

Applied Mathematics & Information Sciences *An International Journal*

<http://dx.doi.org/10.18576/amis/170216>

Fuzzy Contra *gprw***-Continuous Mappings**

Firdose Habib ¹ *, Ali Akgul¨* ²,3,⋆*, Abdulrahman M. Alansari* ⁴ *and Wasan Shakir Awad* ⁵

¹ Department Of Mathematics, Maulana Azad National Urdu University Hyderabad, Hyderabad, India

²Siirt University, Art and Science Faculty, Department of Mathematics, 56100 Siirt, Turkey

³Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, India

4 Jeddah College of Engineering, University of Business and Technology, Jeddah 21432, Saudi Arabia

⁵College of Information Technology, Ahlia University, Kingdom of Bahrain

Received: 4 Jul. 2022, Revised: 11 Jan. 2023, Accepted: 19 Jan. 2023 Published online: 1 Mar. 2023

Abstract: In this manuscript new types of fuzzy mappings namely fuzzy contra gprw-continuous mappings have been introduced $\&$ investigated. Also we found out its relation with various other fuzzy contra mappings introduced earlier. We also introduced fuzzy contra gprw-open mappings and fuzzy contra gprw-closed mappings in this paper.

Keywords: Fuzzy contra gprw-continuous mappings; Fuzzy contra pre-continuous mappings; Fuzzy contra rw-continuous mappings; Fuzzy contra gprw-open mappings; Fuzzy contra gprw-closed mappings.

1 Introduction

The idea of fuzzy contra mappings was put forward by Ekici and Kerre in 2006 in [\[7\]](#page-4-0). Soon after that, based on various other types of fuzzy sets various fuzzy contra mappings were introduced like in 2011 fuzzy contra rw-continuous mappings were introduced by A.Vadivel,V. Chandrasekar and M.Saraswathi in [\[8\]](#page-4-1). In 2012 in [\[6\]](#page-4-2) S.E. Abbas and I.M. Taha introduced the concepts of fuzzy contra-continuity, fuzzy almost contra-continuity, fuzzy contra μ continuity, fuzzy almost contra μ continuity, fuzzy contra semi-continuity and generalized fuzzy contra continuity in.

Based on fuzzy gprw-closed sets, we have introduced a new type of mappings namely fuzzy contra gprw-continuous mappings in this manuscript and have found out its relation with various other mappings introduced earlier. We found out that all fuzzy contra continuous mappings are fuzzy gprw-continuous mappings, All fuzzy contra pre-continuous mappings are fuzzy contra gprw-continuous mappings & all fuzzy contra rw-continuous mappings are fuzzy contra gprw-continuous mappings. The relationship of this new mapping with other mappings have been depicted via a table figure. Also we have introduced fuzzy contra gprw-open mappings and fuzzy contra gprw-closed mappings in this paper.

2 Preliminaries

Definition 2.1 "A mapping *f* is said to be a fuzzy continuous mapping if $\hat{f}^{-1}(\lambda) \in \tau X$ for each $\lambda \in \tau Y$ or, equivalently $f^{-1}(\mu)$ is a fuzzy closed set of *X* for each fuzzy closed set μ of Y ". [\[4\]](#page-4-3)

Definition 2.2 "A function $f: X \to Y$ is said to be fuzzy contra pre continuous, if $f^{-1}(\lambda)$ is fuzzy pre-closed in X for every fuzzy open set λ of Y ["].[\[1\]](#page-4-4)

Definition 2.3 "Suppose *X* and *Y* are fuzzy topological spaces. A map $f: X \to Y$ is called fuzzy contra rw -continuous if the inverse image of every fuzzy open set in *Y* is fuzzy rw -closed in X ". [\[2\]](#page-4-5)

Definition 2.4 "A function $h: H \to K$ is called *fuzzy generalized pre regular weakly continuous* (briefly Fgprw-continuous) if inverse image of every fuzzy closed set in fuzzy topological space *K* is fuzzy generalized pre regular weakly closed (Fgprw-closed) in fuzzy topological space *H*". [\[5\]](#page-4-6)

