative
that can be used in a variety of ways. In papers [10,11,12,13,14,15,16,17,18], fuzzy derivatives are investigated. On the
other hand, the literature’s definitions are solely for the real world.

In [1] used the conformable derivative to create the concept of the fuzzy conformable derivative. This was the starting
point for the study of set differential equations and fuzzy conformable differential equations later on. Bede and Gal
presented the weakly generalized differential of a fuzzy-valued function to address some of the drawbacks of this
technique. In addition, Harir and colleagues [19] developed The lateral Hukuhara derivatives are used to describe
generalized conformable differentiability.

A fuzzy conformable differential equation has no unique solution, which is an advantage of generalized conformable
differentiability over the Hukuhara differentiability of a function. Stefanini and Bede generalized the Hukuhara
difference [11,12] and the derivative for interval-valued functions. They demonstrated that conformable differentiability
has connections to weakly generalized conformable differentiability see [20,21,22].

This research used the conformable Laplace transform method to solve FCDEs with a conformable convolution-type
kernel under generalized conformable differentiability. Clearly, the proposed formula allows us to use the Laplace method
to solve harder FCDEs. And we dealt with a variety of scenarios with this kernel.

In the first and second examples, g(t) was constant (positive or negative) and non-constant functions of t, respectively
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2 Preliminaries

Let us denote by RF = {µ : R→ [0,1]} the class of fuzzy subsets of the real axis satisfying the following properties:

(i) µ is normal i.e, there exists an ξ0 ∈ R such that µ(ξ0) = 1,
(ii) µ is fuzzy convex i.e for ξ ,η ∈ R and 0 < λ ≤ 1,

µ(λ ξ +(1−λ )η)≥ min[µ(ξ ),µ(η)]

(iii) µ is upper semi-continuous,
(iv) [µ ]0 = cl{ξ ∈ R|µ(ξ )> 0} is compact.

Then RF is called the space of fuzzy numbers. Obviously, R ⊂ RF . For 0 < α ≤ 1 denote [µ ]α = {ξ ∈ R|µ(ξ ) ≥ α},
then from (i) to (iv) it follows that the α-level sets [µ ]α ∈ PK(R) for all 0 ≤ α ≤ 1 is a closed bounded interval which is
denoted by [µ ]α = [µα

1 ,µ
α
2 ]. By PK(R) we denote the family of all nonempty compact convex subsets of R, and define

the addition and scalar multiplication in PK(R) as usual.

Theorem 1.[23] If µ ∈ RF , then

(i) [µ ]α ∈ PK(R) for all 0 ≤ α ≤ 1
(ii) [µ ]α2 ⊂ [µ ]α1 for all 0 ≤ α1 ≤ α2 ≤ 1
(iii) {αk} ⊂ [0,1] is a non-decreasing sequence which converges to α then

[µ ]α =
⋂

k≥1

[µ ]αk

Conversely, if Aα = {[µα
1 ,µ

α
2 ];α ∈ (0,1]} is a family of closed real intervals verifying (i) and (ii), then {Aα} defined a

fuzzy number µ ∈ RF such that

[µ ]α = Aα for 0 < α ≤ 1 and [µ ]0 = ∪
0<α≤1

Aα ⊂ A0.

Lemma 1.[24] Let µ ,ν : R→ [0,1] be the fuzzy sets.

Then µ = ν if and only if [µ ]α = [ν]α for all α ∈ [0,1].

Definition 1.[25] A fuzzy number µ in parametric form is a pair (µα
1 ,µ

α
2 ) of functions µα

1 ,µ
α
2 , α ∈ [0,1], which satisfy

the following requirements:

1. µα
1 is a bounded increasing left continuous function in (0,1], and right continuous at 0,

2. µα
2 is a bounded decreasing left continuous function in (0,1], and right continuous at 0,

3. µα
1 ≤ µα

2 , 0 ≤ α ≤ 1.

