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Abstract: The influence of a suspended fixed obstacle on an incident progressive wave inside an ideal homogeneous shallow water is

studied in two dimensions. The fluid occupies an infinite channel of a constant depth, and a fixed obstacle of a small horizontal extent is

partially submerged without contact with the bottom of the channel. An asymptotic double series expansion for the solution is used. The

procedure enables us to calculate analytic expressions for the local perturbations up to the second order. The results of the first-order

approximation indicate that no reflections exist. The second-order approximation of the solution is found to be the superposition of a

progressive wave and local perturbations. For approximations of order higher than two, a secular term which increases monotonically

with time and distance appears in the expressions for the progressive wave. This unacceptable result is due to a certain aspects in the

mathematical procedure used. For this reason, the procedure is modified by using a suitable transformation of variables which reduces

the determination of the transmitted wave to the solution of the KdV equation. As an illustration, the special case of the incident

uniform flow is considered and the stream lines of the resulting flow are drawn.
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1 Introduction

Simulations for the geophysical phenomena of a fluid flow over weirs, under gates and submerged elands were studied
in several theoretical and experimental works. These works deal with model problems of free-surface fluid flow over a
topography or under floating submerged bodies. the theoretical problem is a nonlinear boundary value problem which
may be in certain cases, constrained by initial conditions (see [3,13]).

The two-dimensional fluid flow over an obstacle or under a floating body, within the frame of the linearized theory
of motion, has been investigated by several authors, for instance [4,9,12,14]. The mathematical theory used in these
investigations is inadequate to describe the important nonlinear aspects of the phenomenon. Using a certain procedure the
solution for the velocity potential of the nonlinear problem is expressed as a power series in a certain small parameter [13].
The above-mentioned linearized theory assumes the first term of such a series as a first approximation of the solution. the
radius of convergence of this series is shown by Gouyon [6] to be of the same order as that of the ratio of the free surface
amplitude to the wave length. Hence, this theory is inadequate to deal with the propagation of long waves.

Different numerical techniques were developed to solve the nonlinear system of equations to which the original
problem is reduced. Yeung [15] present an exhaustive review of the numerical techniques which are widely applied to
this system.

Analytical techniques, within the frame of the shallow-water theory, were used by several authors to investigate free-
surface flows over certain non-horizontal bottoms, see [1,2,7].

Guli [7] and Abou-dina and Helal [1] studied the problem of the reflection and transmission of an incident
progressive wave over a topography in shallow water using both of the Lagrangean an Eulerian description of the
problem, respectively.

In the present work, we investigate the effect of a fixed vertical submerged barrier on the propagation of an incident
wave inside a homogeneous fluid. Euler’s description is used and the problem is studied within the frame of the two-
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dimensional shallow water theory. The fluid is supposed to occupy an infinite channel of constant depth and the horizontal
extent of the submerged barrier is assumed to be small, see fig. (1).

The analysis enables to separate progressive waves from local perturbations and shows the absence of reflected waves
in the first order of approximation. These results are similar to those obtained for the case of nonhorizontal topograpgy
by Ogilvie [9], Guli [7] and Abou-Dina and Helal [1]. The second order approximation of the solution is found to be the
superposition of progressive wave and local perturbations. Analytical expressions are calculated for the local perturbations
of the second order. For approximations of order higher than two, the expressions for the progressive waves contain a
secular term which increases monotonically with time and distance. This unacceptable result is due to certain aspects
of the mathematical used procedure. For this reason, the procedure is modified by utilizing a suitable transformation
of variables. The modification reduces the determination of the transmitted wave to be the solution of the equation of
Korteweg and de Vries (KdV).

As an illustration, the special case of the incident uniform flow is considered and the stream lines of the resulting flow
are drawn.

Fig. 1: Explanatory diagram of an upstream wave inside a fluid with a fixed immersed obstacle penetrating the free surface

The origin of the Cartesian system of coordinates is fixed in the submerged obstacle. The axis Ox points along the
direction of the incident-wave velocity, the axis Oy is vertical upwards and the plane Oxz coincides with the free surface
at rest. The bottom of the channel is impermeable and horizontal.