Definition 2.5 "A function $h : (H, \tau_1) \to (K, \tau_2)$ is said to be *fuzzy generalized pre regular weakly-irresolute* (briefly Fgprw-irresolute) if $\hat{h}^{-1}(\{\psi\})$ is fuzzy gprw-closed for every fuzzy gprw-closed $\{\psi\}$ in (K, τ_2) ". [\[5\]](#page-4-6)

[∗] Corresponding author e-mail: aliakgul@siirt.edu.tr

Definition 2.6 "let $f : (X, \tau_1) \to (Y, \tau_2)$ be a mapping. Then *f* is fuzzy contra open mapping, if it maps every fuzzy open set in (X, τ_1) to a fuzzy closed set in (Y, τ_2) ".[\[6\]](#page-4-2)

Definition 2.7 "A function *f* from a fuzzy topological space (X, τ) to fuzzy topological space (Y, δ) is called fuzzy contra pre-continuous (fuzzy contra α -continuous, fuzzy contra semi-continuous) if $f^{-1}(\lambda)$ is fuzzy pre-closed (fuzzy α-closed, fuzzy semi-closed resp.) in *X* for every fuzzy open set λ of *Y*". [\[1\]](#page-4-4)

Remark 2.8 All fuzzy closed sets are fuzzy gprw-closed. [\[3\]](#page-4-7)

Remark 2.9 All fuzzy pre-closed sets are fuzzy gprw-closed. [\[3\]](#page-4-7)

Remark 2.10 All fuzzy rw-closed sets are fuzzy gprw-closed. [\[3\]](#page-4-7)

Remark 2.11 All fuzzy open sets are fuzzy gprw-open. [\[3\]](#page-4-7)

3 Fuzzy Contra gprw-Continuous Mappings

Definition 3.1 A mapping $r : (R, \tau_1) \rightarrow (S, \tau_2)$ is called *fuzzy contra gprw-continuous* if $r^{-1}(s)$: $s \in \tau_2$ is fuzzy gprw-closed in *R*.

Theorem 3.2 A fuzzy contra continuous mapping $g : (G, \tau_1) \rightarrow (H, \tau_2)$ is always fuzzy contra gprw-continuous.

Proof: Consider $\psi \leq \tau_2$. Now, as *g* is fuzzy contra continuous implies $g^{-1}(\psi)$ is fuzzy closed in *G*. From *Remark 2.8* all fuzzy closed sets are fuzzy gprw-closed, so $g^{-1}(\psi)$ is fuzzy gprw-closed in *G*. Hence *g* is fuzzy contra gprw-continuous.

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}
$$

The other way round of the above theorem need not be true, as shown in the following example.

Example 3.3 Consider $G = H = \{l, m, n\}$ and function n , ψ , χ : $G \rightarrow [0,1]$ be defined as

$$
\eta(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \qquad \psi(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}
$$

$$
\chi(g) = \begin{cases} 1 & \text{if } g = m, n \\ 0 & \text{otherwise} \end{cases}
$$

Suppose $\tau_1 = \{0, 1, \eta\}, \tau_2 = \{0, 1, \psi \cdot \chi\}.$ Now (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now define a function $f : (G, \tau_1) \to (H, \tau_2)$ by $f(l) = m$, $f(m) = n$ and $f(n) = l$. Then *f* is fuzzy contra gprw-continuous & not

fuzzy contra continuous as $f^{-1}(\psi)$ is $η$ in $(H, τ_2)$ & $\eta \in \tau_1$.

 \Box

 \Box

Theorem 3.4 A function ζ : $(G, \tau_1) \rightarrow (H, \tau_2)$ is fuzzy contra gprw-continuous iff $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in *G* for every $\alpha \in 1 - \tau_2$.

Proof: Suppose $\alpha \in 1 - \tau_2$, implying $1 - \alpha \in \tau_2$. Now as ζ is fuzzy contra gprw-continuous, implies $\zeta^{-1}(1-\alpha)$ is fuzzy gprw-closed in *G*. Now as $\zeta^{-1}(1-\alpha) = 1 - \zeta^{-1}(\alpha)$ implies that $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in *G*.