A crisp number k is simply represented by µα
1 = µα

2 = k.
For arbitrary µ = (µα

1 ,µ
α
2 ) , ν = (να

1 ,ν
α
2 ) and λ > 0 we define addition and scalar multiplication by λ see [11,24]:

[µ +ν]α = [µα
1 +να

1 ,µ
α
2 +να

2 ]

[λ µ ]α = λ [µ ]α =

{

[λ µα
1 ,λ µα

2 ] i f λ ≥ 0
[λ µα

2 ,λ µα
1 ] i f λ < 0,

Definition 2. Let µ ,ν ∈ RF . If there exists w ∈ RF such as µ = ν +w then w is called the H-difference of µ ,ν and it is

denoted u⊖ν .

Define d : RF ×RF →R+∪{0} by the equation

d(µ ,ν) = sup
α∈[0,1]

dH([µ ]
α , [ν]α), f or all µ ,ν ∈ RF

where dH is the Hausdorff metric .

dH([µ ]
α , [ν]α) = max{|µα

1 −να
1 |, |µα

2 −να
2 |}

where µ = (µα
1 ,µ

α
2 ), ν = (να

1 ,ν
α
2 )⊂ R is utilized in Bede and Gal [11]. Then, it is easy to see that d is a metric in RF

and has the following properties [25]

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 3, 399-409 (2024) / www.naturalspublishing.com/Journals.asp 401

(i) d(µ +w,ν +w) = d(µ ,ν), ∀µ ,ν,w ∈ RF ,
(ii) d(kµ ,kν) = |k|d(µ ,ν), ∀k ∈ R, µ ,ν ∈RF ,
(iii) d(µ +ν,w+ e)≤ d(µ ,w)+ d(ν,e), ∀µ ,ν,w,e ∈RF

(iν) (d,RF ) is a complete metric space.

Definition 3.[26] Let f : R→RF be a fuzzy-valued function. If for arbitrary fixed ξ0 ∈ R and ε > 0 a δ > 0 such that

|ξ − ξ0|< δ =⇒ d( f (ξ ), f (ξ0))< ε

f is said to be continuous.

3 The fuzzy conformable fractional differentiability

Definition 4.[1] Let f : (0,a) → RF be a fuzzy function. qth order 88 fuzzy conformable fractional derivative ′′ of F is

defined by

Tq( f )(ξ ) = lim
ε→0+

f (ξ + εξ 1−q)⊖ f (ξ )

ε
= lim

ε→0+

f (ξ )⊖ f (ξ − εξ 1−q)

ε
.

for all ξ > 0, q ∈ (0,1). Let f (q)(ξ ) stands for Tq( f )(ξ ). Hence

f (q)(ξ ) = lim
ε→0+

f (ξ + εξ 1−q)⊖ f (ξ )

ε
= lim

ε→0+

f (ξ )⊖ f (ξ − εξ 1−q)

ε
.

If f is q-differentiable in some (0,a), and lim
ξ→0+

f (q)(ξ ) exists, then

f (q)(0) = lim
ξ→0+

f (q)(ξ )

and the limits (in the metric d)

Remark. From the definition, it directly follows that if f is q-differentiable, then the multi-valued mapping fα is q-
differentiable for all α ∈ [0,1] and

Tq fα = [ f (q)(ξ )]α (1)

Here Tq fα is denoted the conformable fractional derivative of fα of order q.

Theorem 2.[1] Let f : (0,a)→RF be fuzzy function, where fα(ξ ) =
[

f α
1 (ξ ), f α

2 (ξ )
]

, α ∈ [0,1].

(i)If f is q(1)-differentiable, then f α
1 (ξ ) and f α

2 (ξ ) are q-differentiable and

[

f (q(1))(ξ )
]α

=
[

( f α
1 )(q)(ξ ),( f α

2 )(q)(ξ )
]

.

(ii)If f is q(2)-differentiable, then f α
1 (ξ ) and f α

2 (ξ ) are q-differentiable and

[

f (q(2))(ξ )
]α

=
[

( f α
2 )(q)(ξ ),( f α

1 )(q)(ξ )
]

.

