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Abstract: In this manuscript new types of fuzzy mappings namely fuzzy contra gprw-continuous mappings have been introduced &
investigated. Also we found out its relation with various other fuzzy contra mappings introduced earlier. We also introduced fuzzy
contra gprw-open mappings and fuzzy contra gprw-closed mappings in this paper.
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1 Introduction

The idea of fuzzy contra mappings was put forward by
Ekici and Kerre in 2006 in [7]. Soon after that, based on
various other types of fuzzy sets various fuzzy contra
mappings were introduced like in 2011 fuzzy contra
rw-continuous mappings were introduced by A.Vadivel,V.
Chandrasekar and M.Saraswathi in [8]. In 2012 in [6]
S.E. Abbas and I.M. Taha introduced the concepts of
fuzzy contra-continuity, fuzzy almost contra-continuity,
fuzzy contra µ continuity, fuzzy almost contra µ

continuity, fuzzy contra semi-continuity and generalized
fuzzy contra continuity in.

Based on fuzzy gprw-closed sets, we have introduced
a new type of mappings namely fuzzy contra
gprw-continuous mappings in this manuscript and have
found out its relation with various other mappings
introduced earlier. We found out that all fuzzy contra
continuous mappings are fuzzy gprw-continuous
mappings, All fuzzy contra pre-continuous mappings are
fuzzy contra gprw-continuous mappings & all fuzzy
contra rw-continuous mappings are fuzzy contra
gprw-continuous mappings. The relationship of this new
mapping with other mappings have been depicted via a
table figure. Also we have introduced fuzzy contra
gprw-open mappings and fuzzy contra gprw-closed
mappings in this paper.

2 Preliminaries

Definition 2.1 ”A mapping f is said to be a fuzzy
continuous mapping if f−1(λ ) ∈ τX for each λ ∈ τY or,
equivalently f−1(µ) is a fuzzy closed set of X for each
fuzzy closed set µ of Y ”. [4]

Definition 2.2 ”A function f : X → Y is said to be fuzzy
contra pre continuous, if f−1(λ ) is fuzzy pre-closed in X
for every fuzzy open set λ of Y ”.[1]

Definition 2.3 ”Suppose X and Y are fuzzy topological
spaces. A map f : X → Y is called fuzzy contra rw
-continuous if the inverse image of every fuzzy open set
in Y is fuzzy rw -closed in X” . [2]

Definition 2.4 ”A function h : H → K is called fuzzy
generalized pre regular weakly continuous (briefly
Fgprw-continuous) if inverse image of every fuzzy closed
set in fuzzy topological space K is fuzzy generalized pre
regular weakly closed (Fgprw-closed) in fuzzy
topological space H”. [5]

Definition 2.5 ”A function h : (H,τ1)→ (K,τ2) is said to
be fuzzy generalized pre regular weakly-irresolute (briefly
Fgprw-irresolute) ifh−1({ψ}) is fuzzy gprw-closed for
every fuzzy gprw-closed {ψ} in (K,τ2)”. [5]
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Definition 2.6 ”let f : (X ,τ1) → (Y,τ2) be a mapping.
Then f is fuzzy contra open mapping, if it maps every
fuzzy open set in (X ,τ1) to a fuzzy closed set in
(Y,τ2)”.[6]

Definition 2.7 ”A function f from a fuzzy topological
space (X ,τ) to fuzzy topological space (Y,δ ) is called
fuzzy contra pre-continuous (fuzzy contra α-continuous,
fuzzy contra semi-continuous) if f−1(λ ) is fuzzy
pre-closed (fuzzy α-closed, fuzzy semi-closed resp.) in X
for every fuzzy open set λ of Y ”. [1]

Remark 2.8 All fuzzy closed sets are fuzzy gprw-closed.
[3]
Remark 2.9 All fuzzy pre-closed sets are fuzzy
gprw-closed. [3]
Remark 2.10 All fuzzy rw-closed sets are fuzzy
gprw-closed. [3]
Remark 2.11 All fuzzy open sets are fuzzy gprw-open.
[3]

3 Fuzzy Contra gprw-Continuous Mappings

Definition 3.1 A mapping r : (R,τ1) → (S,τ2) is called
fuzzy contra gprw-continuous if r−1(s) : s ∈ τ2 is fuzzy
gprw-closed in R.

Theorem 3.2 A fuzzy contra continuous mapping
g : (G,τ1) → (H,τ2) is always fuzzy contra
gprw-continuous.