Contrarily, assume that $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in G for every $\alpha \in 1 - \tau_2$. Let $\beta \in \tau_2$, then $1 - \beta$ is fuzzy closed in *H*. By hypothesis $\zeta^{-1}(1-\beta) = 1 - \zeta^{-1}(\beta)$ is fuzzy gprw open in *G*, implying $\zeta^{-1}(\beta)$ is fuzzy gprw-closed in *G*. Which proves the result.

Theorem 3.5 All fuzzy contra pre-continuous functions are fuzzy contra gprw-continuous.

Proof: Let $g : (G, \tau_1) \rightarrow (H, \tau_2)$ be fuzzy contra pre-continuous and suppose $\lambda \in \tau_2$. So $g^{-1}(\lambda)$ is fuzzy pre-closed in *G*. Now by *Remark* 2.9 $g^{-1}(\lambda)$ is fuzzy gprw-closed in *G*. Hence *g* is fuzzy contra gprw-continuous.

The converse of the above theorem need not be true as shown in the following example.

Example 3.6 Consider $G = H = \{l, m, n\}$ and function ω,η, ψ , χ : *G* \rightarrow [0, 1] be defined as

$$
\omega(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \qquad \psi(g) = \begin{cases} 1 & \text{if } g = l, n \\ 0 & \text{otherwise} \end{cases}
$$

$$
\chi(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \qquad \eta(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}
$$

Suppose $\tau_1 = \{0, 1, \omega, \psi\}, \tau_2 = \{0, 1, \omega, \chi\}.$ Now (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f: (G, \tau_1) \to (H, \tau_2)$ by $f(l) = l$, $f(m) = n$ and $f(n)$ *= m*. Then *f* is fuzzy contra gprw-continuous & not fuzzy contra pre-continuous as $f^{-1}(\omega)$ in (H, τ_2) is ω , which is fuzzy gprw- closed in (G, τ_1) but not fuzzy pre-closed.

□

Theorem 3.7 A fuzzy contra rw-continuous mapping $g : (G, \tau_1) \to (H, \tau_2)$ is fuzzy contra gprw-continuous also.

Proof: Consider $\alpha \leq \tau_2$, Now as *g* is fuzzy contra rw-continuos, implies $g^{-1}(\alpha)$ is fuzzy rw-closed in *G*. Now from *Remark 2.10* all fuzzy rw-closed sets are fuzzy gprw-closed, so $g^{-1}(\alpha)$ is fuzzy gprw-closed in *G*, implying *g* is fuzzy contra gprw-continuous.

The converse of the above theorem need not be true as shown in the following example.

Example 3.8 Consider $G = H = \{l, m, n, o, p\}$ are fuzzy spaces and functions $\eta, \alpha, \beta, \gamma : G \rightarrow [0,1]$ and $\delta: H \to [0,1]$ are defined as

$$
\alpha(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \eta(g) = \begin{cases} 1 & \text{if } g = p \\ 0 & \text{otherwise} \end{cases}
$$

$$
\beta(g) = \begin{cases} 1 & \text{if } g = n, o \\ 0 & \text{otherwise} \end{cases} \qquad \gamma(g) = \begin{cases} 1 & \text{if } g = l, m, n, o \\ 0 & \text{otherwise} \end{cases}
$$

$$
\delta(h) = \begin{cases} 1 & \text{if } h = l \\ 0 & \text{otherwise} \end{cases}
$$

Suppose $\tau_1 = \{0, 1, \alpha, \beta, \gamma\}, \tau_2 = \{0, 1, \delta\}.$ With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f : (G, \tau_1) \rightarrow (H, \tau_2)$ by $f(l) = m$, $f(m) = n$, $f(n) = o$, $f(o) = p$ and $f(p)= 1$. Then *f* is fuzzy contra gprw-continuous but not fuzzy contra rw-continuous as f^{-1} (δ) in (H, τ_2) is $η$, & $η$ is fuzzy gprw- closed in (G, τ_1) but not fuzzy rw-closed.

Remark 3.9 In the following examples we prove that Fuzzy contra gprw-continuous and fuzzy contra semi-continuous mappings are independent.

