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Abstract: Multivariate analysis of data is of wide applicability in data science especially in big data analytic due to the 
volume of concealed information to be analyzed. Accurate analysis of multivariate variables is pertinent because predictions 
from analyzed data are good statistical indicators for making helpful decisions economically and industrially. One of the 
statistical analytic tools for analyzing multidimensional observations is the kernel density estimator in data exploration and 
visualization. The functionality of the kernel depends on the kernel function and bandwidth which influences smoothness of 
estimates. Several kernel functions and bandwidth selectors exist in literature; however novel estimators are being introduced 
to handle complex circumstances. This paper introduces a new multivariate beta kernel functions whose derivation is 
contingent on the product techniques. The performances of the newly introduced and existing kernels are evaluated with a 
known objective function and the numerical results distinctly indicating that the introduced family transcended the traditional 
beta family. 
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1. Introduction 

One of the pivotal concepts in mathematical statistics and probability theory is density estimation which involves analysis of 
data. Data that are not properly interpreted often generate beguiling knowledge whose implementation may have a negative 
effect. Analysis of data begins with the assessment of the frequency of the data and establishment of probability estimate of 
the observations for visualization purposes [1]. Data smoothing techniques often times cogitate results whose conclusion can 
reflect the features of the observations being investigated. Density estimation in relation to data analysis has two main 
methods which are parametric and nonparametric techniques with the semiparametric estimation method as the hybrid of the 
two forms. 

The parametric method of density estimation presupposes that the observations to be analyzed originates from a known 
distribution such that the parameter of the distribution will be the details to be estimated. The maximum likelihood estimator 
is one of the methods that apply the parametric estimation method. Conversely, the nonparametric density method advocates 
that the observations to be analyzed must not be knotted to a family of distribution and the assumption of observations being 
distributional is negated. As a result of the prior knowledge assumption in parametric estimation, the method has a 
determinate structure while the nonparametric method that depends on the observation in its estimation is flexible [2]. The 
resilience connected with nonparametric density estimation created a computationally expensive process that accounted for 
the popularity of the parametric estimation before the advent of fast computing machines. The analysis of large volume of 
data with statistical models that are complex do attract huge cost of computation due to the time required [3]. 

In studying nonparametric estimators, the kernel method has received more attention despite the numerous methods of 
estimation in literature. The well-received attention of kernel is ascribed to the clarity of its analytical formulation along with 
elucidation of outcomes wherein vital estimation issues are vividly ascertained. The kernel method is a vital nonparametric 
technique in determination of the intuitive probability distribution of observations. The estimator is of great industrial value 
in detection of anomalies and departure from the natural distribution family of data [4]. In data exploration and other 
numerous inferential estimation techniques, the kernel estimator has been widely applied. As a nonparametric method, the 
kernel estimator is of great advantage because the estimator is capable of handling large databases and obtaining smooth 
approximation for the observations being analyzed since nonparametric estimation is most beneficial with large sample sizes 
[5]. Kernel density estimation is the bedrock of most data analytic methods because the knowledge of kernel is applicable in 



1386                                                                                                                               I. U. Siloko et al.: A New Multivariate Product … 
 

 
 
© 2023 NSP 
Natural Sciences Publishing Cor. 
 

other data smoothing environments and its ideas can be transferred to other complex estimators. The usefulness of kernel 
method is mainly on exploratory data analysis and data visualization with other ancillary applications in hazard rate 
estimation, intensity function estimation, goodness-of-fit testing, regression estimation and archaeological studies [6, 7, 8, 9, 
10, 11]. 

This paper presents a novel multivariate kernel function of beta polynomial kernel using the product techniques with the 
asymptotic mean integrated squared error (AMISE) as performance metric. The structure of the other part of the article is 
presented thus. Section 2 discusses kernel method with the performance metric while section 3 talks about the beta kernel 
group with its proposed multivariate form. In section 4, results of proposed beta family and the classical beta kernels were 
compared using the bivariate product kernel estimator. Section 5 is the conclusion of the paper.  

