

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.18576/amis/170216

Fuzzy Contra gprw-Continuous Mappings

Firdose Habib¹, Ali Akgül^{2,3,*}, Abdulrahman M. Alansari⁴ and Wasan Shakir Awad⁵

¹Department Of Mathematics, Maulana Azad National Urdu University Hyderabad, Hyderabad, India

²Siirt University, Art and Science Faculty, Department of Mathematics, 56100 Siirt, Turkey

³Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamilnadu, India

⁴Jeddah College of Engineering, University of Business and Technology, Jeddah 21432, Saudi Arabia

⁵College of Information Technology, Ahlia University, Kingdom of Bahrain

Received: 4 Jul. 2022, Revised: 11 Jan. 2023, Accepted: 19 Jan. 2023 Published online: 1 Mar. 2023

Abstract: In this manuscript new types of fuzzy mappings namely fuzzy contra gprw-continuous mappings have been introduced & investigated. Also we found out its relation with various other fuzzy contra mappings introduced earlier. We also introduced fuzzy contra gprw-open mappings and fuzzy contra gprw-closed mappings in this paper.

Keywords: Fuzzy contra gprw-continuous mappings; Fuzzy contra pre-continuous mappings; Fuzzy contra rw-continuous mappings; Fuzzy contra gprw-open mappings; Fuzzy contra gprw-closed mappings.

1 Introduction

The idea of fuzzy contra mappings was put forward by Ekici and Kerre in 2006 in [7]. Soon after that, based on various other types of fuzzy sets various fuzzy contra mappings were introduced like in 2011 fuzzy contra rw-continuous mappings were introduced by A.Vadivel,V. Chandrasekar and M.Saraswathi in [8]. In 2012 in [6] S.E. Abbas and I.M. Taha introduced the concepts of fuzzy contra-continuity, fuzzy almost contra-continuity, fuzzy contra μ continuity, fuzzy almost contra μ continuity, fuzzy contra ductor and generalized fuzzy contra continuity in.

Based on fuzzy gprw-closed sets, we have introduced a new type of mappings namely fuzzy contra gprw-continuous mappings in this manuscript and have found out its relation with various other mappings introduced earlier. We found out that all fuzzy contra continuous mappings are fuzzy gprw-continuous mappings, All fuzzy contra pre-continuous mappings are fuzzy contra gprw-continuous mappings & all fuzzy contra rw-continuous mappings are fuzzy contra gprw-continuous mappings. The relationship of this new mapping with other mappings have been depicted via a table figure. Also we have introduced fuzzy contra gprw-closed mappings in this paper.

2 Preliminaries

Definition 2.1 "A mapping f is said to be a fuzzy continuous mapping if $f^{-1}(\lambda) \in \tau X$ for each $\lambda \in \tau Y$ or, equivalently $f^{-1}(\mu)$ is a fuzzy closed set of X for each fuzzy closed set μ of Y". [4]

Definition 2.2 "A function $f : X \to Y$ is said to be fuzzy contra pre continuous, if $f^{-1}(\lambda)$ is fuzzy pre-closed in *X* for every fuzzy open set λ of *Y*".[1]

Definition 2.3 "Suppose *X* and *Y* are fuzzy topological spaces. A map $f : X \to Y$ is called fuzzy contra rw -continuous if the inverse image of every fuzzy open set in *Y* is fuzzy rw -closed in *X*". [2]

Definition 2.4 "A function $h : H \to K$ is called *fuzzy* generalized pre regular weakly continuous (briefly Fgprw-continuous) if inverse image of every fuzzy closed set in fuzzy topological space *K* is fuzzy generalized pre regular weakly closed (Fgprw-closed) in fuzzy topological space *H*". [5]

Definition 2.5 "A function $h: (H, \tau_1) \to (K, \tau_2)$ is said to be *fuzzy generalized pre regular weakly-irresolute* (briefly Fgprw-irresolute) if $h^{-1}(\{\psi\})$ is fuzzy gprw-closed for every fuzzy gprw-closed $\{\psi\}$ in (K, τ_2) ". [5]