2 Main problem

Consider an incident upstream wave inside a fluid layer with free surface and finite depth in an infinitely long channel.
The bottom of the channel is horizontal and a fixed submerged obstacle penetrating the free surface without contact with
the bottom of the channel is present fig (1). It is required to determine the reflected and transmitted parts of the incident
wave.

To simplify the mathematics, the problem is assumed two-dimensional, and the fluid is taken to be ideal and
homogeneous. Also, the motion is assumed irrotational and sufficiently slow. Hence, the free surface remains always in
the neighbourhood of its position at rest. The horizontal extent of the submerged obstacle is taken to be small compared
with the dimensions of the channel.

The motion will be referred to a fixed orthogonal Cartesian system of coordinates O(x,y) fig (1).
For the rest of this work, we consider the following notations:

�d Depth of the submerged part of the obstacle (fig (1)),

�ρ The constant density of the fluid,

�g The acceleration of gravity,

�c0 The critical velocity (=
√

gh ),

�ε A small parameter,
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�t The parameter of time,

�(x,y) The rectangular coordinates of a point,

�x = k±(y) = εk±0 (y) The equation of the obstacle’s boundary,

�y = η(x, t) The equation of the free surface,

�P(x,y, t) The pressure applied to the fluid particle occupying the position (x,y) at the instant of time t,

�W(x,y, t) The velocity of the particle, which occupies the position (x,y) at the instant of time t,

�Φ(x,y, t) The velocity potential function [W(x,y, t) = ∇Φ(x,y, t)],

�Ψ (x,y, t) The stream function.

�+,− The regions on the right and on the left of the obstacle, respectively.

�′, ′′ First and second derivatives with respect to the argument of the superscripted function,

�i, t,r Incident, transmitted and reflected waves, respectively,

� ∂
∂n

The derivative directed along the outward normal to the considered surface.

3 The equations of motion

The irrotationality condition reduces the problem to the search for a velocity potential function Φ(x,y, t) with finite and
continuous gradient W(x,y, t) in addition to the free surface elevation function η(x, t), as described in [13]. Note that the
physical and simplifying conditions, the equations satisfied by Φ(x,y, t) are found to be presented as follows
In the fluid mass with constant density : The continuity equation reads

∂ 2Φ

∂x2
+

∂ 2Φ

∂y2
= 0, (1)

and Bernoulli’s equation for the unsteady flow is

P(x,y, t) =−ρ

{
∂Φ

∂ t
+

1

2

[(
∂Φ ′

∂x

)2

+

(
∂Φ

∂y

)2
]
+ gy

}
.

On the free surface (y = η(x, t)) : The impermeability of this boundary is expressed as

∂Φ

∂y
=

∂Φ

∂x

∂η

∂x
+

∂η

∂ t
at y = η(x, t),

witch leads to

∂Φ

∂ t
+

1

2

[(
∂Φ

∂x

)2

+

(
∂Φ

∂y

)2
]
+ gy = 0 at y = η(x, t).

On the horizontal bottom: The impermeability requires that

∂Φ

∂y
= 0 at y =−h.

On the impermeable submerged obstacle: The boundary conditions, expressing the impermeability of the submerged
obstacle take the following forms

∂Φ±

∂x
− d

dy
k±(y)

∂Φ±

∂y | = 0

at x = k±(y),−d 6 y 6 η±(x, t).

The velocity W(x,y, t) in the fluid mass under the submerged obstacle is continuous.
The radiation condition: The radiation condition (see Stoker (1956) and Wehasen & Laitone (1966)) states that
(a) At the upstream extremity of the channel only the reflected wave and the incident wave are found.
(b) At the downstream extremity of the channel only the transmitted wave propagates.
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The Cauchy-Riemann conditions: These conditions combine the velocity potential Φ and the stream function Ψ by the
following relations

∂Φ

∂x
=

∂Ψ

∂y
, (2)

∂Φ

∂y
=−∂Ψ

∂x
. (3)

4 The shallow water theory

Following Germain [5], we introduce the set of distorted variables

x̃ = εx, ỹ = y and t̃ = εt, (4)

where ε is the small parameter defined above. The system of equations of the problem (1)-(3) is written in terms of x̃, ỹ
and t̃ as

ε2 ∂ 2Φ̃

∂ x̃2
+

∂ 2Φ̃

∂ ỹ2
= 0, (5)