2 .The Kernel Density Estimator 

One prominent method of investigating the statistical properties of data along with their distributional behaviour is the kernel 
techniques which employ the kernel estimator. Several researchers have recently employed the kernel estimator in 
examination of statistical details of observations by virtue of the importance of embedded information in data especially in 
situations where there is no historical knowledge of the data being examined [12, 13]. The kernel method of data estimation 
was initiated by Rosenblatt [14] and further developed by Parzen [15] for the purpose of exploratory and visualization of data 
in statistics. However; the estimator has gained popularity in several fields of studies due to its uniqueness in data analysis. 
In practice, the kernel estimator is strongly contingent on two basic statistical factors which are the smoothing parameter and 
the kernel formula. The compact form of the estimator as weighting function has its one-dimensional form as  

𝑓"(x) =
1
𝑛ℎ*𝐾

!

"#$

,
x − 𝑋"
ℎ /.																																																																																																																							(1) 

Here 𝐾(∙) is kernel formula while 𝑛 is size of observations, ℎ > 0 is bandwidth (smoothing parameter), x is spectrum to be 
considered and 𝑋" are the observations being analyzed. The bandwidth regulates the intensity of evenness of the estimate and 
therefore determines the performance of the estimator. The bandwidth relies on the total number of the observations, with 
large sample sizes, the smoothing parameter will be smaller and vice-versa. Hence; obtaining its optimal value is critical in 
data examination. The kernel functions, 𝐾(∙) must satisfied some basic axioms in addition to being symmetrical and unimodal 
and these axioms are given as 

⎩
⎪
⎨

⎪
⎧ 9𝐾(x)𝑑x = 1,																								

9 x𝐾(x)𝑑x = 0				and													

9 x%𝐾(x)𝑑x ≠ 0.																							

																																																																																																																	(2) 

The implication of the first condition is that integral of any kernel function is one; hence several kernel functions are 
probability density functions. The other two conditions imply that all kernel functions must have a mean of zero and a variance 
greater than zero [16, 17, 18]. 

Irrespective of the incontrovertible usefulness of the kernel estimator in data analysis, the kernel formula alongside the 
bandwidth are predominant factors in kernel density estimation with much emphasis been placed on the bandwidth. In 
addition to the problem of accurate bandwidths’ selection in kernel method, another challenge of the kernel estimator is its 
boundaries bias. However; several techniques have been introduced by researchers to circumvent the boundaries bias problem 
[13, 19, 20]. On bandwidths selection researchers are constantly introducing novel selectors since no single method can be 
considered generally acceptable and applicable in all circumstances. 

The achievement of kernel estimator depends greatly on bandwidths and several data driven bandwidths selectors have been 
discussed in literature. A survey on bandwidths selectors is done by Heidenreich et al [21] on cross-validation and plug-in 
algorithms with the conclusion that cross validation selectors usually produce under smooth estimates and with the challenge 
of extreme sample variability. On the other hand, the estimates of the plug-in algorithms oftentimes display more stability 
unlike the cross-validation selectors but with the tendency of producing over-smoothed estimates. Smoothing parameter 
selectors such as the cross-validation algorithms and plug-in selectors have displayed some pitfalls; hence researchers have 
suggested the application of the Fast Fourier Transformation approach in the selection of suitable bandwidths. The efficiency 
and effectiveness of the Fourier transform technique in kernel density estimation had been demonstrated by authors such as 
Raykar et al. [22] and Suhre et al. [23] were the Fast Fourier Transform (FFT) resulted in bandwidths with improved 
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performance in contrast with the over-smoothness and under-smoothness of estimates of cross validation algorithms and 
plug-in algorithms. 

2.1 The Multivariate Kernel Density Estimator 

Generally, notably applications of kernel method are basically in multivariate environment where different variables and their 
effects are statistically investigated. In multivariate kernel estimation, the joint probability distribution of at least two 
continuous random observations is estimated [11, 24, 25]. The generalized form of the kernel estimator is  

𝑓"(x) =
1

𝑛|𝐻|$ %⁄ *𝐾
!