* Corresponding author e-mail: aliakgul@siirt.edu.tr

Definition 2.6 "let $f : (X, \tau_1) \to (Y, \tau_2)$ be a mapping. Then f is fuzzy contra open mapping, if it maps every fuzzy open set in (X, τ_1) to a fuzzy closed set in (Y, τ_2) ".[6]

Definition 2.7 "A function f from a fuzzy topological space (X, τ) to fuzzy topological space (Y, δ) is called fuzzy contra pre-continuous (fuzzy contra α -continuous, fuzzy contra semi-continuous) if $f^{-1}(\lambda)$ is fuzzy pre-closed (fuzzy α -closed, fuzzy semi-closed resp.) in X for every fuzzy open set λ of Y". [1]

Remark 2.8 All fuzzy closed sets are fuzzy gprw-closed. [3]

Remark 2.9 All fuzzy pre-closed sets are fuzzy gprw-closed. [3]

Remark 2.10 All fuzzy rw-closed sets are fuzzy gprw-closed. [3]

Remark 2.11 All fuzzy open sets are fuzzy gprw-open. [3]

3 Fuzzy Contra gprw-Continuous Mappings

Definition 3.1 A mapping $r : (R, \tau_1) \to (S, \tau_2)$ is called *fuzzy contra gprw-continuous* if $r^{-1}(s) : s \in \tau_2$ is fuzzy gprw-closed in *R*.

Theorem 3.2 A fuzzy contra continuous mapping $g : (G, \tau_1) \rightarrow (H, \tau_2)$ is always fuzzy contra gprw-continuous.

Proof: Consider $\psi \leq \tau_2$. Now, as g is fuzzy contra continuous implies $g^{-1}(\psi)$ is fuzzy closed in G. From *Remark* 2.8 all fuzzy closed sets are fuzzy gprw-closed, so $g^{-1}(\psi)$ is fuzzy gprw-closed in G. Hence g is fuzzy contra gprw-continuous.

$$\Box$$

The other way round of the above theorem need not be true, as shown in the following example.

Example 3.3 Consider $G = H = \{l, m, n\}$ and function η , ψ , $\chi : G \rightarrow [0, 1]$ be defined as

$$\eta(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \qquad \psi(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}$$

$$\chi(g) = \begin{cases} 1 & \text{if } g = m, n \\ 0 & \text{otherwise} \end{cases}$$

Suppose $\tau_1 = \{0, 1, \eta\}$, $\tau_2 = \{0, 1, \psi, \chi\}$. Now (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now define a function $f : (G, \tau_1) \to (H, \tau_2)$ by f(l) = m, f(m) = n and f(n) = l. Then f is fuzzy contra gprw-continuous & not fuzzy contra continuous as $f^{-1}(\psi)$ is η in (H, τ_2) & $\eta \in \tau_1$.

Theorem 3.4 A function $\zeta : (G, \tau_1) \to (H, \tau_2)$ is fuzzy contra gprw-continuous iff $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in *G* for every $\alpha \in 1 - \tau_2$.

Proof: Suppose $\alpha \in 1 - \tau_2$, implying $1 - \alpha \in \tau_2$. Now as ζ is fuzzy contra gprw-continuous, implies $\zeta^{-1}(1-\alpha)$ is fuzzy gprw-closed in *G*. Now as $\zeta^{-1}(1-\alpha) = 1 - \zeta^{-1}(\alpha)$ implies that $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in *G*.

Contrarily, assume that $\zeta^{-1}(\alpha)$ is fuzzy gprw-open in *G* for every $\alpha \in 1 - \tau_2$. Let $\beta \in \tau_2$, then $1 - \beta$ is fuzzy closed in *H*. By hypothesis $\zeta^{-1}(1-\beta) = 1 - \zeta^{-1}(\beta)$ is fuzzy gprw open in *G*, implying $\zeta^{-1}(\beta)$ is fuzzy gprw-closed in *G*. Which proves the result.

Theorem 3.5 All fuzzy contra pre-continuous functions are fuzzy contra gprw-continuous.