Theorem 3.[1] Let q ∈ (0,1]

(i)If f is (1)-differentiable and f is q(1)-differentiable then

Tq(1)
f (ξ ) = ξ 1−qD1

1 f (ξ )

(ii)If f is (2)-differentiable and f is q(2)-differentiable then

Tq(2)
f (ξ ) = ξ 1−qD1

2 f (ξ )

Note that the definition of (n)-differentiable or
(

D1
n

)

for n ∈ 1,2 see [11,27,28,5,29].
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4 Fuzzy fractional integral

Let q ∈ (0,1] and f : (0,a)→ RF be such that [ f (ξ )]α = [ f α
1 (ξ ), f α

2 (ξ )] for all ξ ∈ (0,a) and α ∈ [0,1]. Suppose that

f α
1 , f α

2 ∈C ((0,a),R)∩L1 ((0,a),R) for all α ∈ [0,1] and let

Aα =:

[

∫ ξ

0

f α
1 (τ)

τ1−q
dτ,

∫ ξ

0

f α
2 (τ)

τ1−q
dτ

]

, ξ ∈ (0,a). (2)

Lemma 2.[30] The family {Aα ;α ∈ [0,1]}, given by Eq(2), defined a fuzzy number f ∈RF such that [ f ]α = Aα

Definition 5. Let f ∈C ((0,a),RF )∩L1 ((0,a),RF ), define the fuzzy fractional integral for q ∈ (0,1].

Iq( f )(τ) = I(ξ q−1 f )(τ) =

∫ τ

0

f (ξ )

ξ 1−q
dξ ,

by

[Iq( f )(τ)]α =
[

I(ξ q−1 f )(τ)
]α

=

[

∫ τ

0

f (ξ )

ξ 1−q
dξ

]α

=

[

∫ τ

0

f α
1 (ξ )

ξ 1−q
dξ ,

∫ τ

0

f α
2 (ξ )

ξ 1−q
dξ

]

.

where the integral
∫ τ

0

f α
i

ξ 1−q (ξ )dξ , for i = 1,2 is the usual Riemann improper integral.

For q = 1, we obtain I f (τ) =
∫ τ

0 f (ξ )dξ , that is the integral operator. Also, the following properties are obvious.

(i)Iqc f (ξ ) = cIq f (ξ ) for each c ∈ R+

(ii)Iq ( f +G)(ξ ) = Iq f (ξ )+ IqG(ξ ).

Theorem 4.[30] TqIq( f )(ξ ) = f (ξ ), for ξ ≥ 0, where f is any continuous fuzzy-value function in the domain of Iq.

5 Fuzzy conformable Laplace transform

Definition 6.[3] The conformable fractional exponential function is defined for every ξ ≥ 0 by:

Eq(p,ξ ) = e
p

ξ q

q , (3)

where p ∈R and 0 < q ≤ 1.

Definition 7. Let 0 < q ≤ 1 and f (ξ ) be continuous fuzzy-value function. Suppose that Eq(−p,ξ ) f (ξ ) is improper fuzzy

Rimann-integrable on [0,∞), then
∫ ∞

0 Eq(−p,ξ ) f (ξ )dqξ is called fractional fuzzy conformable Laplace transform of

order q starting from zero of f and is defined as:

Lq [ f (ξ )] =
∫ ∞

0
Eq(−p,ξ ) f (ξ )dqξ , p > 0 and integer. (4)

=

∫ ∞

0
Eq(−p,ξ ) f (ξ )ξ q−1dξ . (5)

Denote by Lq [g(ξ )] the classical fractional Laplace transform of order q starting from zero of crisp function g(ξ ). Since
from proposition 2.1 see [26], we have

∫ ∞

0
Eq(−p,ξ ) f (ξ )dqξ =

(

∫ ∞

0
Eq(−p,ξ ) f α

1 (ξ )dqξ ,

∫ ∞

0
Eq(−p,ξ ) f α

2 (ξ )dqξ

)

,

then, we follow:
Lq [ f (ξ )] = (Lq [ f

α
1 (ξ )] ,Lq [ f

α
2 (ξ )]) .

where q ∈ (0,1] and

Lq [ f
α
1 (ξ )] =

∫ ∞

0
Eq(−p,ξ ) f α

1 (ξ )dqξ and Lq [ f
α
2 (ξ )] =

∫ ∞

0
Eq(−p,ξ ) f α

2 (ξ )dqξ
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Theorem 5.[30] Let 0 < q ≤ 1 and f (q)(ξ ) be a conformable fractional integral fuzzy-value function, and f (ξ ) is the

primitive of f (q)(ξ ) on [0,∞). Then

(i)if f is q(1)-differentiable:

Lq

[

f (q)(ξ )
]

= pLq [ f (ξ )]⊖ f (0) (6)

(ii)if f is q(2)-differentiable:

Lq

[

f (q)(ξ )
]

= (− f (0))⊖ ((−p)Lq [ f (ξ )]) (7)

Theorem 6.[30] Let f (ξ ), g(ξ ) be continuous fuzzy-valued functions, q ∈ (0,1] and c1,c2 two real constants, then

Lq [c1 f (ξ )+ c2g(ξ )] = c1Lq [ f (ξ )]+ c2Lq [g(ξ )] . (8)

Lemma 3.[30] Let q ∈ (0,1] and f (ξ ) be continuous fuzzy-value function on [0,∞), suppose that λ ≥ 0, then

Lq [λ f (ξ )] = λ Lq [ f (ξ )]

Remark. Let f (ξ ) be continuous fuzzy-value function and g(ξ ) ≥ 0. Suppose that ( f (ξ )g(ξ ))Eq(−p,ξ ) is improper
fuzzy Rimann-integrale on [0,∞), then

∫ ∞

0
( f (ξ )g(ξ ))Eq(−p,ξ )dqξ =

(

∫ ∞

0
( f α

1 (ξ )g(ξ ))Eq(−p,ξ )dqξ ,

∫ ∞

0
( f α

2 (ξ )g(ξ ))Eq(−p,ξ )dqξ

)

.

Theorem 7.[30] Let 0 < q ≤ 1 and f (ξ ) is continuous fuzzy-value function and Lq [ f (ξ )] = F(p), then

Lq [Eq(a,ξ ) f (ξ )] = F(p− a)

where Eq(a,ξ ) is real value function and p− a > 0.

The relation between the fuzzy Laplace transform and the fractional fuzzy conformable Laplace transforms is given below.

Theorem 8.[30] Let 0 < q ≤ 1 and f (ξ ) be continuous fuzzy-value function such that Lq [ f (ξ )] = Fq(p) exist. Then

Fq(p) = L
[

f
(

(qξ )
1
q

)]

(9)

where L [g(ξ )] =
∫ ∞

0 e−pξ g(ξ )dξ

Remark. We calculate the fractional Laplace for certain functions see [3,31,32,33,34]

–Lq [1] =
1
p
, p > 0

–Lq [ξ ] = L
[

(qξ )1/q
]

= q
1
q

Γ (1+ 1
q )

p
1+ 1

q
, p > 0.

–Lq

[

e
ξ q

q

]

= 1
p−1

, p > 1.

–Lq

[

e
−k

ξ q

q f (ξ )

]

= L
[

e−kξ f
(

(qξ )
1
q

)]

.

For example Lq

[

e
λ ξ q

q

]

= L
[

eλ ξ
]

= 1
p−λ .
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6 Fuzzy conformable Laplace convolution

Definition 8. Let g : [0,∞[→ R be a crisp continuous function and f : [0,∞[→ RF a fuzzy-valued continuous mapping.

We define the convolution product of g and f on [0,∞[ as follows:

(g ∗ f )(ξ ) =

∫ ξ

0
g(ξ q − sq) f (s)dqs, ξ ≥ 0 (10)

=
∫ ξ

0
g(ξ q − sq) f (s) sq−1ds, ξ ≥ 0

Remark.Suppose that Eq(−p,ξ ) f (ξ ) and Eq(−p,ξ )g(ξ ) are integrable on [0,∞[. We examine the two following
alternatives:

(a)If the function g is nonnegative on [0,∞[, then

(g ∗ f )(ξ ) =

(

∫ ξ

0
g(ξ q − sq) f α

1 (s)dqs,

∫ ξ

0
g(ξ q − sq) f α

2 (s)dqs

)

(11)