Example 3.10 Consider $G = H = \{p, q, r, s\}$ are fuzzy spaces and functions $\alpha, \beta, \gamma, \delta : G \rightarrow [0,1]$ be defined as

$$
\alpha(g) = \begin{cases} 1 & \text{if } g = p \\ 0 & \text{otherwise} \end{cases} \qquad \beta(g) = \begin{cases} 1 & \text{if } g = q \\ 0 & \text{otherwise} \end{cases}
$$

$$
\gamma(g) = \begin{cases} 1 & \text{if } g = p, q \\ 0 & \text{otherwise} \end{cases} \qquad \delta(g) = \begin{cases} 1 & \text{if } g = p, q, r \\ 0 & \text{otherwise} \end{cases}
$$

and $\psi, \eta : H \to [0,1]$ be defined as

$$
\psi(h) = \begin{cases} 1 & \text{if } h = r \\ 0 & \text{otherwise} \end{cases} \qquad \eta(h) = \begin{cases} 1 & \text{if } h = r, s \\ 0 & \text{otherwise} \end{cases}
$$

Suppose $\tau_1 = \{0, 1, \alpha, \beta, \gamma, \delta\}, \tau_2 = \{0, 1, \eta, \psi\}.$ With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f : (G, \tau_1) \to (H, \tau_2)$ by $f(p) = r$, $f(q) = s$, $f(r) = p$, $f(s) = q$. Then *f* is fuzzy contra semi-continuous but not fuzzy contra gprw-continuous as $f^{-1}(\psi)$ in (H, τ_2) is α , which is fuzzy semi- closed in (G, τ_1) but not fuzzy gprw-closed.

Example 3.11 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $f : (G, \tau_1) \rightarrow (H, \tau_2)$ by $f(p) = r$, $f(q) = s$, $f(r)$ $= q, f(s) = p$. Then *f* is fuzzy contra gprw-continuous & not fuzzy contra semi-continuous as $f^{-1}(\eta)$ in (H, τ_2) is γ , which is fuzzy gprw- closed in (G, τ_1) but not fuzzy semi-closed.

□

 \Box

Theorem 3.12 Suppose $g : (G, \tau_1) \rightarrow (H, \tau_2)$ is fuzzy continuous and *h* : $(L, \tau_3) \rightarrow (G, \tau_1)$ is fuzzy contra
gprw-continuous, then their composition map gprw-continuous, then their $goh: (L, \tau_3) \rightarrow (H, \tau_2)$ is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_2$. Since *g* is fuzzy continuous, implies $g^{-1}(\alpha) \leq \tau_1$. Now *h* is fuzzy contra gprw-continuous, so $h^{-1}(g^{-1}(\alpha))$ is fuzzy gprw-closed in (L, τ_3) . Since $(goh)^{-1}(\alpha) = h^{-1}(g^{-1}(\alpha))$. So $\varrho \circ h : (L, \tau_3) \to (H, \tau_2)$ is fuzzy contra gprw-continuous.

 \Box

Remark 3.13 *In the following examples we prove that Fuzzy contra gprw-continuous and fuzzy contra generalized continuous mappings are independent.*

Example 3.14 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $l:(G,\tau_1)\to (H,\tau_2)$ by $l(p)=r$, $l(q)=p$, $l(r)=$ *q* and $l(s) = s$. Then *l* is fuzzy contra generalized continuous mapping but not fuzzy contra mapping but not fuzzy contra gprw-continuous as $l^{-1}(\eta)$ in (H, τ_2) is $\chi : G \to [0,1]$ defined as

$$
\chi(g) = \begin{cases} 1 & \text{if } g = p, s \\ 0 & \text{otherwise} \end{cases}
$$

which is fuzzy generalizedclosed in (G, τ_1) but not fuzzy gprw-closed.

□

Example 3.15 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $h : (G, \tau_1) \to (H, \tau_2)$ by $h(p) = r$, $h(q) = s$, $h(r)$ $= p$ and $h(s) = q$. Then *h* is fuzzy contra gprw-continuous mapping but not fuzzy contra generalized continuous as $h^{-1}(\eta)$ in (H, τ_2) is γ in (G, τ_1) , which is fuzzy gprw-closed in (G, τ_1) but not fuzzy generalized closed.