Proof: Consider ψ ≤ τ2. Now, as g is fuzzy contra
continuous implies g−1(ψ) is fuzzy closed in G. From
Remark 2.8 all fuzzy closed sets are fuzzy gprw-closed,
so g−1(ψ) is fuzzy gprw-closed in G. Hence g is fuzzy
contra gprw-continuous.

□

The other way round of the above theorem need not be
true, as shown in the following example.

Example 3.3 Consider G = H = {l,m,n} and function η

,ψ , χ : G → [0,1]be defined as

η(g) =

{
1 if g = l
0 otherwise

ψ(g) =

{
1 if g = m
0 otherwise

χ(g) =

{
1 if g = m,n
0 otherwise

Suppose τ1 = {0,1,η}, τ2 = {0,1,ψ.χ}. Now (G,τ1)
and (H,τ2) are fuzzy topological spaces. Now define a
function f : (G,τ1) → (H,τ2) by f(l) = m, f(m) = n and
f(n) = l. Then f is fuzzy contra gprw-continuous & not

fuzzy contra continuous as f−1(ψ) is η in (H,τ2) &
η ∈ τ1.

□

Theorem 3.4 A function ζ : (G,τ1) → (H,τ2) is fuzzy
contra gprw-continuous iff ζ−1(α) is fuzzy gprw-open in
G for every α ∈ 1− τ2.

Proof: Suppose α ∈ 1− τ2, implying 1−α ∈ τ2. Now as
ζ is fuzzy contra gprw-continuous, implies ζ−1(1−α) is
fuzzy gprw-closed in G. Now as
ζ−1(1−α) = 1− ζ−1(α) implies that ζ−1(α) is fuzzy
gprw-open in G.
Contrarily, assume that ζ−1(α) is fuzzy gprw-open in G
for every α ∈ 1 − τ2. Let β ∈ τ2, then 1 − β is fuzzy
closed in H. By hypothesis ζ−1(1− β ) = 1− ζ−1(β ) is
fuzzy gprw open in G, implying ζ−1(β ) is fuzzy
gprw-closed in G. Which proves the result.

□

Theorem 3.5 All fuzzy contra pre-continuous functions
are fuzzy contra gprw-continuous.

Proof: Let g : (G,τ1) → (H,τ2) be fuzzy contra
pre-continuous and suppose λ ∈ τ2. So g−1(λ ) is fuzzy
pre-closed in G . Now by Remark 2.9 g−1(λ ) is fuzzy
gprw-closed in G. Hence g is fuzzy contra
gprw-continuous.

The converse of the above theorem need not be true as
shown in the following example.

Example 3.6 Consider G = H = {l,m,n} and function
ω ,η ,ψ , χ : G → [0,1]be defined as

ω(g) =

{
1 if g = l
0 otherwise

ψ(g) =

{
1 if g = l,n
0 otherwise

χ(g) =

{
1 if g = l,m
0 otherwise

η(g) =

{
1 if g = m
0 otherwise

Suppose τ1 = {0,1,ω,ψ}, τ2 = {0,1,ω,χ}. Now (G,τ1)
and (H,τ2) are fuzzy topological spaces. Now, we define a
function f : (G,τ1)→ (H,τ2) by f(l) = l, f(m) = n and f(n)
= m. Then f is fuzzy contra gprw-continuous & not fuzzy
contra pre-continuous as f−1(ω) in (H,τ2) is ω , which is
fuzzy gprw- closed in (G,τ1) but not fuzzy pre-closed.

□

Theorem 3.7 A fuzzy contra rw-continuous mapping
g : (G,τ1) → (H,τ2) is fuzzy contra gprw-continuous
also.

Proof: Consider α ≤ τ2, Now as g is fuzzy contra
rw-continuos, implies g−1(α) is fuzzy rw-closed in G.
Now from Remark 2.10 all fuzzy rw-closed sets are fuzzy
gprw-closed, so g−1(α) is fuzzy gprw-closed in G,
implying g is fuzzy contra gprw-continuous.
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□

The converse of the above theorem need not be true as
shown in the following example.