Proof: Let $g: (G, \tau_1) \to (H, \tau_2)$ be fuzzy contra pre-continuous and suppose $\lambda \in \tau_2$. So $g^{-1}(\lambda)$ is fuzzy pre-closed in G. Now by *Remark 2.9* $g^{-1}(\lambda)$ is fuzzy gprw-closed in G. Hence g is fuzzy contra gprw-continuous.

The converse of the above theorem need not be true as shown in the following example.

Example 3.6 Consider $G = H = \{l, m, n\}$ and function $\omega, \eta, \psi, \chi : G \rightarrow [0, 1]$ be defined as

$$\omega(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \qquad \psi(g) = \begin{cases} 1 & \text{if } g = l, n \\ 0 & \text{otherwise} \end{cases}$$

$$\chi(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \eta(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}$$

Suppose $\tau_1 = \{0, 1, \omega, \psi\}$, $\tau_2 = \{0, 1, \omega, \chi\}$. Now (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f : (G, \tau_1) \to (H, \tau_2)$ by f(l) = l, f(m) = n and f(n) = m. Then *f* is fuzzy contra gprw-continuous & not fuzzy contra pre-continuous as $f^{-1}(\omega)$ in (H, τ_2) is ω , which is fuzzy gprw- closed in (G, τ_1) but not fuzzy pre-closed.

Theorem 3.7 A fuzzy contra rw-continuous mapping $g: (G, \tau_1) \rightarrow (H, \tau_2)$ is fuzzy contra gprw-continuous also.

Proof: Consider $\alpha \leq \tau_2$, Now as g is fuzzy contra rw-continuos, implies $g^{-1}(\alpha)$ is fuzzy rw-closed in G. Now from *Remark 2.10* all fuzzy rw-closed sets are fuzzy gprw-closed, so $g^{-1}(\alpha)$ is fuzzy gprw-closed in G, implying g is fuzzy contra gprw-continuous.

 \square

The converse of the above theorem need not be true as shown in the following example.

Example 3.8 Consider $G = H = \{l, m, n, o, p\}$ are fuzzy spaces and functions $\eta, \alpha, \beta, \gamma : G \rightarrow [0, 1]$ and $\delta : H \rightarrow [0, 1]$ are defined as

$$\alpha(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \eta(g) = \begin{cases} 1 & \text{if } g = p \\ 0 & \text{otherwise} \end{cases}$$

$$\beta(g) = \begin{cases} 1 & \text{if } g = n, o \\ 0 & \text{otherwise} \end{cases} \quad \gamma(g) = \begin{cases} 1 & \text{if } g = l, m, n, o \\ 0 & \text{otherwise} \end{cases}$$

$$\delta(h) = \begin{cases} 1 & \text{if } h = l \\ 0 & \text{otherwise} \end{cases}$$

Suppose $\tau_1 = \{0, 1, \alpha, \beta, \gamma\}$, $\tau_2 = \{0, 1, \delta\}$. With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f : (G, \tau_1) \to (H, \tau_2)$ by f(l) = m, f(m) = n, f(n) = o, f(o) = p and f(p)=1. Then f is fuzzy contra gprw-continuous but not fuzzy contra rw-continuous as $f^{-1}(\delta)$ in (H, τ_2) is η , & η is fuzzy gprw- closed in (G, τ_1) but not fuzzy rw-closed.

Remark 3.9 In the following examples we prove that Fuzzy contra gprw-continuous and fuzzy contra semi-continuous mappings are independent.