□

Remark 3.16: From the above discusion of Results we have the following diagram of implications.Here $A \rightarrow B$ means *A* implies *B*.

 $A \leftrightarrow B$ means $A \& B$ are independent of each other.

□

□

Definition 3.17 Suppose (G, τ_1) and (H, τ_2) be two topological spaces. Then a function fuzzy topological $g:(G,\tau_1)\to (H,\tau_2)$ is called fuzzy contra gprw-contra irresolute map if $g^{-1}(h)$ is fuzzy gprw-closed in (G, τ_1) for every fuzzy gprw-open set h in (H, τ_2) .

Theorem 3.18 If $g : (G, \tau_1) \rightarrow (H, \tau_2)$ is fuzzy contra gprw-irresolute, then it is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_2$, Now from *Remark 2.11* α is fuzzy gprw-open in (H, τ_2) . Since *g* is fuzzy contra gprw-irresolute, implying $g^{-1}(\alpha)$ is fuzzy gprw-closed in (G, τ_1) . Thus *g* is fuzzy contra gprw-continuous.

□

Theorem 3.19 Let (L, τ_1) , (M, τ_2) and (N, τ_3) are fuzzy topological spaces. If $l : (L, \tau_1) \rightarrow (M, \tau_2)$ is fuzzy contra gprw-irresolute and $k : (M, \tau_2) \to (N, \tau_3)$ is fuzzy
gprw-continuous, then their composition gprw-continuous, kol : $(L, \tau_1) \rightarrow (N, \tau_3)$ is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_3$, Now as *k* is fuzzy gprw-continuous means $k^{-1}(\alpha)$ is fuzzy gprw open set in (M, τ) . Now as *l* is fuzzy contra gprw-irresolute, implies $l^{-1}(k^{-1}(\alpha))$ is fuzzy gprw closed set in (L, τ_1) . But $l^{-1}(k^{-1}(\alpha)) = (kol)^{-1}(\alpha)$, implies *kol* is fuzzy contra gprw-continuous.

 \Box

Theorem 3.20 Let (L, τ_1) , (M, τ_2) and (N, τ_3) are fuzzy topological spaces. If $l : (L, \tau_1) \rightarrow (M, \tau_2)$ is fuzzy gprw-irresolute and $m : (M, \tau_2) \to (N, \tau_3)$ is fuzzy contra
gprw-irresolute, then their composition gprw-irresolute, $mol: (L, \tau_1) \rightarrow (N, \tau_3)$ is fuzzy contra gprw-irresolute.

Proof: Suppose α is fuzzy gprw-open in (N, τ_3) . Since *m* is fuzzy contra gprw-irresolute, implies $m^{-1}(\alpha)$ is fuzzy gprw-closed in (M, τ_2) . Now as *l* is fuzzy gprw-irresolute, implies $l^{-1}(m^{-1}(\alpha))$ is fuzzy gprw-closed in (L, τ_1) . Now $(mol)^{-1}(\alpha) = l^{-1}(m^{-1}(\alpha))$, implying $mol: (L, \tau_1) \rightarrow (N, \tau_3)$ is fuzzy contra gprw-irresolute.

□

4 Fuzzy Contra gprw-open Mappings and Fuzzy Contra gprw-closed Mappings

Definition 4.1 A mapping $g : (G, \tau_1) \rightarrow (H, \tau_2)$ is *fuzzy contra gprw-open* if the image of $\lambda < \tau_1$ in (G, τ_1) is fuzzy gprw-closed in (H, τ_2) .

Example 4.2 All fuzzy contra open mappings are fuzzy contra gprw-open mappings.

Proof: Suppose $l : (G, \tau_1) \rightarrow (H, \tau_2)$ be a fuzzy contra open mapping and $\alpha \leq \tau_1$, then $l(\alpha) \leq 1 - \tau_2$. Now remark 2.8 implies $l(\alpha)$ is fuzzy gprw-closed set in (H, τ_2) . Hence *l* is fuzzy contra gprw-open mapping.

□

The other way round of the above theorem need not be true, as shown in the following example.