Therefore,

(g ∗ f )(ξ ) = ((g ∗ f α
1 )(ξ ),(g ∗ f α

2 )(ξ )) . (12)

f1 and f2 are two crisp functions defined from [0,∞] into R, then, we recall the well-known classical convolution
Laplace formula:

Lq [( f1 ∗ f2)(ξ )] = Lq [ f1(ξ
q)]Lq [ f2(ξ )] (13)

Then using (12)-(13) and the fact that Lq[g(ξ
q)]≥ 0, we get

Lq[
(

g ∗ f
)

(ξ )] =
(

Lq

[(

g ∗ f α
1

)

(ξ )
]

,Lq

[(

g ∗ f α
2

)

(ξ )
])

=
(

Lq

[

g(ξ q)
]

Lq

[

f α
1 (ξ )

]

,Lq

[

g(ξ q)
]

Lq

[

f α
2 (ξ )

]

)

(14)

= Lq

[

g(ξ q)
]

(

Lq[ f
α
1 (ξ )],Lq[ f

α
2 (ξ )]

)

= Lq[g(ξ
q)] Lq[ f (ξ )]

(b)If the function g is non-positive on [0,∞[, then

(g ∗ f )(ξ ) =

(

∫ ξ

0
g(ξ q − sq) f α

2 (s)dqs,

∫ ξ

0
g(ξ q − sq) f α

1 (s)dq

)

(15)

Therefore,

(g ∗ f )(ξ ) = ((g ∗ f α
2 )(ξ ),(g ∗ f α

1 )(ξ )) . (16)

Then from (13)-(16) and since Lq[g(ξ
q)]≤ 0, we deduce

Lq[
(

g ∗ f
)

(ξ )] =
(

Lq

[(

g ∗ f α
2

)

(ξ )
]

,Lq

[(

g ∗ f α
1

)

(ξ )
])

=
(

Lq

[

g(ξ q)
]

Lq

[

f α
2 (ξ )

]

,Lq

[

g(ξ q)
]

Lq

[

f α
1 (ξ )

]

)

(17)

= Lq

[

g(ξ q)
]

(

Lq[ f
α
1 (ξ )],Lq[ f

α
2 (ξ )]

)

= Lq[g(ξ
q)] Lq[ f (ξ )]

Theorem 9. Let f : [0,∞[−→ RF be a fuzzy valued continuous mapping and let g : [0,∞[−→ R be crisp continuous

function, such that g is the function of ξ q for 0 < q ≤ 1. Assume that the mapping Eq(−p,ξ ) f (ξ ), Eq(−p,ξ )g(ξ ) and

Eq(−p,ξ )(g ∗ f )(ξ ) are integrable over [0,∞[ for all p > 0; then

Lq

[

(

g ∗ f
)

(ξ )
]

= Lq

[

g(ξ q)
]

Lq

[

f (ξ )
]

. (18)
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Proof.Let q ∈]0,1], ξ ≥ 0 and p > 0. It is obvious that

[(

g ∗ f )(ξ )
]α

=
[(

g ∗ f α
1

)

,
(

g ∗ f α
2

)]

For Lq

((

g ∗ f α
1

)

,
(

g ∗ f α
2

))

α-cut see demonstration of Theorem 25 in [9] is similar.

Now we show that

Lq

[

(

g ∗ f
)

(ξ )
]

= Lq

[

g(ξ )
]

Lq

[

f (ξ )
]

We apply the conformable Laplace transform to Eq (10)

Lq

[(

g ∗ f )(ξ )
]α

= Lq

[(

g ∗ f α
1

)

,
(

g ∗ f α
2

)]

=
[

Lq

(

g ∗ f α
1

)

,Lq

(

g ∗ f α
2

)]

=

[

∫ ∞

0
E(−p,ξ )

(

∫ ξ

0
g(ξ q − sq) f α

1 (s)dqs

)

dqξ ,

∫ ∞

0
E(−p,ξ )

(

∫ ξ

0
g(ξ q − sq) f α

2 (s)dqs

)

dqξ

]

=

[

∫ ∞

0
E(−p,ξ )

(

∫ ξ

0
g(ξ q − sq) f α

1 (s)sq−1ds

)