"#$

,
x − X"
𝐻$ %⁄ /,																																																																																																																(3) 

where 𝐻 is the bandwidth matrix which is symmetric and 𝐾(∙) denotes the multivariate kernel function. Again, the 
achievement of the multivariate estimator also relies on the bandwidth matrix and several techniques for its selection have 
been elaborately discussed in literature. One of the commonly used techniques in selection of bandwidth matrix is the 
minimization of a performance metric as an objective function such as AMISE of some plug-in algorithms.  

Selection of bandwidth matrices in multivariate kernel method is subject to the kernel orientation and regulated by the type 
of parameterization. One of the parameterization methods in multivariate kernel estimation is the diagonal parameterization 
where the smoothing matrix is denoted by	𝐻 = diag	(ℎ$%, . . . , ℎ'%); ℎ$, … , ℎ' > 0. The diagonal parameterization is 
appropriate for the product kernel estimator that employs distinct smoothing parameter in the various coordinates 
respectively. The multivariate product kernel is 

𝑓"(x) = 𝑛($ IJℎ)

'

)#$

K

($

*𝐾
!

"#$

,
x$ − X"$
ℎ$

,
x% − X"%
ℎ%

, … ,
x' − X"'
ℎ'

/,																																																					(4) 

with 𝐾(∙) as the multi-dimensional kernel function, ℎ) > 0, 𝑗 = 1, 2, … , 𝑑 are bandwidths of the respective coordinates and 
𝑑 is dimension of kernel. The advantage of the product kernel is the closed form presentation of its performance metric 
(AMISE) and smoothing parameter formulas contrary to other intricate forms whose optimal smoothing parameter formulas 
may not be easily expressed explicitly [25, 26]. 

A special case of the multi-dimensional kernel estimator is the bivariate case with two smoothing parameters. The bivariate 
product kernel applies the product of two univariate kernel estimators in analyzing its observations with a single probability 
function. Assuming the two observations denoted by X"	, Y" , 𝑖 = 1, 2, … , 𝑛 and 𝑛	is sample size while 𝑓(x	, y) is joint 
probability density function, the bivariate product estimator is 

𝑓"(x	, y) =
1

𝑛ℎ+ℎ,
*𝐾
!

"#$

Q
x − X"
ℎ+

,
y − Y"
ℎ,

R =
1

𝑛	ℎ+ℎ,
*	𝐾
!

"#$

,
x − X"
ℎ+

/𝐾 Q
y − Y"
ℎ,

R.																										(5) 

Again, ℎ+ > 0 and ℎ, > 0 are bandwidths of the two coordinates while 𝐾(x	, y)	is bivariate kernel estimator. The popularity 
of bivariate product kernel estimator is hinged on the variations that usually exist in the data in their respective coordinates. 
One advantage of the bivariate kernel method is the power of presenting its estimates in a simple and understandable manner 
such as wire frames for exploration and graphical demonstration purposes. Another significant characteristic of the bivariate 
estimator is the determination of the kernel orientation by the bandwidth which could be generalized to higher dimensions 
but this unique feature is completely absent with the univariate case [1, 27].  

2.2 The Performance Metric of Kernel Density Estimator 

Performance in nonparametric estimator is typically evaluated by some known performance metrics such as the kullback-
liebler distance, mean integrated absolute error and Hellinger distance. However; these error criteria functions are 
dimensionless and dimensionality is an imperative attribute in kernel estimation because its application is substantially 
important in higher dimensions. On account of the potential benefits of dimensionality with reference to kernel density 
estimation, the asymptotic mean integrated squared error (AMISE) is appropriate. The AMISE is obtained by Taylor's series 
expansion and its popularity over other criteria is hinged on its incorporation of dimension and the mathematical tractability. 
This performance metric has two components that are both influence by the bandwidth and they are the integrated variance 
and integrated squared bias. The AMISE has its compact form as     

𝐴𝑀𝐼𝑆𝐸 Y𝑓"(x)Z = 9Variance Y𝑓"(x)Z 𝑑x +9Bias% Y𝑓"(x)Z 𝑑x.																																																							(6) 
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On further simplification of Equation (6) using Taylor’s expansion produces the AMISE given as 