Example 3.10 Consider $G = H = \{p,q,r,s\}$ are fuzzy spaces and functions $\alpha, \beta, \gamma, \delta : G \rightarrow [0,1]$ be defined as

$$\alpha(g) = \begin{cases} 1 & \text{if } g = p \\ 0 & \text{otherwise} \end{cases} \qquad \beta(g) = \begin{cases} 1 & \text{if } g = q \\ 0 & \text{otherwise} \end{cases}$$

$$\gamma(g) = \begin{cases} 1 & \text{if } g = p, q \\ 0 & \text{otherwise} \end{cases} \qquad \delta(g) = \begin{cases} 1 & \text{if } g = p, q, r \\ 0 & \text{otherwise} \end{cases}$$

and $\psi, \eta : H \to [0,1]$ be defined as

$$\psi(h) = \begin{cases} 1 & \text{if } h = r \\ 0 & \text{otherwise} \end{cases} \qquad \eta(h) = \begin{cases} 1 & \text{if } h = r, s \\ 0 & \text{otherwise} \end{cases}$$

Suppose $\tau_1 = \{0, 1, \alpha, \beta, \gamma, \delta\}$, $\tau_2 = \{0, 1, \eta, \psi\}$. With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a function $f : (G, \tau_1) \to (H, \tau_2)$ by f(p) = r, f(q) = s, f(r) = p, f(s) = q. Then f is fuzzy contra semi-continuous but not fuzzy contra gprw-continuous as $f^{-1}(\psi)$ in (H, τ_2) is α , which is fuzzy semi- closed in (G, τ_1) but not fuzzy gprw-closed.

Example 3.11 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $f : (G, \tau_1) \to (H, \tau_2)$ by f(p) = r, f(q) = s, f(r) = q, f(s) = p. Then f is fuzzy contra gprw-continuous & not fuzzy contra semi-continuous as $f^{-1}(\eta)$ in (H, τ_2) is γ , which is fuzzy gprw- closed in (G, τ_1) but not fuzzy semi-closed.

Theorem 3.12 Suppose $g : (G, \tau_1) \to (H, \tau_2)$ is fuzzy continuous and $h : (L, \tau_3) \to (G, \tau_1)$ is fuzzy contra gprw-continuous, then their composition map $goh : (L, \tau_3) \to (H, \tau_2)$ is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_2$. Since *g* is fuzzy continuous, implies $g^{-1}(\alpha) \leq \tau_1$. Now *h* is fuzzy contra gprw-continuous, so $h^{-1}(g^{-1}(\alpha))$ is fuzzy gprw-closed in (L, τ_3) . Since $(goh)^{-1}(\alpha) = h^{-1}(g^{-1}(\alpha))$. So $goh: (L, \tau_3) \to (H, \tau_2)$ is fuzzy contra gprw-continuous.

Remark 3.13 In the following examples we prove that Fuzzy contra gprw-continuous and fuzzy contra generalized continuous mappings are independent.

Example 3.14 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $l: (G, \tau_1) \to (H, \tau_2)$ by l(p) = r, l(q) = p, l(r) = qand l(s) = s. Then l is fuzzy contra generalized continuous mapping but not fuzzy contra gprw-continuous as $l^{-1}(\eta)$ in (H, τ_2) is $\chi: G \to [0, 1]$ defined as

$$\chi(g) = \begin{cases} 1 & \text{if } g = p, s \\ 0 & \text{otherwise} \end{cases}$$

which is fuzzy generalized closed in (G, τ_1) but not fuzzy gprw-closed.

Example 3.15 Consider fuzzy topological spaces (G, τ_1) and (H, τ_2) as defined in Example 3.10. Now, if we define a mapping $h: (G, \tau_1) \to (H, \tau_2)$ by h(p) = r, h(q) = s, h(r) = p and h(s) = q. Then h is fuzzy contra gprw-continuous mapping but not fuzzy contra generalized continuous as $h^{-1}(\eta)$ in (H, τ_2) is γ in (G, τ_1) , which is fuzzy gprw-closed in (G, τ_1) but not fuzzy generalized closed.

Remark 3.16: From the above discussion of Results we have the following diagram of implications. Here $A \rightarrow B$ means A implies B.

 $A \nleftrightarrow B$ means A & B are independent of each other.

Definition 3.17 Suppose (G, τ_1) and (H, τ_2) be two fuzzy topological spaces. Then a function $g: (G, \tau_1) \to (H, \tau_2)$ is called fuzzy contra gprw-contra irresolute map if $g^{-1}(h)$ is fuzzy gprw-closed in (G, τ_1) for every fuzzy gprw-open set h in (H, τ_2) .