ξ q−1dξ ,

∫ ∞

0
E(−p,ξ )

(

∫ ξ

0
g(ξ q − sq) f α

2 (s)sq−1ds

)

ξ q−1dξ

]

By changing the order of integration we get

=

[

∫ ∞

0

∫ ∞

s
e
−p

ξ q

q g(ξ q − sq) f α
1 (s)ξ q−1sq−1dξ ds,

∫ ∞

0

∫ ∞

s
e
−p

ξ q

q g(ξ q − sq) f α
2 (s)ξ q−1sq−1dξ ds

]

Then we substitute τq = ξ q − sq into the above integral and obtain

=

[

∫ ∞

0

∫ ∞

0
e
−p τq+sq

q g(τq) f α
1 (s)τq−1dτsq−1ds,

∫ ∞

0

∫ ∞

0
e
−p τq+sq

q g(τq) f α
2 (s)τq−1dτsq−1ds

]

=

[

∫ ∞

0
e
−p τq

q g(τq)τq−1dτ

∫ ∞

0
e
−p sq

q f α
1 (s)sq−1ds,

∫ ∞

0
e
−p τq

q g(τq)τq−1dτ

∫ ∞

0
e
−p sq

q f α
2 (s)sq−1ds

]

=

[

∫ ∞

0
e
−p τq

q g(τq)τq−1dτ

∫ ∞

0
e
−p sq

q f α
1 (s)sq−1ds,

∫ ∞

0
e
−p τq

q g(τq)τq−1dτ

∫ ∞

0
e
−p sq

q f α
2 (s)sq−1ds

]

=
∫ ∞

0
E(−p,τ)g(τq)τq−1dτ

([

∫ ∞

0
E(−p,s) f α

1 (s)sq−1ds,
∫ ∞

0
E(−p,s) f α

2 (s)sq−1ds

])

= Lq[g(ξ
q)]
[

Lq[ f
α
1 (ξ )],Lq[ f

α
2 (ξ )]

]

= Lqg(ξ q) Lq f (ξ )

Our current goal is to use the fuzzy conformable Laplace transform method to solve the following fuzzy
integro-differential equation under generalized conformable differentiability:

y(q)(τ) = f (τ)+

∫ τ

0
g(

τq

q
− ξ q

q
)y(ξ )dqξ

y(0) = y0 = (y01,y02) ∈ RF

where the unknown function y(ξ ) = (yα
1 (ξ ),y

α
2 (ξ )) is a fuzzy function of ξ ≥ 0, provided that f̄ : [0,∞[→ RF is a

continuous fuzzy-valued function and g : [0,∞[→R is a crisp continuous function.
Assume in a first time that Lq[g(ξ )]≥ 0. By using the fuzzy conformable Laplace transform and Theorem (9) , we have

Lq

[

y(q)(ξ )
]

= Lq[ f (ξ )]+Lq[g(ξ )] ·Lq[y(ξ )]. (19)

Then, we have the following alternatives for solving (19).
Case 1. If y is q(1)-differentiable, then

y(q)(ξ ) =
(

(yα
1 )

(q) (ξ ),(yα
2 )

(q) (ξ )
)

,

Lq

[

y(q)(ξ )
]

= pLq[y(ξ )]⊖ y(0)
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Then from (19), it follows that

pLq[y(ξ )] = y(0)+Lq[ f (ξ )]+Lq[g(ξ )] ·Lq[y(ξ )].

Using Lq[g(ξ )]≥ 0, we deduce

pLq[y
α
1 (ξ )] = yα

01(α)+Lq[ f
α
1 (ξ )]+Lq[g(ξ )]Lq[y

α
1 (ξ )],

(20)

pLq[y
α
2 (ξ )] = yα

02(α)+Lq[ f
α
2 (ξ )]+Lq[g(ξ )]Lq[y

α
2 (ξ )].

Therefore,

Lq[y
α
1 (ξ )] =

yα
01 +Lq[ f

α
1 (ξ )]

p−Lq[g(ξ )]

Lq[y
α
2 (ξ )] =

yα
02 +Lq[ f

α
2 (ξ )]

p−Lq[g(ξ )]
.

