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Abstract: In this paper, we deal with a warm case of standby system made up of two-dissimilar-units. One of these units is a high

quality unit, while the other is a low quality one and may require repairs or replacement with a different lesser device in the event of

failure, so the first unit is given priority in use. Assume that an arbitrary distribution for repairing the main unit and standby unit. We

also examine all transition probabilities and calculate mean sojourn time, availability, and repair time. In the end, we use all of the

previous measurments to evaluate the cost-benefit of the system.
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1 Introduction

Reliability system is becoming a key factor in production and industry, and redundancy is one of the most popular methods
for enhancing reliability system. Due to the high prices of machines in some projects, the basic working units are replaced
with other units of lower quality until the basic unit is repaired in order to save cost. Accordingly, our study focused on the
priority of two dissimilar units’ warm standby. Numerous researchers have investigated a variety of models for priority in
various situations including[1,2,3,4,5,6,7]. [8,9] studied systems with non-similar units.
In a warm standby system, the spare parts are assumed to fail with a lower failure rate than the operating parts after
being stored. The standby system is called warm if considered a better model for the spare parts degradation process. For
example, [10] used different parameters of Poisson shocks for warm-repairable-system and availability for steady-state.
The performance of a 3-unit warm-standby-system measured in [11], and used quadrivariate to estimate the lifetime and
repair time. [12] deals with two similar- warm-standby-systems according to failure because of the melting of glaciers and
severe storms due to global warming and failure rate as Gamma-distribution. As for [13], they economically analyzed a
warm-standby-system with a single-server. In [14], using the supplementary variables technique, many reliability indexes
were received through studied warm standby-systems with two-dissimilar-units. They also assumed that after repairing
unit-one, it follows a geometric process. In addition, the research for warm- standby- systems continuously developed,
including the papers [15,16,17] and others.
[18] discussed the analysis of planar arbitrarily curved microbeams with Euler-Bernoulli beam model. As for [19], they
studied Mixed failure and shock-driven mission aborts in heterogeneous arbitrary systems.
We deal with a warm-standby-repairable-system made up of two-dissimilar-units. One of these units is of good quality,
while the other is of lesser quality and may require repairs or replacement with a different lesser device in the event of
failure, so the first unit is given priority in use. The following system reliability has explicit formulations: The mean time
to system failure (MTSF), availability, repair time due to failure of the highest quality unit, failure of the lowest quality
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unit, or replacement of the lowest quality unit, the profit gain of the system is obtained, and the theoretical findings are
shown using a numerical example.

2 Assumptions

– In this system we consider two dissimilar units . At first the highest quality unit is running, and the other is in
standby mode (Warm standby).

– If the operating unit fails, we go to the standby unit and test it for work (which is called warm-standby).
– The highest quality unit has the priority for operating.
– When the unit fails, it goes directly to the repair.
– After the repair, the unit returns as new.
– The system completely fails if both units fail.
– All distributions are exponential except repair and replace times distributions are arbitrary.

3 Notations

E,(Ti, j) Regenerative states.

E,(T k) Non-regenerative states.
qi j(t),Qi j(t) Transition from Ti to Tj probabilities and cumulative.

qk
i j(t),Q

k
i j(t) Transition from Ti to Tj passing through T k, probabilities and cumulative.

Pi j Transition probability from Ti to Tj.

P
(k)
i j Probability that the system transit from Ti toTj, Passing through T k.

Fi(t)(i = 1,2) Cdf of the highest quality unit and the lowest quality unit failures respectively.
Gi(t)(i = 1,2) Cdf of the highest quality unit and the lowest quality unit repair times respectively .

N(t) Cdf of replacement time.
λ1,λ2 parameter of the failure rate of the highest quality unit,

the lowest quality unit respectively.
µ1,µ2 The parameter of repair rate of the highest quality unit,

the lowest quality unit respectively.
β parameter of unit 2 replacement rate.
τ Probability that the Standby-unit is ready.