𝐴𝑀𝐼𝑆𝐸c𝑓"(∙)d 	=
𝑅(𝐾)
𝑛ℎ+	

+
1
4𝜇%

(𝐾)%ℎ+-𝑅(𝑓.),																																																																																								(7) 

with 𝑅(𝐾) = ∫𝐾(x)%𝑑x	 as kernel roughness, 𝜇%(𝐾)% is its moment whilst 𝑅(𝑓.) = 	∫ 𝑓.(x)%𝑑x is roughness of unknown 
distribution for the estimation process. The AMISE rely completely on the bandwidth which determines its value. The 
bandwidth that yields the optimal numerical value is 

ℎ/0123 = i
𝑅(𝐾)

𝜇%(𝐾)%𝑅(𝑓.)	
j
$ ('5-)⁄

× 𝑛($ ('5-)⁄ .																																																																																											(8) 

The multivariate version of the AMISE in Equation (7) using the product technique is 

AMISE Y𝑓"(x)Z =
𝑅(𝐾)'

𝑛ℎ$ℎ%, … , ℎ'
+
1
4ℎ)

-𝜇%(𝐾)%9𝑡𝑟% c∇%𝑓(x)d𝑑x					

=
𝑅(𝐾)'

𝑛ℎ$ℎ%, … , ℎ'
+
1
4ℎ)

-𝜇%(𝐾)%𝑅c∇%𝑓(x)d.																																																																		(9) 

The closed form of the optimal bandwidth for Equation (9) is  

𝐻789:; = i
𝑑𝑅(𝐾)'

𝜇%(𝐾)%	 ∫ 𝑡𝑟
% c∇%𝑓(x)d𝑑x

j
< !
"#$=

× 𝑛(<
!

"#$=,																																																																														(10) 

with 𝑅c∇%𝑓(x)d = ∫ 𝑡𝑟% c∇%𝑓(x)d𝑑x is the roughness of the distribution and 𝑡𝑟 represents the trace of matrix, ℎ$, ℎ%, … , ℎ' 
are bandwidths for the different dimension while ∇%𝑓(x) is the distribution Hessian matrix [28]. 

3. Methodology 
3.1 The beta polynomial kernel function 

Several families of kernel estimators exist in literature and one prominent family is the beta polynomial family whose form 
is given as 

𝐾>(𝑡) =
(2𝑝 + 1)!
2%>5$(𝑝!)%

(1 − 𝑡%)>,																																																																																																															(11) 

where 𝑝 = 0, 1, 2, … ,∞ is the determinant of the resulting kernel and 𝑡 is evaluated within the interval [−1, 1]. The popularity 
of the beta kernel is due to their fascinating mathematical attributes. The values of 𝑝 determines the produced kernel such 
that the simplest kernel called the Uniform kernel is when 𝑝 = 0 but when 𝑝 = 1, we have the Epanechnikov function called 
the optimal kernel with respect to the AMISE. Other higher values such as 𝑝 = 2, 3	and	4 will produce Biweight kernel, 
Triweight kernel and Quadriweight kernels. The Gaussian kernel that is of great application in mathematical statistics did not 
belong to this family, however; it is obtained when 𝑝 moves to infinity [29, 30]. The Epanechnikov, Biweight, Triweight and 
Quadriweight kernels are mathematically expressed in the forms  

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐾$(𝑡) =

3
4	
(1 − 𝑡%).

𝐾%(𝑡) =
15
16	

(1 − 𝑡%)%.

𝐾?(𝑡) =
35
32	

(1 − 𝑡%)?.

𝐾-(𝑡) =
315
256	

(1 − 𝑡%)-.

																																																																																																																								(12) 

Similarly, as 𝑝 approaches infinity, the resulting function is the Gaussian function given as 

𝐾∅(𝑡) =
1
√2𝜋

	𝑒x𝑝 Y−	A
%

% Z.																																																																																																																									(13) 

Apart from the Uniform kernel, the other member that is Epanechnikov (quadratic), Biweight (quartic), Triweight and 
Quadriweight kernels are widely used in nonparametric estimation. The computations of efficiency of the beta polynomial 
kernels do employ the Quadratic function because of its optimality quality of the AMISE. 