Example 3.8 Consider G = H = {l,m,n,o, p} are fuzzy
spaces and functions η ,α,β ,γ : G → [0,1] and
δ : H → [0,1] are defined as

α(g) =

{
1 if g = l,m
0 otherwise

η(g) =

{
1 if g = p
0 otherwise

β (g) =

{
1 if g = n,o
0 otherwise

γ(g) =

{
1 if g = l,m,n,o
0 otherwise

δ (h) =

{
1 if h = l
0 otherwise

Suppose τ1 = {0,1,α,β ,γ}, τ2 = {0,1,δ}.With these
topologies (G,τ1) and (H,τ2) are fuzzy topological
spaces. Now, we define a function f : (G,τ1) → (H,τ2)
by f(l) = m, f(m) = n, f(n) = o, f(o) = p and f(p)= l. Then f
is fuzzy contra gprw-continuous but not fuzzy contra
rw-continuous as f−1(δ ) in (H,τ2) is η , & η is fuzzy
gprw- closed in (G,τ1) but not fuzzy rw-closed.

□

Remark 3.9 In the following examples we prove that
Fuzzy contra gprw-continuous and fuzzy contra
semi-continuous mappings are independent.

Example 3.10 Consider G = H = {p,q,r,s} are fuzzy
spaces and functions α,β ,γ,δ : G → [0,1] be defined as

α(g) =

{
1 if g = p
0 otherwise

β (g) =

{
1 if g = q
0 otherwise

γ(g) =

{
1 if g = p,q
0 otherwise

δ (g) =

{
1 if g = p,q,r
0 otherwise

and ψ,η : H → [0,1] be defined as

ψ(h) =

{
1 if h = r
0 otherwise

η(h) =

{
1 if h = r,s
0 otherwise

Suppose τ1 = {0,1,α,β ,γ,δ}, τ2 = {0,1,η ,ψ}.With
these topologies (G,τ1) and (H,τ2) are fuzzy topological
spaces. Now, we define a function f : (G,τ1) → (H,τ2)
by f(p) = r, f(q) = s, f(r) = p, f(s) = q . Then f is fuzzy
contra semi-continuous but not fuzzy contra
gprw-continuous as f−1(ψ) in (H,τ2) is α , which is
fuzzy semi- closed in (G,τ1) but not fuzzy gprw-closed.

□

Example 3.11 Consider fuzzy topological spaces (G,τ1)
and (H,τ2) as defined in Example 3.10. Now, if we define
a mapping f : (G,τ1) → (H,τ2) by f(p) = r, f(q) = s, f(r)
= q, f(s) = p . Then f is fuzzy contra gprw-continuous &
not fuzzy contra semi-continuous as f−1(η) in (H,τ2) is
γ , which is fuzzy gprw- closed in (G,τ1) but not fuzzy
semi-closed.

□

Theorem 3.12 Suppose g : (G,τ1) → (H,τ2) is fuzzy
continuous and h : (L,τ3) → (G,τ1) is fuzzy contra
gprw-continuous, then their composition map
goh : (L,τ3)→ (H,τ2) is fuzzy contra gprw-continuous.

Proof: Suppose α ≤ τ2. Since g is fuzzy continuous,
implies g−1(α) ≤ τ1. Now h is fuzzy contra
gprw-continuous, so h−1(g−1(α)) is fuzzy gprw-closed in
(L,τ3). Since (goh)−1(α) = h−1(g−1(α)). So
goh : (L,τ3)→ (H,τ2) is fuzzy contra gprw-continuous.

□

Remark 3.13 In the following examples we prove that
Fuzzy contra gprw-continuous and fuzzy contra
generalized continuous mappings are independent.

Example 3.14 Consider fuzzy topological spaces (G,τ1)
and (H,τ2) as defined in Example 3.10. Now, if we define
a mapping l : (G,τ1)→ (H,τ2) by l(p) = r, l(q) = p, l(r) =
q and l(s) = s . Then l is fuzzy contra generalized
continuous mapping but not fuzzy contra
gprw-continuous as l−1(η) in (H,τ2) is χ : G → [0,1]
defined as

χ(g) =

{
1 if g = p,s
0 otherwise

which is fuzzy generalizedclosed in (G,τ1) but not fuzzy
gprw-closed.

□

Example 3.15 Consider fuzzy topological spaces (G,τ1)
and (H,τ2) as defined in Example 3.10. Now, if we define
a mapping h : (G,τ1)→ (H,τ2) by h(p) = r, h(q) = s, h(r)
= p and h(s) = q . Then h is fuzzy contra gprw-continuous
mapping but not fuzzy contra generalized continuous as
h−1(η) in (H,τ2) is γ in (G,τ1), which is fuzzy
gprw-closed in (G,τ1) but not fuzzy generalized closed.