(1− τ) Probability that the Standby-unit is not ready.
θ Probability that the lowest quality unit repair.

(1−θ ) Probability that the lowest quality unit replacement.
mi j The mean sojourn time to transit fromTi to Tj

Mi(t) Probability that the system stay in Ti .
Mi(s) Laplace transform of Mi(t).
Ψi(t) Cdf of time to system failure starting from state Ti.
AVi(t) p { The system is up at time t starting at state Ti}.
O(t) The net revenue of the system in (o, t].

BPi(t) Probability that the highest quality unit is in repair
BP′

i (t) Probability that the lowest quality unit is in repair.

BP”
i (t) Probability that the lowest quality unit is in replace.
c© Convolution.
∗ Laplace transforms.

3.1 Symbols for the system states

– r I,r II the highest quality unit, the lowest quality unit are under repair respectively.
– R I,R II the highest quality unit, the lowest quality unit are under repair respectively from previous state.
– O I,O II the highest quality unit, the lowest quality unit are in operating state respectively.
– S II the lowest quality unit is in warm standby state.
– wr I,wr II the highest quality unit, the lowest quality unit are waiting for repair respectively.
– rep II the lowest quality unit is under replacement.

c© 2023 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 4, 1117-1129 (2023) / www.naturalspublishing.com/Journals.asp 1119

– REP II the lowest quality unitis under replacement from previous state.

The system can be in any one of the following states
T0 = (OI,SII), T1 = (rI,OII), T2 = (rI,wrII)
T3 = (RI,wrII), T4 = (OI,rII), T5 = (OI,repII)
T6 = (wrI,RII), T7 = (wrI,REPII).
Up states:T0,T1,T4,T5, Down states:T2,T3,T6,T7, Non-regenrative states:T3,T6,T7

Fig. 1: System Transition

3.2 Transition probabilities and mean sojourn time

Simple probabilistic considerations yield the following expressions for the non-zero elements Pi j = Qi j(∞) =
∫

qi j(t)dt as

P01 = τ

∫ ∞

0
dF1(t), P02 = (1− τ)

∫ ∞

0
dF1(t),

P01 +P02 = 1,

P10 =
∫ ∞

0
F2(t)dG1(t), P13 =

∫ ∞

0
G1(t)dF2(t),

P10 +P13 = 1,

P3
14 = θ

∫ ∞

0
F2(t)dG1(t), P3

15 = (1−θ )

∫ ∞

0
F2(t)dG1(t),
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P13 = P3
14 +P3

15,

P24 = θ

∫ ∞

0
dG1(t), P25 = (1−θ )

∫ ∞

0
dG1(t),

P24 +P25 = 1,

P46 =

∫ ∞

0
G2(t)dF1(t), P40 =

∫ ∞

0
F1(t)dG2(t),

P40 +P46 = 1,

P6
41 =−

∫ ∞

0
F1(t)dG2(t) = P46,

P50 =

∫ ∞

0
F1(t)dN(t), P57 =

∫ ∞

0
N(t)dF1(t),

P50 +P57 = 1,

P7
51 =

∫ ∞

0
F1(t)dN(t) = P57.

3.3 Mean sojourn times

The mean sojourn time to transit from Ti to Tj

m01 = τ

∫ ∞

0
tdF1(t), m02 = (1− τ)

∫ ∞

0
tdF1(t),

m10 =

∫ ∞

0
tF2(t)dG1(t), m13 =

∫ ∞

0
tG1(t)dF2(t),

m24 = θ

∫ ∞

0
tdG1(t), m25 = (1−θ )

∫ ∞

0
tdG1(t),

m46 =

∫ ∞

0
tG2(t)dF1(t), m40 =

∫ ∞

0
tF1(t)dG2(t),

m50 =

∫ ∞

0
tF1(t)dN(t), m57 =

∫ ∞

0
tN(t)dF1(t).