J. Stat. Appl. Pro. 12, No. 3, 1385-1398 (2023) / http://www.naturalspublishing.com/Journals.asp                                                    1389 
 

 
 
         © 2023 NSP 
           Natural Sciences Publishing Cor. 

 

3.2 The Multivariate Beta Kernel Function. 

Constructing multivariate kernel functions using the product techniques usually involved the multiplication of several 
univariate functions. The product multivariate version of the beta kernels is given by 

𝐾>(𝑡) = 𝑀'J(1− 𝑡"%)>,
'

"#$

																																																																																																																					(14) 

where 𝑀 = (%>5$)!
%%&#!(>!)%

	 is the constant of normalization of the function while d is its dimension. The bivariate product kernel 
of the beta family is frequently used in density estimation for visualization of two observations and its compact form is 

𝐾>(𝑡) = 𝑀%J(1− 𝑡"%)>,
%

"#$

																																																																																																																						(15) 

The compact form of two-dimensional product kernel in Equation (15) is express as 

𝐾>(𝑡) = 𝑀%(1 − 𝑡$%)>(1 − 𝑡%%)>.																																																																																																												(16) 

Hence, for kernel functions with values of	𝑝 = 1, 2, 3	and	4, the corresponding bivariate forms are as follows 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐾$(𝑡) = ,

3
4/

%

(1 − 𝑡$%)(1 − 𝑡%%)

𝐾%(𝑡) = ,
15
16/

%

(1 − 𝑡$%)%(1 − 𝑡%%)%

𝐾?(𝑡) = ,
35
32/

%

(1 − 𝑡$%)?(1 − 𝑡%%)?

𝐾-(𝑡) = ,
315
256/

%

(1 − 𝑡$%)-(1 − 𝑡%%)-

																																																																																																		(17)	 

Again, as in the univariate case, the bivariate product Gaussian kernel is given by  

𝐾∅(𝑡) =
1
2π𝑒x𝑝 Q−

𝑡$% + 𝑡%%

2 R.																																																																																																																	(18) 

The bivariate Gaussian kernel estimator is widely applied in mathematical statistics and other statistical related fields owing 
to its simplicity with its continuous differentiability attribute. 

3.3 The Proposed Multivariate Beta Polynomial Kernel Functions. 

The proposed beta kernel employed the principle of exponential progression in its formulation with a constant common factor 
to members of the family. The members of the beta kernel are regarded as the consecutive terms of the sequence for which 
𝑝 = 1, 2, 3	and	4 stands for Epanechnikov, Biweight, Triweight, and Quadriweight functions.    
Assuming the first member is denoted by 𝑎 while the common factor is represented by 𝑟 with 𝐾>(𝑡) representing current 
term while 𝐾>($(𝑡) representing the immediate past term, then the common factor of the sequence is 

𝑟 =
𝐾>(𝑡)
𝐾>($(𝑡)	

.																																																																																																																																																			(19) 

Recall Equation (12), the first member of the beta kernel when 𝑝 = 1 is  

𝑎 = 	𝐾$(𝑡) =
3
4	
(1 − 𝑡%).																																																																																																																																	(20) 

The factor common to the members of the kernel is obtain by 
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𝑟 = 	
𝐾%(𝑡)
𝐾$(𝑡)

=
$C
$D
	(1 − 𝑡%)%

?
-
	(1 − 𝑡%)

= Q
15	(1 − 𝑡%)%

16 R ,
4

3(1 − 𝑡%)/ =
5
4	
(1 − 𝑡%).																																				(21) 

Similarly, this common factor or ratio is 

𝑟 = 	
𝐾?(𝑡)
𝐾%(𝑡)

=
?C
?%
	(1 − 𝑡%)?

$C
$D
	(1 − 𝑡%)%

= Q
35	(1 − 𝑡%)?

32 R ,
16

15(1 − 𝑡%)%/ =
7
6	
(1 − 𝑡%).																																			(22) 

It is also possible to obtain the common factor as  

𝑟 = 	
𝐾-(𝑡)
𝐾?(𝑡)

=
?$C
%CD
	(1 − 𝑡%)-

?C
?%
	(1 − 𝑡%)?