∂Φ̃

∂ ỹ
= ε2 ∂Φ̃

∂ x̃

∂ η̃

∂ x̃
+ ε

∂ η̃

∂ t̃
for ỹ = η̃(x̃, t̃), (6)

ε
∂Φ̃

∂ t̃
+

1

2

[
ε2

(
∂Φ̃

∂ x̃

)2

+

(
∂Φ̃

∂ ỹ

)2
]
+ gỹ = 0

for ỹ = η̃(x̃, t̃), (7)

∂Φ̃

∂ ỹ
= 0 at ỹ =−h, (8)

ε
∂Φ̃

∂ x̃
− ∂Φ̃

∂ ỹ

d

dỹ
k±(ỹ) = 0 at x̃ = εk±(ỹ), (9)

ε
∂Φ̃

∂ x̃
=

∂Ψ̃

∂ ỹ
, (10)

and
∂Φ̃

∂ ỹ
=−ε

∂Ψ̃

∂ x̃
, (11)

where Φ̃(x̃, ỹ, t̃),Ψ̃ (x̃, ỹ, t̃) and η̃(x̃, t̃) denote the functions Φ(x̃/ε, ỹ, t̃/ε)Ψ(x̃/ε, ỹ, t̃/ε) and η(x̃/ε, t̃/ε) respectively. The
functions Φ̃ ,Ψ̃ and η̃ are expressed in the frame of the shallow water theory in powers of the small parameter ε as follows

Φ̃(x̃, ỹ, t̃) =
∞

∑
n=1

∞

∑
m=0

εn exp

(−mλ |x̃|
ε

)
Φ̃n,m(x̃, ỹ, t̃), (12)

Ψ̃ (x̃, ỹ, t̃) =
∞

∑
n=1

∞

∑
m=0

εn exp

(−mλ |x̃|
ε

)
Ψ̃n,m(x̃, ỹ, t̃), (13)

and

η̃(x̃, t̃) =
∞

∑
n=1

∞

∑
m=0

εn exp

(−mλ |x̃|
ε

)
η̃n,m(x̃, t̃), (14)

where λ is a real positive constant and Φ̃n,m,Ψ̃n,m and η̃n,m are unknown functions to be determined. The above system of
equations must be verified at each order (n,m). For simplification, the hats (∼) over the symbols will be omitted in the
sequel.
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5 Solution of the system of equations

In this section, we shall limit ourselves to the verification of the homogeneous equations in the fluid mass, on the free
surface, on the horizontal bottom and at each order (n,m).
The order of approximation (1,m): Substituting for the functions Φ and η given by formulas (12)- (14) in expressions
(5)-(8), we get the following system of equations satisfied at the order of approximation (1,0)

∂ 2Φ1,m

∂y2
+m2λ 2Φ1,m = 0,

∂Φ1,m

∂y
= 0, at y = 0,

η1,m = 0,

and
∂Φ1,m

∂y
= 0, at y =−h.

The solution of the above system is given by

Φ1,0(x,y, t) =

{
Φ0

1,0(x, t) m = 0,
0 m > 0.

and
η1,m(x, t) = 0 m ≥ 0

where Φ0
1,0(x, t) is an arbitrary function.

The order of approximation (2,m): The system of equations reduces in the order (2,m) to

∂ 2Φ2,m

∂y2
+m2λ 2Φ2,m = 0,

∂Φ2,m

∂y
= 0, at y = 0,

gη2,m +
∂Φ1,m

∂ t
= 0 at y = 0,

and
∂Φ2,m

∂y
= 0 at y =−h,

The solution of the above system is given by

Φ2,m(x,y, t) =

{
Φ0

2,0(x, t) m = 0,

A0
2,m(x, t)cos(mλ y) m > 0,

λ =
π

h
,

where Φ0
2,0(x, t),A

0
2,m(x, t),m > 0 are arbitrary functions.

The order of approximation (3,m): The system of equations reduces, in the order (3,m), to

∂ 2Φ3,m

∂y2
+m2λ 2Φ3,m = 2mλ

∂Φ2,m

∂x
− ∂ 2Φ1,m

∂x2
,

∂Φ3,m

∂y
− ∂η2,m

∂ t
= 0, at y = 0,

∂Φ3,m

∂y
= 0, at y =−h,
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and

gη3,m +
∂Φ2,m

∂ t
= 0, at y = 0.