By using the inverse conformable Laplace transform, we get

yα
1 (ξ ) = L

−1
q

[

yα
01 +Lq[ f

α
1 (ξ )]

p−Lq[g(ξ )]

]

,

yα
2 (ξ ) = L

−1
q

[

yα
02(α)+Lq[ f

α
2 (ξ )]

p−Lq[g(ξ )]

]

.

Case 2. If y is q(2)-differentiable, then

y(q)(ξ ) =
(

(yα
2 )

(q) (ξ ),(yα
1 (ξ ))

(q) (ξ )
)

,

Lq

[

y(q)(ξ )
]

=−y(0)⊖ (−pLq[y(ξ )]).

Then from (19), it follows that

−y(0)⊖ (−pLq[y(ξ )]) = Lq[ f (ξ )]+Lq[g(ξ )]Lq[y(ξ )] (21)

Using Lq[g(ξ )]≥ 0, we deduce

−yα
02 + pLq[y

α
2 (ξ )] = Lq[ f

α
1 (ξ )]+Lq[g(ξ )]Lq[y

α
1 (ξ )] (22)

−yα
01 + pLq[y

α
1 (ξ )] = L [ f α

2 (ξ )]+Lq[g(ξ )]Lq[y
α
2 (ξ )] (23)

That is,

Lq[g(ξ )]Lq[y
α
1 (ξ )]− pLq[y

α
2 (ξ )] = −yα

02 −Lq[ f
α
1 (ξ )]

(24)

Lq[g(ξ )]Lq[y
α
2 (ξ )]− pLq[y

α
1 (ξ )] = −yα

01 −Lq[ f
α
2 (ξ )]

Then by solving the linear system (24), we have

Lq[y
α
1 (ξ )] =

L [g(ξ )] (Lq[g(ξ )]Lq[y
α
1 (ξ )]− pLq[y

α
2 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
2 (ξ )]− pLq[y

α
1 (ξ )])

(Lq[g(ξ )])2 − p2

Lq[y
α
2 (ξ )] =

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
2 (ξ )]− pLq[y

α
1 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
1 (ξ )]− pLq[y

α
2 (ξ )])

(Lq[g(ξ )])2 − p2

By using the inverse conformable Laplace transform, we get

yα
1 (ξ ) = L

−1
q

[

L [g(ξ )] (Lq[g(ξ )]Lq[y
α
1 (ξ )]− pLq[y

α
2 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
2 (ξ )]− pLq[y

α
1 (ξ )])

(Lq[g(ξ )])2 − p2

]

yα
2 (ξ ) = L

−1
q

[

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
2 (ξ )]− pLq[y

α
1 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
1 (ξ )]− pLq[y

α
2 (ξ )])

(Lq[g(ξ )])2 − p2

]

Similarly, if we assume that L [g(ξ )]< 0, we obtain the following results.
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1.If y is q(1)-differentiable, then

Lq[y
α
1 (ξ )] =

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
1 (ξ )]− pLq[y

α
1 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
2 (ξ )]− pLq[y

α
2 (ξ )])

p2 − (L [g(ξ )])2

Lq[y
α
2 (ξ )] =

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
2 (ξ )]− pLq[y

α
2 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
1 (ξ )]− pLq[y

α
1 (ξ )])

p2 − (L [g(ξ )])2

By using the inverse conformable Laplace transform, we get

yα
1 (ξ ) = L

−1
q

[

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
1 (ξ )]− pLq[y

α
1 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
2 (ξ )]− pLq[y

α
2 (ξ )])

p2 − (L [g(ξ )])2

]

yα
2 (ξ ) = L

−1
q

[

Lq[g(ξ )] (Lq[g(ξ )]Lq[y
α
2 (ξ )]− pLq[y

α
2 (ξ )])+ p(Lq[g(ξ )]Lq[y

α
1 (ξ )]− pLq[y

α
1 (ξ )])

p2 − (L [g(ξ )])2

]

2.If y is q(2)-differentiable, then

Lq[y
α
1 (ξ )] =

yα
01 +Lq[ f

α
2 (ξ )]

p−Lq[g(ξ )]

Lq[y
α
2 (ξ )] =

yα
02 +Lq[ f

α
1 (ξ )]

p−Lq[g(ξ )]