= Q
315	(1 − 𝑡%)-

256 R ,
32

35(1 − 𝑡%)?/ =
9
8	
(1 − 𝑡%).																														(23) 

As depicted in Equations (21–23) the common factor is expressed as  

𝑟 =

⎩
⎪
⎨

⎪
⎧
5
4	
(1 − 𝑡%)

7
6	
(1 − 𝑡%)

9
8	
(1 − 𝑡%)

																																																																																																																																															(24) 

Therefore, the generalized common factor of any two successive terms of Equation (24) is 

𝑟 =
3 + 2𝑝
2 + 2𝑝

(1 − 𝑡%).																																																																																																																																							(25) 

Here	𝑝 = 1, 2, 3	, … determines the generated kernel. 

3.4 The 𝑷𝒕𝒉 Term of the Proposed Kernel Functions 

If 𝐾>(𝑡) is the 𝑃AG beta member with 𝑎 denoting the first member and	𝑟 representing the common factor, then 

𝐾$(𝑡) = 𝑎 
𝐾%(𝑡)
𝐾$(𝑡)

= 𝑟,			 ∴ 𝐾%(𝑡) = 𝐾$(𝑡) × 𝑟 = 𝑎𝑟 

𝐾?(𝑡)
𝐾%(𝑡)

= 𝑟,			 ∴ 𝐾?(𝑡) = 𝐾%(𝑡) × 𝑟 = 𝑎𝑟 × 𝑟 = 𝑎𝑟% 

𝐾-(𝑡)
𝐾?(𝑡)

= 𝑟,			 ∴ 𝐾-(𝑡) = 𝐾?(𝑡) × 𝑟 = 𝑎𝑟% × 𝑟 = 𝑎𝑟? 

The generalized form of the 𝑃AG proposed member with the first term as denoted in Equation (20) and common factor in 
Equation (25) is given by 

𝐾>(𝑡) = 𝑎𝑟>($,								𝑝 = 1, 2, 3, …																																																																																																											(26) 

On substituting Equation (20) and Equation (25) into Equation (26), we obtain the generalized form of the proposed beta 
kernel as 

𝐾>(𝑡) = Q
3
4	
(1 − 𝑡%)R�

3 + 2𝑝
2 + 2𝑝

(1 − 𝑡%)�
>($

,								𝑝 = 1, 2, 3, …																																																				(27) 
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The proposed kernel is same as the classical kernel when 𝑝 = 0	and	1 giving rise to the Uniform and Epanechnikov kernels 
respectively. As in the classical case, the optimum kernel is the Epanechnikov with reference to the AMISE. Now, for values 
of 𝑝 such as	𝑝 = 1, 2, 3, 4, the new kernels are as follows 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝐾$(𝑡) =

3
4	
(1 − 𝑡%)

𝐾%(𝑡) =
7
8	
(1 − 𝑡%)%

𝐾?(𝑡) =
243
256	

(1 − 𝑡%)?

𝐾-(𝑡) =
3993
4000	

(1 − 𝑡%)-

																																																																																																																						(28) 

The multivariate product version of Equation (28) can simply be constructed using Equation (14). The bivariate product 
form of the first four members of the proposed kernel is  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐾$(𝑡) = ,

3
4/

%

(1 − 𝑡$%)(1 − 𝑡%%)

𝐾%(𝑡) = ,
7
8/

%

(1 − 𝑡$%)%(1 − 𝑡%%)%

𝐾?(𝑡) = ,
243
256/

%

(1 − 𝑡$%)?(1 − 𝑡%%)?	

𝐾-(𝑡) = ,
3993
4000/

%

(1 − 𝑡$%)-(1 − 𝑡%%)-

																																																																																													(29) 

The choices of kernel functions are usually base on the computational efficiency of the function and its performance with 
reference to a particular error criterion function. A method of kernel density estimation is deemed the best when it produces 
the least AMISE value assuming the error criterion function is the AMISE [31, 32]. 