Mean sojourn time in state Si which is given by Mi(s) = ∑ j mi j

M0(s) =

∫ ∞

0
F1(t)dt,

M1(s) =

∫ ∞

0
G1(t)F2(t)dt,

M4(s) =
∫ ∞

0
G2(t)F1(t)dt,

M5(s) =

∫ ∞

0
N(t)F1(t)dt.

c© 2023 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 12, No. 4, 1117-1129 (2023) / www.naturalspublishing.com/Journals.asp 1121

3.4 Mean time to system failure MTSF

By using the regenerative technique, we obtain the following relation for Ψ0(t)

Ψ0(t) = F2(t)+ q01(t) c©Ψ1(t), (1)

Ψ1(t) = G1(t)F2(t)+ q10(t) c©Ψ0(t), (2)

Ψ4(t) = G1(t)F2(t)+ q40(t) c©Ψ0(t), (3)

Ψ5(t) = N(t)F1(t)+ q50(t) c©Ψ 0(t). (4)

Taking Laplace transform (LT) for equations (1), (2), (3) and (4) and solving for Ψ
∗
0(s) considering S = 0, We have the

mean time to system failure MTSF as follows

MT SF =
N0

D0

, (5)

where

D0 = 1−P01P10,

and

N0 = M0(s)+M1(s)P01.

4 Availability Analysis

According to regenerative assumtion, the point wise availabilities AVi(t) where i = 0,1,4,5. we obtain the following
relations.

AV0(t) = M0(t)+ q01(t) c©AV1(t)+ q02(t) c©q24(t) c©AV4(t)+ q02(t) c©q25(t) c©AV5(t), (6)

AV1(t) = M1(t)+ q10(t) c©AV0(t)+ q
(3)
14 (t) c©AV4(t)+ q

(3)
15 (t) c©AV5(t), (7)

AV4(t) = M4(t)+ q
(6)
41 (t) c©AV1(t)+ q40(t) c©AV0(t), (8)

AV5(t) = M5(t)+ q
(7)
51 (t) c©AV1(t)+ q50(t) c©AV0(t). (9)

Where

M0(t) = F1(t),

M1(t) = G1(t)F1(t),

M4(t) = G2(t)F2(t),

M5(t) = N(t)F1(t).

Taking LT for equation (6), (7), (8) and (9) and solve for AV ∗
0 , then we get the steady state availability of the system

AV0 in the form,

AV0 = AV0(∞) = lim
x→0

SAV ∗
0 (S) =

N1

D1

. (10)
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N1

D1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

M0(s) −P01(t) −P02(t)P24(t) −P02(t)P25(t)

M1(s) 1 −P
(3)
14 (t) −P

(3)
15 (t)

M4(s) −P
(6)
41 (t) 1 0

M5(s) −P
(7)
51 (t) 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −P01(t) −P02(t)P24(t) −P02(t)P25(t)

−P10(t) 1 −P
(3)
14 (t) −P

(3)
15 (t)

−P40(t) −P
(6)
41 (t) 1 0

−P50(t) −P
(7)
51 (t) 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 =

∣

∣

∣

∣

∣

∣

∣

1 −P
(3)
14 (t) −P

(3)
15 (t)

−P
(6)
41 (t) 1 0

−P
(7)
51 (t) 0 1

∣

∣

∣

∣

∣

∣

∣

a2 =

∣

∣

∣

∣

∣

∣

−P01(t) −P02(t)P24(t) −P02(t)P25(t)

−P
(6)
41 (t) 1 0

−P
(7)
51 (t) 0 1

∣

∣

∣

∣

∣

∣

a3 =

∣

∣

∣

∣

∣

∣

−P01(t) −P02(t)P24(t) −P02(t)P25(t)

1 −P
(3)
14 (t) −P

(3)
15 (t)

−P
(7)
51 (t) 0 1

∣

∣

∣

∣

∣

∣

a4 =

∣

∣

∣

∣

∣

∣

−P01(t) −P02(t)P24(t) −P02(t)P25(t)

1 −P
(3)
14 (t) −P

(3)
15 (t)

−P
(6)
41 (t) 1 0

∣

∣

∣

∣

∣

∣

N1 = M0(s)a1 −M1(s)a2 +M4(s)a3 −M5(s)a4,

D1 =−(m01+m02P24(t)+m24P02(t)+m02P25(t)+m25P02(t))a1+(m10+m
(3)
14 +m

(3)
15 )a2−(m40+m

(6)
41 )a3+(m50+m

(7))
51 )a4.