Theorem 3.18 If $g : (G, \tau_1) \to (H, \tau_2)$ is fuzzy contra gprw-irresolute, then it is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_2$, Now from *Remark 2.11* α is fuzzy gprw-open in (H, τ_2) . Since g is fuzzy contra gprw-irresolute, implying $g^{-1}(\alpha)$ is fuzzy gprw-closed in (G, τ_1) . Thus g is fuzzy contra gprw-continuous.

Theorem 3.19 Let (L, τ_1) , (M, τ_2) and (N, τ_3) are fuzzy topological spaces. If $l : (L, \tau_1) \to (M, \tau_2)$ is fuzzy contra gprw-irresolute and $k : (M, \tau_2) \to (N, \tau_3)$ is fuzzy gprw-continuous, then their composition $kol : (L, \tau_1) \to (N, \tau_3)$ is fuzzy contra gprw-continuous.

Proof: Suppose $\alpha \leq \tau_3$, Now as k is fuzzy gprw-continuous means $k^{-1}(\alpha)$ is fuzzy gprw open set in (M, τ_2) . Now as l is fuzzy contra gprw-irresolute, implies $l^{-1}(k^{-1}(\alpha))$ is fuzzy gprw closed set in (L, τ_1) . But $l^{-1}(k^{-1}(\alpha)) = (kol)^{-1}(\alpha)$, implies kol is fuzzy contra gprw-continuous.

 \square

Theorem 3.20 Let (L, τ_1) , (M, τ_2) and (N, τ_3) are fuzzy topological spaces. If $l : (L, \tau_1) \to (M, \tau_2)$ is fuzzy gprw-irresolute and $m : (M, \tau_2) \to (N, \tau_3)$ is fuzzy contra gprw-irresolute, then their composition $mol : (L, \tau_1) \to (N, \tau_3)$ is fuzzy contra gprw-irresolute.

Proof: Suppose α is fuzzy gprw-open in (N, τ_3) . Since *m* is fuzzy contra gprw-irresolute, implies $m^{-1}(\alpha)$ is fuzzy gprw-closed in (M, τ_2) . Now as *l* is fuzzy gprw-irresolute, implies $l^{-1}(m^{-1}(\alpha))$ is fuzzy gprw-closed in (L, τ_1) . Now $(mol)^{-1}(\alpha) = l^{-1}(m^{-1}(\alpha))$, implying $mol: (L, \tau_1) \to (N, \tau_3)$ is fuzzy contra gprw-irresolute.

4 Fuzzy Contra gprw-open Mappings and Fuzzy Contra gprw-closed Mappings

Definition 4.1 A mapping $g: (G, \tau_1) \to (H, \tau_2)$ is *fuzzy* contra gprw-open if the image of $\lambda \leq \tau_1$ in (G, τ_1) is

fuzzy gprw-closed in (H, τ_2) .

Example 4.2 All fuzzy contra open mappings are fuzzy contra gprw-open mappings.

Proof: Suppose $l: (G, \tau_1) \to (H, \tau_2)$ be a fuzzy contra open mapping and $\alpha \leq \tau_1$, then $l(\alpha) \leq 1 - \tau_2$. Now remark 2.8 implies $l(\alpha)$ is fuzzy gprw-closed set in (H, τ_2) . Hence *l* is fuzzy contra gprw-open mapping.

The other way round of the above theorem need not be true, as shown in the following example.