□

Remark 3.16: From the above discusion of Results we have
the following diagram of implications.Here
A → B means A implies B.
A ↮ B means A & B are independent of each other.
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Definition 3.17 Suppose (G,τ1) and (H,τ2) be two
fuzzy topological spaces. Then a function
g : (G,τ1) → (H,τ2) is called fuzzy contra gprw-contra
irresolute map if g−1(h) is fuzzy gprw-closed in (G,τ1)
for every fuzzy gprw-open set h in (H,τ2).

Theorem 3.18 If g : (G,τ1) → (H,τ2) is fuzzy contra
gprw-irresolute, then it is fuzzy contra gprw-continuous.

Proof: Suppose α ≤ τ2, Now from Remark 2.11 α is
fuzzy gprw-open in (H,τ2). Since g is fuzzy contra
gprw-irresolute, implying g−1(α) is fuzzy gprw-closed in
(G,τ1). Thus g is fuzzy contra gprw-continuous.

□

Theorem 3.19 Let (L,τ1), (M,τ2) and (N,τ3) are fuzzy
topological spaces. If l : (L,τ1)→ (M,τ2) is fuzzy contra
gprw-irresolute and k : (M,τ2) → (N,τ3) is fuzzy
gprw-continuous, then their composition
kol : (L,τ1)→ (N,τ3) is fuzzy contra gprw-continuous.

Proof: Suppose α ≤ τ3, Now as k is fuzzy
gprw-continuous means k−1(α) is fuzzy gprw open set in
(M,τ2). Now as l is fuzzy contra gprw-irresolute, implies
l−1(k−1(α)) is fuzzy gprw closed set in (L,τ1). But
l−1(k−1(α)) = (kol)−1(α), implies kol is fuzzy contra
gprw-continuous.

□

Theorem 3.20 Let (L,τ1), (M,τ2) and (N,τ3) are fuzzy
topological spaces. If l : (L,τ1) → (M,τ2) is fuzzy
gprw-irresolute and m : (M,τ2) → (N,τ3) is fuzzy contra
gprw-irresolute, then their composition
mol : (L,τ1)→ (N,τ3) is fuzzy contra gprw-irresolute.

Proof: Suppose α is fuzzy gprw-open in (N,τ3). Since m
is fuzzy contra gprw-irresolute, implies m−1(α) is fuzzy
gprw-closed in (M,τ2). Now as l is fuzzy gprw-irresolute,
implies l−1(m−1(α)) is fuzzy gprw-closed in (L,τ1).
Now (mol)−1(α) = l−1(m−1(α), implying
mol : (L,τ1)→ (N,τ3) is fuzzy contra gprw-irresolute.

□

4 Fuzzy Contra gprw-open Mappings and
Fuzzy Contra gprw-closed Mappings

Definition 4.1 A mapping g : (G,τ1) → (H,τ2) is fuzzy
contra gprw-open if the image of λ ≤ τ1 in (G,τ1) is

fuzzy gprw-closed in (H,τ2).

Example 4.2 All fuzzy contra open mappings are fuzzy
contra gprw-open mappings.

Proof: Suppose l : (G,τ1) → (H,τ2) be a fuzzy contra
open mapping and α ≤ τ1, then l(α) ≤ 1 − τ2. Now
remark 2.8 implies l(α) is fuzzy gprw-closed set in
(H,τ2). Hence l is fuzzy contra gprw-open mapping.

□

The other way round of the above theorem need not be
true, as shown in the following example.

Example 4.3 Suppose G = H = {l,m,n,o} are fuzzy
spaces and functions α,β ,γ,δ : G → [0,1] be defined as

α(g) =

{
1 if g = l
0 otherwise

β (g) =

{
1 if g = m
0 otherwise

γ(g) =

{
1 if g = l,m
0 otherwise

δ (g) =

{
1 if g = l,m,n
0 otherwise

Consider τ1 = {0,1,α,β ,γ}, τ2 = {0,1,α,β ,γ,δ}.With
these topologies (G,τ1) and (H,τ2) are fuzzy topological
spaces. Now, we define a mapping f : (G,τ1)→ (H,τ2) by
f(l) = l, f(m) = m, f(n) = o & f(o) = n . Then f is fuzzy contra
gprw-open mapping but not fuzzy contra open mapping, as
image of γ ≤ τ1 in (G,τ1) is fuzzy set γ in (H,τ2) which
is fuzzy gprw- closed in (H,τ2) but not fuzzy closed.