Example 4.3 Suppose $G = H = \{l, m, n, o\}$ are fuzzy spaces and functions $\alpha, \beta, \gamma, \delta : G \rightarrow [0,1]$ be defined as

$$
\alpha(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \beta(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}
$$

$$
\gamma(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \delta(g) = \begin{cases} 1 & \text{if } g = l, m, n \\ 0 & \text{otherwise} \end{cases}
$$

Consider $\tau_1 = \{0, 1, \alpha, \beta, \gamma\}, \tau_2 = \{0, 1, \alpha, \beta, \gamma, \delta\}.$ With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a mapping $f:(G, \tau_1) \rightarrow (H, \tau_2)$ by $f(l) = l$, $f(m) = m$, $f(n) = o \& f(o) = n$. Then *f* is fuzzy contra gprw-open mapping but not fuzzy contra open mapping, as image of $\gamma \leq \tau_1$ in (G, τ_1) is fuzzy set γ in (H, τ_2) which is fuzzy gprw- closed in (H, τ_2) but not fuzzy closed.

□

Example 4.4 If $l : (G, \tau_1) \rightarrow (H, \tau_2)$ is a fuzzy open map and $m:(H, \tau_2) \to (K, \tau_3)$ is fuzzy contra gprw-open, then the composition map $mol : (G, \tau_1) \rightarrow (K, \tau_3)$ is fuzzy contra gprw-open map.

Proof: Suppose $\alpha \leq \tau_1$. Now, as *l* is a fuzzy open map implies $l(\alpha) \leq \tau_2$. Since m is a fuzzy contra gprw-open map $m(l(\alpha))$ is fuzzy gprw-closed set in (K, τ_3) . Now $m(l(\alpha)) = (mol)(\alpha)$, implying *mol* is fuzzy contra gprw-open map.

□

Definition 4.5 Let (G, τ_1) and (H, τ_2) be two fuzzy topological spaces. A mapping $g : (G, \tau_1) \to (H, \tau_2)$ is called fuzzy contra gprw-closed if the image of $\gamma \leq 1 - \tau_1$ in (G, τ_1) is fuzzy gprw-open in (H, τ_2) .

Theorem 4.6 If $l : (G, \tau_1) \rightarrow (H, \tau_2)$ is a fuzzy contra closed mapping, then it is fuzzy contra gprw-closed mapping also.

Proof: Suppose $\lambda \leq 1 - \tau_1$, Now as *l* is fuzzy contra closed mapping, implies $l(\lambda) \leq \tau_2$. Now, as all fuzzy open sets are fuzzy gprw-open implying that $l(\lambda)$ is fuzzy gprw-open in (H, τ_2) . Hence *l* is a fuzzy contra gprw-closed mapping.

 \Box

The other way round of the above theorem need not be true, as shown in the following example.

Example 4.7 Suppose $X = Y = \{l, m, n, o, p\}$ are fuzzy topological spaces with topologies $\tau_1 = \{0, 1, \chi\}$ and $\tau_2 = \{0, 1, \alpha, \beta, \gamma\}$ where $\chi : X \to [0, 1]$ and $\alpha, \beta, \gamma: Y \rightarrow [0, 1]$ are defined as

$$
\chi(x) = \begin{cases} 1 & \text{if } x = p \\ 0 & \text{otherwise} \end{cases} \qquad \beta(y) = \begin{cases} 1 & \text{if } y = n, o \\ 0 & \text{otherwise} \end{cases}
$$

$$
\alpha(y) = \begin{cases} 1 & \text{if } y = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \gamma(y) = \begin{cases} 1 & \text{if } y = l, m, n, o \\ 0 & \text{otherwise} \end{cases}
$$

Let the function $f : (X, \tau_1) \to (Y, \tau_2)$ be defined as $f(l) =$ *m*, $f(m) = n$, $f(n) = o$, $f(o) = p$ and $f(p) = l$. Then *f* is fuzzy contra gprw-closed map but not fuzzy contra closed map as image of $\psi \leq 1 - \tau_1$ in *X* defined as

$$
\psi(x) = \begin{cases} 1 & \text{if } x = l, m, n, o \\ 0 & \text{otherwise} \end{cases}
$$

is μ in Y defined as

$$
\mu(y) = \begin{cases} 1 & \text{if } y = m, n, o, p \\ 0 & \text{otherwise} \end{cases}
$$

which is fuzzy gprw-open in (Y, τ_2) but not fuzzy open.