Example 4.3 Suppose $G = H = \{l, m, n, o\}$ are fuzzy spaces and functions $\alpha, \beta, \gamma, \delta : G \to [0, 1]$ be defined as

$$\alpha(g) = \begin{cases} 1 & \text{if } g = l \\ 0 & \text{otherwise} \end{cases} \qquad \beta(g) = \begin{cases} 1 & \text{if } g = m \\ 0 & \text{otherwise} \end{cases}$$
$$\gamma(g) = \begin{cases} 1 & \text{if } g = l, m \\ 0 & \text{otherwise} \end{cases} \qquad \delta(g) = \begin{cases} 1 & \text{if } g = l, m, n \\ 0 & \text{otherwise} \end{cases}$$

Consider $\tau_1 = \{0, 1, \alpha, \beta, \gamma\}, \tau_2 = \{0, 1, \alpha, \beta, \gamma, \delta\}$.With these topologies (G, τ_1) and (H, τ_2) are fuzzy topological spaces. Now, we define a mapping $f : (G, \tau_1) \to (H, \tau_2)$ by f(l) = l, f(m) = m, f(n) = o & f(o) = n. Then *f* is fuzzy contra gprw-open mapping but not fuzzy contra open mapping, as image of $\gamma \le \tau_1$ in (G, τ_1) is fuzzy set γ in (H, τ_2) which is fuzzy gprw- closed in (H, τ_2) but not fuzzy closed.

 \Box

Example 4.4 If $l: (G, \tau_1) \to (H, \tau_2)$ is a fuzzy open map and $m: (H, \tau_2) \to (K, \tau_3)$ is fuzzy contra gprw-open, then the composition map $mol: (G, \tau_1) \to (K, \tau_3)$ is fuzzy contra gprw-open map.

Proof: Suppose $\alpha \leq \tau_1$. Now, as *l* is a fuzzy open map implies $l(\alpha) \leq \tau_2$. Since m is a fuzzy contra gprw-open map $m(l(\alpha))$ is fuzzy gprw-closed set in (K, τ_3) . Now $m(l(\alpha)) = (mol)(\alpha)$, implying mol is fuzzy contra gprw-open map.

Definition 4.5 Let (G, τ_1) and (H, τ_2) be two fuzzy topological spaces. A mapping $g : (G, \tau_1) \to (H, \tau_2)$ is called fuzzy contra gprw-closed if the image of $\gamma \le 1 - \tau_1$ in (G, τ_1) is fuzzy gprw-open in (H, τ_2) .

Theorem 4.6 If $l: (G, \tau_1) \to (H, \tau_2)$ is a fuzzy contra closed mapping, then it is fuzzy contra gprw-closed mapping also.

Proof: Suppose $\lambda \leq 1 - \tau_1$, Now as l is fuzzy contra closed mapping, implies $l(\lambda) \leq \tau_2$. Now, as all fuzzy open sets are fuzzy gprw-open implying that $l(\lambda)$ is fuzzy gprw-open in (H, τ_2) . Hence l is a fuzzy contra gprw-closed mapping.

The other way round of the above theorem need not be true, as shown in the following example.

Example 4.7 Suppose $X = Y = \{l, m, n, o, p\}$ are fuzzy topological spaces with topologies $\tau_1 = \{0, 1, \chi\}$ and $\tau_2 = \{0, 1, \alpha, \beta, \gamma\}$ where $\chi : X \to [0, 1]$ and $\alpha, \beta, \gamma : Y \to [0, 1]$ are defined as

$$\chi(x) = \begin{cases} 1 & \text{if } x = p \\ 0 & \text{otherwise} \end{cases} \qquad \beta(y) = \begin{cases} 1 & \text{if } y = n, o \\ 0 & \text{otherwise} \end{cases}$$

$$\alpha(y) = \begin{cases} 1 & \text{if } y = l, m \\ 0 & \text{otherwise} \end{cases} \quad \gamma(y) = \begin{cases} 1 & \text{if } y = l, m, n, o \\ 0 & \text{otherwise} \end{cases}$$

Let the function $f: (X, \tau_1) \to (Y, \tau_2)$ be defined as f(l) = m, f(m) = n, f(n) = o, f(o) = p and f(p) = l. Then f is fuzzy contra gprw-closed map but not fuzzy contra closed map as image of $\psi \le 1 - \tau_1$ in X defined as

$$\psi(x) = \begin{cases} 1 & \text{if } x = l, m, n, o \\ 0 & \text{otherwise} \end{cases}$$

is μ in Y defined as

$$\mu(y) = \begin{cases} 1 & \text{if } y = m, n, o, p \\ 0 & \text{otherwise} \end{cases}$$

which is fuzzy gprw-open in (Y, τ_2) but not fuzzy open.