4. Results and Discussion. 

The performance of the introduced and traditional kernels is compared numerically using the AMISE and graphically for 
picturization. Mathematica version 12 is the software employed for all the graphical demonstration and numerical analysis. 
The statistical attributes of four members will be investigated with different sample sizes and real data. The sizes of 5000 and 
10000 is apply in investigating the performance of the introduced kernels and their classical counterpart on account of the 
potential gains associated with large sample sizes in nonparametric estimation particularly in kernel estimation. 

Table 1: Univariate AMISE with Different Sizes 
 

Kernel Functions Classical Kernels AMISE Proposed Kernels AMISE 
Types of Kernels N=5000 N=10000 N=5000 N=10000 
Epanechnikov 0.000893518 0.000513192 0.000893518 0.000513192 
Biweight 0.001325099 0.000761069 0.001138490 0.000653891 
Triweight 0.001531044 0.000879354 0.001139209 0.000654379 
Quadriweight 0.001600333 0.000919150 0.001143551 0.000654531 

 
Table 2: Bivariate AMISE with Different Sizes 

 

Kernel Functions Classical Kernels AMISE Proposed Kernels AMISE 
Types of Kernels N=5000 N=10000 N=5000 N=10000 
Epanechnikov 0.001551193 0.000977190 0.001551193 0.000977190 
Biweight 0.002674226 0.001684657 0.002029295 0.001278376 
Triweight 0.003128830 0.001971040 0.001774904 0.001311812 
Quadriweight 0.003759469 0.002368317 0.001829537 0.001526544 
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Table 1 and Table 2 are results of the different sizes and from the results, the AMISE values of the proposed kernels are 
smaller in comparison with the AMISE values of the traditional kernels indicating they outperformed the traditional 
counterpart. The superiority of any kernel method over existing methods is contingent on its capacity of producing the 
minimal value when investigated with a known performance metrics. Figure 1 and Figure 2 are graphical displays of the 
novel and conventional functions of the univariate case with both graphs displaying similarity in appearance but in 
performance the proposed kernels outperformed the existing kernels as vividly shown in Table 1 and Table 2 for the univariate 
and bivariate cases. 
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Figure 2: Graphs of Proposed Beta Polynomial Kernel Functions 
Fig. 2: Graphs of Proposed Beta Polynomial Kernel Functions 
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Figure 1: Graphs of Classical Beta Polynomial Kernel Functions Fig. 1: Graphs of Classical Beta Polynomial Kernel Functions 
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Figures (3–9) are bivariate graphs of the conventional and novel product kernel functions. As observed from the estimates 
the conventional and newly introduced family, the loops of the graphs moved nearer to the center for the Triweight and 
Quadriweight kernels when compared with the loops of the Epanechnikov and Biweight kernels. The movement of the loop 
to the center of the graph in cases of higher values of 𝑝 is occasioned by the degrees of differentiability. Kernel functions that 
have higher 𝑝 tends to produce graphs whose loops are towards the center due to the possession of more derivatives and by 
implication will produce better kernel estimates with reference to level of smoothness. 

    

  

  

 

 

 

 

 

 

  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 4: Bivariate Estimate of the Classical Biweight Function 

 
Fig. 3: Bivariate Estimate of the Classical Epanechnikov Function 

 
Fig. 5: Bivariate Estimate of the Classical Triweight Function 

 
Fig. 4: Bivariate Estimate of the Classical Biweight Function 
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Fig. 6: Bivariate Estimate of Classical Quadriweight Function 

            
Fig. 9: Bivariate Estimate of the Proposed Quadriweight Function 

  
Fig. 7: Bivariate Estimate of Proposed Biweight Function 

 

 
Fig. 8: Bivariate Estimate of the Proposed Triweight Function 
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Despite the similarity depicted by the graphs in Figures (3–9), the empirical results in Table 2 have demonstrated that the 
proposed kernels outperformed the classical version with the AMISE and this is due to the variation in their normalization 
constant. The effect of dimension was also displayed in Table 1 and Table 2 as noticed in the AMISE of the univariate and 
bivariate case. As the dimension increases, the AMISE values increases which is curse of dimensionality effect of 
nonparametric density estimation [33]. 