□

Example 4.4 If l : (G,τ1)→ (H,τ2) is a fuzzy open map
and m : (H,τ2)→ (K,τ3) is fuzzy contra gprw-open, then
the composition map mol : (G,τ1) → (K,τ3) is fuzzy
contra gprw-open map.

Proof: Suppose α ≤ τ1. Now, as l is a fuzzy open map
implies l(α) ≤ τ2. Since m is a fuzzy contra gprw-open
map m(l(α)) is fuzzy gprw-closed set in (K,τ3). Now
m(l(α)) = (mol)(α), implying mol is fuzzy contra
gprw-open map.

□

Definition 4.5 Let (G,τ1) and (H,τ2) be two fuzzy
topological spaces. A mapping g : (G,τ1) → (H,τ2) is
called fuzzy contra gprw-closed if the image of γ ≤ 1− τ1
in (G,τ1) is fuzzy gprw-open in (H,τ2).

Theorem 4.6 If l : (G,τ1) → (H,τ2) is a fuzzy contra
closed mapping, then it is fuzzy contra gprw-closed
mapping also.

Proof: Suppose λ ≤ 1 − τ1, Now as l is fuzzy contra
closed mapping, implies l(λ ) ≤ τ2. Now, as all fuzzy
open sets are fuzzy gprw-open implying that l(λ ) is fuzzy
gprw-open in (H,τ2). Hence l is a fuzzy contra
gprw-closed mapping.
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□

The other way round of the above theorem need not be
true, as shown in the following example.

Example 4.7 Suppose X = Y = {l,m,n,o, p} are fuzzy
topological spaces with topologies τ1 = {0,1,χ}and
τ2 = {0,1,α,β ,γ} where χ : X → [0,1] and
α,β ,γ : Y → [0,1] are defined as

χ(x) =

{
1 if x = p
0 otherwise

β (y) =

{
1 if y = n,o
0 otherwise

α(y) =

{
1 if y = l,m
0 otherwise

γ(y) =

{
1 if y = l,m,n,o
0 otherwise

Let the function f : (X ,τ1)→ (Y,τ2) be defined as f (l) =
m, f (m) = n, f (n) = o, f (o) = p and f (p) = l. Then f is
fuzzy contra gprw-closed map but not fuzzy contra closed
map as image of ψ ≤ 1− τ1 in X defined as

ψ(x) =

{
1 if x = l,m,n,o
0 otherwise

is µ in Y defined as

µ(y) =

{
1 if y = m,n,o, p
0 otherwise

which is fuzzy gprw-open in (Y,τ2) but not fuzzy open.

□

Theorem 4.8 If l : (G,τ1) → (H,τ2) and
m : (H,τ2) → (K,τ3) be two maps. Then
mol : (G,τ1) → (K,τ3) is fuzzy contra gprw-closed map
if l is a fuzzy closed mapping and m is fuzzy contra
gprw-closed mapping.

Proof: Let α ≤ 1− τ1 Since l is a fuzzy closed mapping,
so l(α) ≤ 1− τ2. Now m is a fuzzy contra gprw-closed
map, implies m(l(α)) is fuzzy gprw-open in (K,τ3). But
m(l(α)) = (mol)(α), implying mol is fuzzy contra
gprw-closed mapping.

□

Theorem 4.9 Let l : (G,τ1) → (H,τ2) and
m : (H,τ2) → (K,τ3) be two mappings such that
mol : (G,τ1) → (K,τ3) is fuzzy contra gprw-closed map
then,

(I)Suppose l is fuzzy continuous and onto then m is fuzzy
contra gprw-closed.

(II)Suppose m is fuzzy gprw-irresolute and one-one then l
is fuzzy contra gprw-closed.

Proof: (I) Let α ≤ τ2. Since l is fuzzy continuous,
l−1(α) ≤ 1− τ1. Since mol is fuzzy contra gprw-closed
map, (mol)(l−1(α)) is fuzzy gprw-open set in I. But
(mol)(l−1(α)) = m(α), as l is surjective. Thus m is fuzzy
contra gprw-closed.

(II) Let µ ≤ 1− τ1. Now mol is fuzzy contra gprw-closed,
implies mol(µ) is fuzzy gprw-open in I. Since m is fuzzy
gprw-irresolute, so m−1(mol)(µ) is fuzzy gprw-open in
(H,τ2). But m−1(mol)(µ) = l(µ) as m is injective. Thus l
is fuzzy contra gprw-closed mapping.

□
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