5 Busy Period Analysis

The probability that the repairman is busy due to repair of the failed unit.

5.1 Expected busy period with first unit failure

By using probabilistic arguments, we obtain

BP0(t) = q01(t) c©BP1(t)+ q02(t) c©q24(t) c©BP4(t)+ q02(t) c©q25(t) c©BP5(t)+ q02(t) c©G1(t), (11)

BP1(t) = q10(t) c©BP0(t)+ q
(3)
14 (t) c©BP4(t)+ q

(3)
15 (t) c©BP5(t)+G1(t), (12)

BP4(t) = q
(6)
41 (t) c©BP1(t)+ q40(t) c©BP0(t), (13)

BP5(t) = q
(7)
51 (t) c©BP1(t)+ q50(t) c©BP0(t). (14)

Using LT to solve equations (11), (12), (13) and (14) for R∗
0(s), we calculate the expectation of repair in steady state as

follows

BP0 = BP0(∞) =
N2

D1

, (15)
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where

N2 = G1
∗
(0){(P02)a1 − a2},

and

G1
∗
(0) =

1

µ1

.

5.2 Expected busy period with second unit failure

By using probabilistic arguments, we obtain

BP′
0(t) = q01(t) c©BP′

1(t)+ q02(t) c©q24(t) c©BP′
4(t)+ q02(t) c©q25(t) c©BP′

5(t), (16)

BP′
1(t) = q10(t) c©BP′

0(t)+ q
(3)
14 (t) c©BP′

4(t)+ q
(3)
15 (t) c©BP′

5(t), (17)

BP′
4(t) = q

(6)
41 (t) c©BP′

1(t)+ q40(t) c©BP′
0(t)+G2(t), (18)

BP′
5(t) = q

(7)
51 (t) c©BP′

1(t)+ q50(t) c©BP′
0(t). (19)

Using LT to solve equations (16), (17), (18) and (19) for R′∗
0 (s), we calculate the expectation of repair in steady state as

follows

BP′
0 = BP′

0(∞) =
N3

D1

, (20)

where

N3 = G2
∗
(0){a3},

and

G2
∗
(0) =

1

µ2

.

5.3 Expected busy period due to replacement

BP”
0 (t) = q01(t) c©BP”

1(t)+ q02(t) c©q24(t) c©BP”
4 (t)+ q02(t) c©q25(t) c©BP”

5 (t), (21)

BP”
1 (t) = q10(t) c©BP”

0(t)+ q
(3)
14 (t) c©BP”

4 (t)+ q
(3)
15 (t) c©BP”

5 (t), (22)

BP”
4 (t) = q

(6)
41 (t) c©BP”

1(t)+ q40(t) c©BP”
0 (t), (23)

BP”
5 (t) = q50(t) c©BP”

0(t)+ q
(7)
51 (t) c©BP”

1 (t)+N(t). (24)

Using LT to solve equations 21, 22, 23 and 24 for BP”∗
0 (s), we calculate the expectation of replacement in steady state as

follows

BP”
0 = BP”

0 (∞) =
N4

D1

, (25)

where

N4 = N
∗
(0){−a4},

and

N
∗
(0) =

1

β
.
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5.4 Cost benefit analysis

This section, we calculate the expected profit to the system in the period (0, t] by calculating the deference between total
revenue and total cost of repair

O(t) = K1ωup(t)−K2ωbp(t)−K3ωbp′(t)−K4ωbp”(t), (26)

Where, K1 is the revenue at the time the system works, K2 is the cost of repairing the highest quality unit, K3 is the cost of
repairing the lowest quality unit, and K4 is the cost of replacing the lowest quality unit .