The solution of the above system leads to the following

Φ0
1,0(x, t) = Φt

1,0 (x− c0t)+Φr
1,0 (x+ c0t) ,

A0
2,m(x, t) = A2,m(t), m > 0

Φ3,m(x,y, t) =

{
−
(

1
2
y2 + yh

) ∂ 2Φ0
1,0

∂x2 +Φ∗
3,0(x, t) m = 0,

A3,m(x, t)cos(mλ y) m > 0,
(15)

and

η3,m(x, t) =

{
− 1

g
∂
∂ t

Φ0
2,0(x, t), m = 0,

− 1
g

d
dt

A2,m(t), m > 0,

where Φt
1,0,Φ

r
1,0,A2,m,Φ

∗
3,0 and A3,m are arbitrary functions of their arguments. In the same way, it can be shown that the

(4,0) order solution leads to

Φ0
2,0(x, t) = Φt

2,0 (x− c0t)+Φr
2,0 (x+ c0t) ,

where Φt
2,0 and Φr

2,0 are arbitrary functions.

6 The second order solution

Enforcing the radiation condition into the results of the present section, the total velocity potential is given (up to the
second order of ε) by

Φ+(x,y, t) =εΦt
1,0 (x− c0t)+ ε2Φt

2,0 (x− c0t)+

+ ε2
∞

∑
m=1

A+
2,m(t)exp

(−mπx

εh

)
cos

(mπy

h

)

+O
(
ε3
)
,

(16)

and

Φ−(x,y, t) =εΦ i (x− c0t)+ εΦr
1,0 (x+ c0t)

+ ε2Φr
2,0 (x+ c0t)

+ ε2
∞

∑
m=1

A−
2,m(t)exp

(mπx

εh

)
cos

(mπy

h

)

+O
(
ε3
)
.

(17)

Here, the velocity potential of the incident wave
(
εΦ i (x− c0t)

)
, is assumed to be of the first order in ε . The free surface

elevation at this order is given by

η±(x, t) =−ε

g

∂

∂ t
Φ±(x,y, t), for y = 0. (18)

The expressions for the stream function of the second order are obtained using the Cauchy-Riemann conditions (10) and
(11) together with expressions (16) and (17) in the form

Ψ+(x,y, t) =ε2(y+ h)Φ i′(x− c0t)

− ε2
∞

∑
m=1

A+
2,m(t)exp

(−mπx

εh

)
sin

(mπy

h

)

+O
(
ε3
)
,

(19)
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and

Ψ−(x,y, t) =ε2(y+ h)
[
Φ i′(x− c0t)+Φr′

1,0 (x+ c0t)
]

+ ε2
∞

∑
m=1

A−
2,m(t)exp

(mπx

εh

)
sin

(mπy

h

)

+O
(
ε3
)
.

(20)

The pressure is given (up to this order) by

P±(x,y, t) =−ρ

[
∂

∂ t
Φ±(x,y, t)+ gy

]
.

The continuity of the pressure on the bottom at x = 0 gives

Φ i′ (−c0t)−Φr′
1,0 (c0t) = Φ

t′′
1,0 (−c0t) . (21)

The determination of the unknown functions needs to specify the boundary conditions due to the particular forms of the
obstacle.

7 Application of the boundary conditions

The impermeability of the barrier implies

∂Φ+

∂n
=

∂Φ−

∂n
= 0, at x = ε2k±0 (y),−d ≤ y ≤ η±(x, t). (22)

The horizontal extent of the barrier is assumed to be of the first order
(
k±(y) = εk±0 (y)

)
. Hence, condition (22) can be

developed in the neighbourhood of x = 0 as

[
ε

∂Φ±

∂x
− ε

d

dy
k±0 (y)

∂Φ±

∂y

]
+ ε2k±0 (y)

[
ε

∂ 2Φ±

∂x2
− ε

d

dy
k±0 (y)

∂ 2Φ±

∂x∂y

]
+ . . . ,

(23)

for x = 0 and −d ≤ y ≤ η±.