Theorem 4.8 If $l : (G, \tau_1) \to (H, \tau_2)$ and $m : (H, \tau_2) \to (K, \tau_3)$ be two maps. Then $mol : (G, \tau_1) \to (K, \tau_3)$ is fuzzy contra gprw-closed map if l is a fuzzy closed mapping and m is fuzzy contra gprw-closed mapping.

Proof: Let $\alpha \leq 1 - \tau_1$ Since *l* is a fuzzy closed mapping, so $l(\alpha) \leq 1 - \tau_2$. Now *m* is a fuzzy contra gprw-closed map, implies $m(l(\alpha))$ is fuzzy gprw-open in (K, τ_3) . But $m(l(\alpha)) = (mol)(\alpha)$, implying *mol* is fuzzy contra gprw-closed mapping.

Theorem 4.9 Let $l : (G, \tau_1) \to (H, \tau_2)$ and $m : (H, \tau_2) \to (K, \tau_3)$ be two mappings such that $mol : (G, \tau_1) \to (K, \tau_3)$ is fuzzy contra gprw-closed map then,

- (I)Suppose *l* is fuzzy continuous and onto then *m* is fuzzy contra gprw-closed.
- (II)Suppose *m* is fuzzy gprw-irresolute and one-one then *l* is fuzzy contra gprw-closed.

Proof: (I) Let $\alpha \leq \tau_2$. Since *l* is fuzzy continuous, $l^{-1}(\alpha) \leq 1 - \tau_1$. Since *mol* is fuzzy contra gprw-closed map, $(mol)(l^{-1}(\alpha))$ is fuzzy gprw-open set in *I*. But $(mol)(l^{-1}(\alpha)) = m(\alpha)$, as *l* is surjective. Thus *m* is fuzzy contra gprw-closed.

(II) Let $\mu \leq 1 - \tau_1$. Now *mol* is fuzzy contra gprw-closed, implies $mol(\mu)$ is fuzzy gprw-open in *I*. Since *m* is fuzzy gprw-irresolute, so $m^{-1}(mol)(\mu)$ is fuzzy gprw-open in (H, τ_2) . But $m^{-1}(mol)(\mu) = l(\mu)$ as *m* is injective. Thus *l* is fuzzy contra gprw-closed mapping.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

- [1] Jafari, S. and Nori (2002), On contra- precontinuous functions, *Bull. Malays Math. Sci. Soc.* (2), **25**(2), 115-128.
- [2] Vadivel, A., V. Chandrasekar, and M. Saraswathi (2011), Fuzzy Contra rw-continuous Functions, *Advances in Fuzzy Mathematics* 6(1) 53-60.
- [3] Firdose Habib and Khaja Moinuddin, (2019), On Fuzzy gprw-closed sets in Fuzzy Topological spaces, *Journal of the Gujarat Research Society*, **21**.
- [4] K. K. Azad, (1981) On Fuzzy Semicontinuity, Fuzzy Almost Continuity and Fuzzy Weakly Continuity, *Journal Of Mathematical Analysis and Applications* 82, 14-32.
- [5] Firdose Habib and Khaja Moinuddin (2021), On fuzzy generalized pre regular weakly continuity, *South East Asian J. of Mathematics and Mathematical Sciences*, **17**, 181-188.
- [6] S.E. Abbas and I.M. Taha, (2012), Weaker Forms of Fuzzy Contra-continuity in Fuzzy Topological Spaces, *The Journal* of Fuzzy Mathematics, 20, 4.
- [7] E. Ekici and E. Kerre, (2006), On fuzzy contra-continuties, Advances in Fuzzy Mathematics, 2, 35-44.
- [8] A.Vadivel, V. Chandrasekar and M. Saraswathi, (2011), Fuzzy contra rw-continuous functions, *Advanced in fuzzy* mathematics, 6, 53-60.