ωup(t) =

∫ t

0
AV0(t)dt, (27)

ωbp(t) =
∫ t

0
BP0(t)dt, (28)

ωbp′(t) =

∫ t

0
BP′

0(t)dt, (29)

ωbp”(t) =

∫ t

0
BP”0(t)dt. (30)

using 27, 28, 29 and 30 we obtain

O∗(s) = K1ω∗
up(s)−K2ω∗

bp(s)−K3ω∗
bp′(s)−K4ω∗

bp”(s).

Therefore the expected revenue per unit time in steady state is given by

O = lim
t→∞

O(t)

t
= lim

s→0
s2O∗(s) =

K1N1 −K2N2 −K3N3 −K4N4

D1

. (31)

6 Numerical Example

Let us consider that

Fi(t) = 1− eλit
,Gi(t) = 1− (1− µit)e

−µit i = 1,2. N(t) = 1− (1−β t)e−β t
.

in 5, 10, 15, 20, 25, 31. By setting K1 = 500,K2 = 10,K3 = 5,K4 = 2, figures display the variation of MTSF, availability,
busy period1, busy period2, busy period due to replacement and Cost benefit, for different values of
θ ,τ,β ,µ1,µ2,λ1 and λ2.

Table 1: MTSF with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05.

λ2

λ1 0.40 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.05 22.6225 22.3387 22.1103 21.9226 21.7655 21.6321 21.5175 21.4179 21.3306

0.10 12.0317 11.8126 11.6362 11.491 11.3695 11.2663 11.1776 11.1005 11.0328

0.15 8.50144 8.30395 8.14482 8.01387 7.90423 7.81108 7.73097 7.66134 7.60026

0.20 6.73631 6.5496 6.39913 6.27528 6.17157 6.08345 6.00766 5.94177 5.88397

0.25 5.67723 5.497 5.35172 5.23213 5.13198 5.04688 4.97367 4.91003 4.8542

0.30 4.97118 4.79526 4.65344 4.5367 4.43892 4.35582 4.28435 4.22221 4.16769

0.35 4.46686 4.29402 4.15468 4.03996 3.94387 3.86222 3.79197 3.7309 3.67732

0.40 4.08862 3.91809 3.7806 3.66741 3.57259 3.49201 3.42269 3.36242 3.30954

0.45 3.79443 3.6257 3.48965 3.66741 3.28381 3.20407 3.13547 3.07583 3.0235

0.50 3.55908 3.39178 3.25689 3.14583 3.05279 2.97372 2.9057 2.84655 2.79466
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Fig. 2: MTSF with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.

Fig. 3: Availability with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.

Fig. 4: Busy period due to unit 1 failure with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.
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Fig. 5: Busy period due to unit 2 failure withθ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.

Fig. 6: Busy period due to replacement with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = .05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.

Fig. 7: Cost benefit with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05, λ1 = 0.05 to 0.5 and λ2 = 0.04 to 0.6.
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Table 2: Availability with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05.

λ2

λ1 0.40 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.05 0.574764 0.571095 0.568076 0.565548 0.563402 0.561557 0.559954 0.558548 0.557306

0.10 0.455363 0.449689 0.445018 0.441106 0.437784 0.434928 0.432446 0.430271 0.428348

0.15 0.396042 0.388944 0.383096 0.378197 0.374035 0.370455 0.367344 0.364616 0.362204

0.20 0.359247 0.351064 0.344318 0.338663 0.333857 0.329722 0.326127 0.322974 0.320186

0.25 0.333721 0.324678 0.317219 0.310964 0.305646 0.301069 0.297089 0.293597 0.290508

0.30 0.314784 0.305041 0.297002 0.290257 0.28452 0.279582 0.275288 0.271519 0.268185

0.35 0.300089 0.289766 0.281244 0.274092 0.268007 0.262768 0.258211 0.254212 0.250673

0.40 0.288312 0.2775 0.26857 0.261074 0.254695 0.249201 0.244422 0.240227 0.236515

0.45 0.27864 0.267409 0.25813 0.250339 0.243708 0.237996 0.233026 0.228663 0.224803

0.50 0.270542 0.258948 0.249367 0.241321 0.234471 0.22857 0.223435 0.218927 0.214937

Table 3: Busy period due to unit 1 failure with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05.