The continuity of the velocity
−→
W in the homogeneous fluid mass under the barrier at x = 0 gives

∂Φ+

∂x
= ∂Φ−

∂x
at x = 0,−h ≤ y ≤−d, (24)

∂Φ+

∂y
= ∂Φ−

∂y
at x = 0,−h ≤ y ≤−d, (25)

Substituting from (16) and (17) in (24) and making use of (23), one obtains in the first order

Φt′
1,0 (−c0t)−

∞

∑
m=1

(mπ

h

)
A+

2,m(t)cos
(mπy

h

)
= Φ i′ (−c0t)

+Φr′
1,0 (c0t)+

∞

∑
m=1

(mπ

h

)
A−

2,m(t)cos
(mπy

h

)
,−h ≤ y ≤ 0.

Then,

Φ i′ (−c0t)+Φr′
1,0 (c0t) = Φt′

1,0 (−c0t) , (26)

−A+
2,m(t) = A−

2,m(t)≡
(

h

π

)
Am(t), m > 1, (27)
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where Am(t), m > 1, are arbitrary functions to be determined. Equations (21) and (26) leads to the following.

Φt
1,0 (−c0t) = Φ (−c0t) ,

then,

Φt
1,0 (x− c0t) = Φ i (x− c0t) , (28)

Φr
1,0 (c0t) = 0,

which implies that

Φr
1,0 (x+ c0t) = 0. (29)

Substituting from (27), (28) and (29) into (16) and (17), the following expressions for the velocity potential in regions to
the right and to the left of the submerged obstacle (up to the second order of approximation) are obtained as

Φ+(x,y, t) =εΦ i (x−c0t)+ ε2Φ t
2,0 (x−c0t)

− ε2
∞

∑
m=1

(
h

π

)
Am(t)exp

(−mπx

εh

)
cos

(mπy

h

)

+O
(

ε3
)
,

(30)

and
Φ−(x,y, t) =εΦ i (x− c0t)+ ε2Φr

2,0 (x+ c0t)

+ ε2
∞

∑
m=1

(
h

π

)
Am(t)exp

(mπx

εh

)
cos

(mπy

h

)

+O
(
ε3
)
.

(31)

We noted that the considered limitations and geometry do not permit reflection of the first order by the submerged obstacle
as seen from the last expression of Φ−(x,y, t). Further, using equations (23) and (25) together with expressions (30) and
(31), the functions Am(t) are found to satisfy the following dual series equations

∞

∑
m=1

mAm(t)sin
(mπy

h

)
= 0, −h 6 y 6−d,

and

Φ i′ (−c0t)+
∞

∑
m=1

mAm(t)cos
(mπy

h

)
= 0, −d 6 y 6 0.

The linearity and uniformity of the above dual series equations impose.

Am(t) = amΦ i′ (−c0t) , m > 1, (32)

where am > 1 are constant coefficients satisfying the dual series equations

Φt
1,0 (x− c0t) = Φ i (x− c0t) , (33)

and

1+
∞

∑
m=1

mam cos
(mπy

h

)
= 0, −d 6 y 6 0. (34)

The solution of the dual series equations (33) and (34)) is given by Noble and Whiteman (1970) in the following form.

am =
Pm(γ)−Pm−1(γ)

m
, m > 1, (35)

where Pm(γ) denotes the Legendre polynomial of degree m and argument γ with

γ = cos

(
πd

h

)
. (36)
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Substituting (35) and (36) into (32), we obtain

Am(t) = Φ i′ (−c0t)

[
Pm(γ)−Pm−1(γ)

m

]
, m > 1. (37)

The total velocity potentials are obtained from (30), (31) and (37) as

Φ±(x,y, t) = εΦ i (x− c0t)∓ ε2

(
h

π

)
Φ i′ (−c0t)×

∞

∑
m=1

[
Pm(γ)−Pm−1(γ)

m

]
exp

(∓mπx

εh

)
cos

(mπy

h

)
+ . . .

(38)

Expressions (38) show that the effect of such a barrier on the incident progressive wave, at the first order, is to produce
local perturbations vanishing far from the barrier and that at this level of approximation, no reflections exist. The free
surface elevation is found from (18) ,(38) to be

η±(x, t) =
c0ε2

g
Φ i′ (x− c0t)

∓ c0ε3

g

(
h

π

)
Φ i′′ (−c0t)

∞

∑
m=1

[
Pm(γ)−Pm−1(γ)

m

]

exp

(∓mπx

εh

)
+ . . .