The old faithful data is use to access the performances of newly introduced kernels [34]. The bivariate data comprises of two 
hundred and seventy-two (272) observations with duration and waiting time in minutes representing the two axes 
respectively. The examination of bivariate observations oftentimes begins with the consideration of the scatterplot of the data 
because they are the mostly employed tools for displaying bivariate data graphically. However, the scatterplot as observed in 
most situations will not highlight the fundamental features in the observation but draws the attention of the observer to the 
peripheries of the clouded density of the data point. The hiccups of the obscured nature of the features of the data cloud 
generated by the scatterplot are surmounted by the kernel estimate especially in the preservation and presentation of vital 
inherent information of the observations. The pictorial demonstration of the observation portrays two modes but this 
bimodality is not apparent in the scatterplot which reveals the applications of bivariate estimates in structures identification. 
The bimodal nature of the data indicated that duration of eruption and waiting period do exhibit bimodal characteristics [27]. 
The scatterplot of the observations is in Figure 10 and with vivid evidence of positive correlation. The value of the correlation 
coefficient is 0.90087.  

Table 3 is the smoothing parameters and AMISE values of the data with the Epanechnikov kernel maintaining its optimality 
quality. In this real data application of the proposed kernel, the investigation will be centered on the Biweight kernel because 
other members will exhibit similar characteristics. As earlier stated, for	𝑝 = 0	and	1, the resulting proposed kernels which 
are Uniform and Epanechnikov kernels are the same as the classical kernels. Again, as 𝑝 increases, there is decrease in 
magnitude of bandwidths which ultimately affects the AMISE value. It is obviously shown in Table 3 that the Biweight 
AMISE of the conventional family is larger than that of the new family demonstrating that the latter outperformed the former 
kernel functions.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 Fig. 11: Bivariate Estimate of Epanechnikov Kernel of Old Faithful Data 

Fig. 10: Scatter Diagram of the Old Faithful Data 
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One of the indispensable roles of kernel techniques is the exploration of data and pictorial presentation for visualization. Data 
visualization could either be in two-dimensional or three-dimensional forms such as the scatterplot, contour plots or the 
surface plots. Accurate analysis of data is vital in taking decisions that are data reliant, hence efforts should be geared towards 
avoidance of inaccurate results during data analysis. The data estimates delineate the immanent attribute of bimodality which 
is a unique characteristic of the data. The bimodality of the observations supports the claim that such data often exhibit 
bimodal distribution. As clearly displayed in Figures (11–13), the traditional and proposed estimates retained that unique 
characteristic of bimodality of the observations. The estimate of the proposed Biweight kernel compete favourably well with 
the estimate of the traditional Biweight kernel in terms of retention of inherent statistical quality of the data. Hence the 
estimates of the proposed kernel family will retain inherent characteristics of observations as vividly demonstrated. 

5. Conclusion. 

This paper introduces a new multivariate beta family from its classical kernels with the aid of the multivariate product 
construction techniques. On numerical evaluation with the AMISE as performance measure, the introduced kernel has 
established its superiority over the classical kernels in empirical verification and data application with emphasis on the 
univariate and bivariate cases. Features retention is a vital aspect of multivariate kernel density estimation especially in 
bivariate estimation primarily for extraction of information in decision making and future prediction. Multivariate kernel 
estimate provides enormous information with reference to essential features of data, hence the proposed kernel functions like 
their classical counterparts also retained the statistical properties of the data investigated. 

 
 Fig. 12: Bivariate Estimate of Classical Biweight Kernel of Old Faithful Data 

  
Fig. 13: Bivariate Estimate of Proposed Biweight Kernel of Old Faithful Data 

Table 3: AMISE of Conventional and New Kernel Functions for Old Faithful Data 

Kernel Function AMISE of Classical Kernel Functions AMISE of Proposed Kernel Functions 
Kernel Types ℎ+ ℎ, AMISE ℎ+ ℎ, AMISE 

Epanechnikov 0.565089 6.729150 0.010804381 0.565089 6.729150 0.010804381 

Biweight 0.512356 6.101194 0.018626539 0.522356 6.121191 0.014134461 
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