λ2

λ1 0.40 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80

0.05 1.44753 1.4492 1.45056 1.45168 1.45264 1.45345 1.45415 1.45477 1.45531

0.10 2.38808 2.3964 2.40322 2.40891 2.41373 2.41786 2.42144 2.42458 2.42735

0.15 3.21632 3.23587 3.25198 3.26548 3.27697 3.28685 3.29544 3.30299 3.30966

0.20 3.97835 4.01296 4.04162 4.06575 4.08634 4.10412 4.11963 4.13328 4.14537

0.25 4.68891 4.74172 4.78568 4.82285 4.85467 4.88224 4.90635 4.9276 4.94649

0.30 5.35557 5.42918 5.49074 5.54298 5.58789 5.62689 5.66108 5.6913 5.7182

0.35 5.98339 6.07989 6.16097 6.23004 6.2896 6.34147 6.38706 6.42744 6.46346

0.40 6.57621 6.69731 6.79949 6.88687 6.96244 7.02844 7.08658 7.13819 7.1843

0.45 7.13717 7.28423 7.40884 7.51575 7.6085 7.68971 7.76142 7.8252 7.88229

0.50 7.66894 7.84305 7.99114 8.11864 8.22955 8.32692 8.41308 8.48987 8.55873

Table 4: Cost benefit with θ = 0.7, τ = 0.6, β = .03, µ1 = .02, µ2 = 0.05.

λ2

λ1 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

0.05 295.875 293.853 292.195 290.811 289.639 288.633 287.76 286.996 286.322

0.10 253.247 249.854 247.055 244.706 242.709 240.989 239.493 238.179 237.017

0.15 236.892 232.278 228.449 225.223 222.467 220.086 218.008 216.18 214.559

0.20 229.096 223.359 218.574 214.523 211.05 208.04 205.406 203.082 201.017

0.25 225.062 218.285 212.603 207.772 203.615 200.001 196.831 194.027 191.53

0.30 222.974 215.227 208.701 203.129 198.318 194.123 190.434 187.164 184.245

0.35 221.996 213.343 206.019 199.742 194.305 189.55 185.358 181.634 178.304

0.40 221.695 212.192 204.113 197.164 191.125 185.83 181.15 176.984 173.253

0.45 221.523 211.521 202.727 195.136 188.52 182.703 177.55 172.954 168.83

0.50 221.232 211.178 201.705 193.5 186.328 180.007 174.395 169.38 164.871

7 Conclusion

This paper provides the reliability analysis for a warm-standby-repairable-system consisting of two-dissimilar-units. One
of them is a high quality unit, and the other is a low quality one unit that might require repairs or replacement by another
substandard unit upon failure. The repair and replacement times are assumed to be arbitrarily distributed. We were
successful in obtaining some system reliability measurements, such as the MTSF, the availability analysis, the expected
busy period, and the expected profit of the system.
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– The mean time to system failure increases with decreasing the failure rate of the highest quality unit(λ1) and the
failure rate of the lowest quality unit (λ2).

– The Availability increases when the failure rate of the highest quality unit(λ1) and the lowest quality unit (λ2)
decrease.

– The busy period with first and second unit increases with increasing the failure rate of the highest quality unit(λ1)
and the failure rate of the lowest quality unit (λ2).

– The busy period due to the replacement of the second unit increases with increasing the failure rate of the highest
quality unit(λ1) and the failure rate of the lowest quality unit (λ2).

– The cost-benefit increases when the failure rate of the highest quality unit(λ1) and the lowest quality unit (λ2)
decrease.

Therefore, we recommend introducing preventive maintenance to improve the performance of this system.
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