Finally, substituting equations (27), (36) and (37) into (19) and (20)), we obtain the stream function Ψ(x,y, t) in the
following form

Ψ±(x,y, t) = ε2(y+ h)Φ i′(x− c0t)+ ε2

(
h

π

)
Φ i′ (−c0t)×

∞

∑
m=1

[
Pm(γ)−Pm−1(γ)

m

]
exp

(∓mπx

εh

)
sin

(mπy

h

)
+ . . .

(39)

8 Numerical application

To illustrate the theoretical results obtained above, we consider in the remaining part of this section, the particular case of
an incident uniform stream with velocity

W = e2W0,

We consider,
Φ i′(x− c0t) =W0. (40)

Substituting (40) into (39), we get the stream function for this particular case as

Ψ±(x,y, t) = ε2W0h

{
1+

y

h
+

1

π

∞

∑
m=1

[
Pm(γ)−Pm−1(γ)

m

]

exp

(∓mπx

εh

)
sin

(mπy

h

)}
+ . . .

The corresponding system of stream-lines is obtained as the solution of the transcendental equation

Ψ±(x,y, t) = ε2W0hC,

where c is a real constant with values between 0 and 1. Hence, the equation of the system of stream lines is

{
1+

y

h
+

1

π

∞

∑
m=1

[
Pm(γ)−Pm−1(γ)

m

]

exp

(∓mπx

εh

)
sin

(mπy

h

)}
=C, 0 ≤C ≤ 1.
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The following figure exhibits the system of stream-lines calculated for the particular value of d/h = 0.5.

Fig. 2: The system of stream-lines corresponding to d/h = 0.5

The system of stream-lines (drawn in the non-distorted space) corresponding to an incident uniform flow with velocity
W = ε2W0. The number assigned to each line refers to the corresponding value of Ψ±(x,y, t)/(ε2W0h). The local effect of
the submerged obstacle on the incident wave is illustrated: the fluid particles avoid penetrating the obstacle and accelerate
as they approach the obstacle and then they decelerate to their original velocity.

9 The secular term

Applying the procedure used in sect 5 to the region on the right of the barrier for the order (5,0) we can see, using (38),
that the function Φ∗

3,0(x, t), which appears in (15), satisfies

∂ 2

∂x2
Φ∗+

3,0 −
(
1/c2

0

) ∂ 2

∂ t2
Φ∗+

3,0 =−
(
h2/3

) ∂ 4

∂x4
Φ i (x− c0t)

+
(
1/c2

0

) ∂

∂ t
Φ i (x− c0t)

∂ 2

∂x2
Φ i (x− c0t)+

+
(
2/c2

0

) ∂

∂x
Φ i (x− c0t)

∂ 2

∂x∂ t
Φ i (x− c0t) ,

which has a solution given by

Φ∗+
3,0 (x, t) = R+

3 (x− c0t)− t

{(
3

2

)[
Φ i′(x− c0t)

]2

+

(
h2c0

3

)
Φ i′′′ (x− c0t)

}
,

(41)

where R+
3 (x− c0t) is an arbitrary function of (x− c0t). The function Φ∗+

3,0 (x, t) represents a progressive wave traveling

downstream. The second term on the right hand side of (41) is a secular term increasing monotonically with time. This
secular term is not accepted physically. The expression (41) can be presented in the form

Φ∗+
3,0 (x, t) =S+3 (x− c0t)− x

{(
3

2c0

)[
Φ i′(x− c0t)

]2

+

(
h2

3

)
Φ i′′′ (x− c0t)

}
,

(42)
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where S+3 (x− c0t) is an arbitrary function of (x− c0t) with

S+3 (x− c0t) =(x− c0t)

{(
3

2c0

)[
Φ i′(x− c0t)

]2

+

(
h2

3

)
Φ i′′′ (x− c0t)

}
+R+

3 (x− c0t) ,

relation (42) shows that the secular term vanishes at x = 0.

9.1 The origin of the secular terms

The appearance of a secular term in the progressive wave is a purely mathematical artifact, it is due to the choice of
the distortion process given by (4). This distortion gives rise to waves propagating with critical velocity. However, since
the early observations of Russel (1845), it is known that the velocity of propagation of long waves exceeds the critical
velocity by a term of the same order as that of the relative free surface amplitude. This gives the physical justification of
the appearance of secular terms in the above calculations.