By using the inverse conformable Laplace transform, we obtain

yα
1 (ξ ) = L

−1
q

[

yα
01 +Lq[ f

α
2 (ξ )]

p−Lq[g(ξ )]

]

yα
2 (ξ ) = L

−1
q

[

yα
02 +Lq[ f

α
1 (ξ )]

p−Lq[g(ξ )]

]

Example 1.The fuzzy Volterra integro-differential equation as follows:

y(q)(ξ ) =

(

1+
ξ q

q

)

σ +

∫ t

0
y(ξ )dqξ (25)

yα(0) = (0,0)

where q ∈ (0.1], f (ξ ) = (1+ ξ q

q
) σ , σ = [α − 1,1−α] α ∈ [0,1] and g(ξ ) = 1 is non-negative.

Case 1: If y(ξ ) is (q(1))-differentiable, then from (17) we have

Lq[y
α
1 (ξ )] =

α−1
p(p−1)

Lq[y
α
2 (ξ )] =

1−α
p(p−1)

By the inverse Laplace transform, we get the lower and upper functions of solution of (25) for ξ ≥ 0

yα
1 (ξ ) = (α − 1)

(

exp( ξ q

q
)− 1

)

yα
2 (ξ ) = (1−α)

(

exp( ξ q

q
)− 1

)

In this case, since y(ξ ) is (q(1))-differentiable, the solution is valid.

Case 2: If y(ξ ) is (q(2))-differentiable, then from (17) we obtain

Lq[y
α
1 (ξ )] = (1−α) p+1

p(p2+1)
Lq[y

α
2 (ξ )] = (α − 1) p+1

p(p2+1)

Then by the inverse Laplace transform the lower and upper functions of solution of (25) are given for ξ ∈ [3π/2,2π ] as
follows:

yα
1 (ξ ) = (α − 1)(cos( ξ q

q
)− sin( ξ q

q
)− 1)

yα
2 (ξ ) = (1−α)(cos( ξ q

q
)− sin( ξ q

q
)− 1)

In this case, y(ξ ) is (q(2))-differentiable only for ξ ∈ [7π/4,2π ] and the solution is acceptable only over this interval.
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Example 2.We consider the following fuzzy integro-differential equation:

y(q)(ξ )+ y(ξ ) =

∫ ξ

0
sin(ξ q − sq)y(s)ds, (26)

y(0,α) = [α − 1,1−α].

Case 1: If y(ξ ) is (q(1))-differentiable, then from Theorems (5) and (6) we have

Lq[y
α
1 (ξ )] = (α − 1)

(p2+1)
p3+p2+p

Lq[y
α
2 (ξ )] = (1−α)

(p2+1)
p3+p2+p

By the inverse Laplace transform we get the lower and upper functions of solution of (26) for ξ ≥ 0

yα
1 (ξ ) = (α − 1)

[

1− 2
√

3

3
exp

(

−ξ q

2q

)

sin

(√
3ξ q

2q

)]

, (27)

yα
2 (ξ ) = (1−α)

[

1− 2
√

3

3
exp

(

−ξ q

2q

)

sin

(√
3ξ q

2q

)]

. (28)

In this case, the solution is invalid over [0,∞[, since y(ξ ) is not (q(1))-differentiable.

Case 2: If y(ξ ) is (q(2))-differentiable, then Theorems (5) and (7) yield

pLq[y
α
1 (ξ )]+

(

p2 + 1
)

pLq[y
α
2 (ξ )] = (1−α)

p2 + 1

p
(29)

(

p2 + 1
)

Lq[y
α
1 (ξ )]+ pLq[y

α
2 (ξ )] = (α − 1)

p2 + 1

p
(30)

By solving the linear system (26) and using the inverse Laplace transform, we get

yα
1 (ξ ) = (α − 1)

[

1+ 2
√

3
3

exp
(

ξ q

2q

)

sin
(√

3ξ q

2q

)]

yα
2 (ξ ) = (1−α)

[

1+ 2
√

3
3

exp
(

ξ q

2q

)

sin
(√

3ξ q

2q

)]

.
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