□

Theorem 4.8 If *l* : $(G, \tau_1) \rightarrow (H, \tau_2)$ and $m : (H, \tau_2) \rightarrow (K, \tau_3)$ be two maps. Then $mol : (G, \tau_1) \rightarrow (K, \tau_3)$ is fuzzy contra gprw-closed map if *l* is a fuzzy closed mapping and *m* is fuzzy contra gprw-closed mapping.

Proof: Let $\alpha \leq 1 - \tau_1$ Since *l* is a fuzzy closed mapping, so $l(\alpha) \leq 1 - \tau_2$. Now *m* is a fuzzy contra gprw-closed map, implies $m(l(\alpha))$ is fuzzy gprw-open in (K, τ_3) . But $m(l(\alpha)) = (mol)(\alpha)$, implying *mol* is fuzzy contra gprw-closed mapping.

□

Theorem 4.9 Let $l : (G, \tau_1) \rightarrow (H, \tau_2)$ and $m : (H, \tau_2) \to (K, \tau_3)$ be two mappings such that $mol: (G, \tau_1) \rightarrow (K, \tau_3)$ is fuzzy contra gprw-closed map then,

- (I)Suppose *l* is fuzzy continuous and onto then *m* is fuzzy contra gprw-closed.
- (II)Suppose *m* is fuzzy gprw-irresolute and one-one then *l* is fuzzy contra gprw-closed.

Proof: (I) Let $\alpha \leq \tau_2$. Since *l* is fuzzy continuous, $l^{-1}(\alpha) \leq 1 - \tau_1$. Since *mol* is fuzzy contra gprw-closed map, $(mol)(l^{-1}(\alpha))$ is fuzzy gprw-open set in *I*. But $(mol)(l^{-1}(\alpha)) = m(\alpha)$, as *l* is surjective. Thus *m* is fuzzy contra gprw-closed.

(II) Let $\mu \leq 1 - \tau_1$. Now *mol* is fuzzy contra gprw-closed, implies $mol(\mu)$ is fuzzy gprw-open in *I*. Since *m* is fuzzy gprw-irresolute, so $m^{-1}(mol)(\mu)$ is fuzzy gprw-open in (H, τ_2) . But $m^{-1}(mol)(\mu) = l(\mu)$ as *m* is injective. Thus *l* is fuzzy contra gprw-closed mapping.

□

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

- [1] Jafari, S. and Nori (2002), On contra- precontinuous functions, *Bull. Malays Math. Sci. Soc.* (2), 25(2), 115-128.
- [2] Vadivel, A., V. Chandrasekar, and M. Saraswathi (2011), Fuzzy Contra rw-continuous Functions, *Advances in Fuzzy Mathematics* 6(1) 53-60.
- [3] Firdose Habib and Khaja Moinuddin, (2019), On Fuzzy gprw-closed sets in Fuzzy Topological spaces, *Journal of the Gujarat Research Society*, 21.
- [4] K. K. Azad, (1981) On Fuzzy Semicontinuity, Fuzzy Almost Continuity and Fuzzy Weakly Continuity, *Journal Of Mathematical Analysis and Applications* 82, 14-32.
- [5] Firdose Habib and Khaja Moinuddin (2021), On fuzzy generalized pre regular weakly continuity, *South East Asian J. of Mathematics and Mathematical Sciences*, 17, 181-188.
- [6] S.E. Abbas and I.M. Taha, (2012), Weaker Forms of Fuzzy Contra-continuity in Fuzzy Topological Spaces, *The Journal of Fuzzy Mathematics*, 20, 4.
- [7] E. Ekici and E. Kerre, (2006), On fuzzy contra-continuties, *Advances in Fuzzy Mathematics*, 2, 35-44 .
- [8] A.Vadivel, V. Chandrasekar and M. Saraswathi, (2011), Fuzzy contra rw-continuous functions, *Advanced in fuzzy mathematics*, 6, 53-60.