From a mathematical point of view, the distortion formula (4) and expressions (12), (13) and (14) are nothing more
than a sort of infinite series expansions of the functions Φ , Ψ and η representing the exact solution of the distorted system
of equations (5)-(11). This type of representation always has a certain domain of validity. If we consider, for example,
Maclaurin’s expansion of the function sin(εx) := εx+O

(
ε3
)

we note that it contains a secular term at the first order.
However, this representation gives the exact value of sin(εx) at the point x = 0, and provides a reasonable approximation,
for the function, in the narrow neighborhood enclosing the point. This secular term may disappear if we use another
representation for the same function as, for example, the Fourier series representation. The procedure based on (4) and
(12)-(14), should be situated within this context.

The above mathematical procedure provides independent expressions for local perturbations and progressive waves.
The expression of progressive waves is valid only at x = 0. Hence this procedure needs to be modified in order to deal
with progressive waves, taking into account its behavior at x = 0.

10 Modification of the mathematical procedure

Laboratory observations [10] show that long waves are slowly modulated, and that their celerity slightly exceeds the
critical velocity. To take these properties into account, we follow Temperville [11] and use the set of variables u, v and y

defined by means of the following relations

u = (x− c0t) , v = ε2x, y = y,

where u is the fast variable used for describing the basic wave, and v is the slow variable used for describing the
modulation.

The transformed version of the equations in the fluid mass is consequently written as

ε6 ∂ 2Φ+

∂v2
+ 2ε4 ∂ 2Φ+

∂u∂v
+ ε2 ∂ 2Φ+

∂u2
+

∂ 2Φ+

∂y2
= 0,

and the conditions on the free surface are transformed into the forms

∂Φ+

∂y
=ε6 ∂Φ+

∂v

∂η+

∂v
+ ε4

[
∂Φ+

∂v

∂η+

∂u
+

∂Φ+

∂u

∂η+

∂v

]

+ ε2 ∂Φ+

∂u

∂η+

∂u
− εc0

∂η+

∂u
, at y = η+(u,v),

and

gη+− εc0
∂Φ+

∂u
+

1

2

{
ε2

[
∂Φ+

∂u
+ ε2 ∂Φ+

∂v

]2

+

[
∂Φ+

∂y

]2
}

= 0

at y = η+(u,v).
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The condition on the impermeable horizontal bottom remains the same

∂Φ+

∂y
= 0 at y =−h.

In the absence of local perturbations, far from the obstacle, the following representation for the functions Φ+ and η+ is
used

Φ+(u,v,y) =
∞

∑
n=1

ε2n−1Φ+
2n−1(u,v,y)

and

η+(u,v) =
∞

∑
n=1

e2nη+
2n(u,v).

The above system is assumed to be satisfied at each order of the small parameter ε .
We can see, after considerable calculations, that the results of the first five order approximations contain no secular

term, and that the function η+
2 satisfies the Korteweg and de Vries equation equation (KdV) of the form

h2

6

∂ 3η+
2

∂u3
+

3

2h
η+

2

∂η+
2

∂u
+

∂η+
2

∂v
= 0. (43)

In order to solve the KDV equation (43) one has to specify an initial condition at v = 0 (i.e. at x = 0). An accurate value
for the unknown function η+

2 can be obtained at x = 0, using the procedure of the double series expansion used earlier,
since the secular terms contaminating the obtained expressions disappear at the origin x = 0 for all instants of time. This
initial condition is given by (18) in the form

η+
2 (u,0) =−c0

g
Φ i/(u),

There are several methods devoted for the analytical solution of the KdV equation. Among others, we cite the method
of Bargmann, the perturbation method and the inverse scattering method. Each one of these methods provides a solution
suitable for certain particular form of the specified initial condition. We are not aware of any other method which can
give analytical solution for a general form of the initial condition. In such case, numerical methods are recommended for
obtaining the features of the resulting flow. We propose to follow the scheme of Zabusky and Kruscal (1965) [16] for the
numerical study of the solution of the KdV equation.

Work is in progress to extend the above results to cover the case of stratified fluids. We expect, in this case, to obtain
reflected waves by the obstacle at the first order of approximation.
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