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Abstract: Low-altitude Earth orbits provide important benefits for space missions. Among these benefits are the high-resolution images

and resupply. In the present work, we studied the dynamics of Earth satellites that move in low orbits. The force model comprises

the gravitational resonance 13:1, besides the Earth’s gravitational potential up to the second degree and order. In order to avoid the

appearance of singularities, the quasi-Hamiltonian equations of motion are formulated in terms of non-singular universal variables

instead of Delaunay variables. We integrated numerically the equations of motion and performed some numerical simulations. It is

found that the variations in eccentricity and inclination are small. In addition, we studied the effect of gravitational resonance 13:1 on

the dynamics using Lagrange planetary equations. It is found that the effect of the gravitational resonance 13:1 in low Earth orbits is

about tens of meters.

Keywords: Gravitational perturbations, resonance, singularities, non-singular variables, universal variables.

1 Introduction

Low-altitude Earth artificial satellites are satellites that
move in close proximity to the Earth’s surface. It is
commonly utilized for satellite imaging and International
Space Station. These orbits can provide several significant
benefits over higher altitudes ones. The fact that these
satellites are located near the surface of the Earth, helps
them to obtain high-resolution images. Also, lower-cost
missions can be enabled by operating in this region.
Furthermore, it is easy for astronauts to reach the LEO
region due to its proximity to Earth. Artificial satellites
operating in this region are subject to a lot of disturbing
forces. The Earth’s gravity field and drag force mainly
affect the satellites operating in this region, besides some
small disturbing forces like resonance force. Artificial
satellites that move in LEO suffer from gravitational
resonances. Resonant tesseral harmonics can interact
together and produce complex dynamical motions,[1],
[2]. The existence of singularities is one of the major

issues in celestial mechanics and nonlinear dynamics.
Mathematically, singularities are points that when
described give an infinite value. This problem is caused
due to the presence of small divisors in the analytic
integration of the secular terms developed by the
averaging process [3], [4]. Singularities appear in
artificial satellites theory, like the singularities for small
eccentricities appearing in the literal developments of
lunar theory [5]. Also, singularities appear due to small
eccentricities and inclinations present in Brouwer’s theory
of an artificial satellite [6]. Furthermore, the critical
inclination singularity is presented in the solution of the
motion of an orbiter that moves in the gravitational field
of an oblate body, [7].
The problem under consideration has been studied by
many authors extensively in the literature. Valk et al
studied the motion of geosynchronous space objects
under the gravitational influence. The influence of the
Earth’s gravity field and the lunisolar perturbations are
taken into account, as well. The authors presented the
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resonant motion and its main characteristics, such as
equilibria and stability by comparison with a basic
analytical dynamical model [8]. Celletti et al used the
bifurcation theory to investigate the secular resonances
induced by the combined effect of the Sun and Moon on
space objects orbiting the Earth. They concentrated on the
secular resonances, that depend only on the orbital
inclination of the space debris. They investigated the birth
of periodic orbits and determined the energy thresholds at
which the bifurcations due to the luni-solar secular
resonances occur [9].
Celletti et al studied the dynamics of resonances and the
existence of equilibria in the region of the Low Earth
orbit. The results of their work are based on a simplified
force model which comprises the Earth’s geopotential and
the atmospheric drag. Utilizing the mentioned force
model, they studied qualitatively the resonances and
found the equilibrium positions [10]. Alessi et al
highlighted the important role that the orbital resonances
associated with solar radiation pressure can have in the
LEO region. The authors compared the results obtained
with the simplified force model with those obtained in the
case of a complex dynamical model. For well defined
initial conditions, they provided an analytical tool to
estimate the maximum eccentricity value which can be
achieved [11].
Recently, Celletti et al studied the presence of resonances
in space around the Earth. The perturbations considered
are the Earth’s geopotential and the effects of the Sun and
Moon. The authors distinguished different types of
resonances. They characterized such resonances, giving
precise statements on the space regions where the
different types of resonances can be found [2].
Aleksandrova et al identified secular resonances that act
on space objects that move in the LEO–MEO regions.
The authors gave the distribution maps of the identified
secular resonances. Furthermore, they analyzed the
orbital evolution of the space objects [12].
The goal of the present work is to study the dynamics of
the low-altitude earth satellites under gravitational
perturbations. We constructed the equations of motion in
terms of non-singular universal coordinates to avoid
singularities. Also, we investigate the effects caused by
the tesseral gravitational resonance 13:1 on the dynamics
of the problem using Lagrange planetary equations. We
carried out several numerical investigations to shed light
on dynamics.

2 Singularities and universal set of variables

When we use orbital elements to describe the motion of
artificial satellites, singularities cause a lot of problems.
These problems occur when the satellite moves in a
circular orbit (e = 0), equatorial orbit (i = 0), circular
orbit and equatorial orbit (i = 0, e = 0). Then, it is useful
to choose a new set of variables that remove the
singularities that appear in the equations of motion. The

scientific literature contains a lot of universal variables
which prevent the singularity problem. To mention some,
the equinoctial variables, (a, λ = M +ω +Ω , esin(ω +
Ω), ecos(ω + Ω), tan i

2
sinΩ , tan i

2
cosΩ). But the

equations of motion, in this case, are complex and
difficult to deal with, so we will use Poincaré variables as
another approach. We have

P = L−G, p =−ω −Ω , Q = G−H, q =−Ω .

Where λ is the mean longitude and (M,ω ,Ω ,L,G,H) are
the Delaunay elements defined by:

L =
√

µa, G =
√

µa(1− e2), H =
√

µa(1− e2)cos i.

3 Potential of the Earth

The gravitational field R of the Earth can be expanded in
spherical harmonics with respect to spherical
coordinates[13]:

R =
µ

a

+∞

∑
n=2

n

∑
m=0

(

Re
a

)n
n

∑
p=0

Fnmp(i)
∞

∑
q=−∞

Gnpq(e)

×Snmpq(M,ω ,Ω ,θ ) (1)

where

Snmpq =

[

Cnm

−Snm

]n−m odd

n−m even

cosΨnmpq

+

[

Cnm

Snm

]n−m odd

n−m even

sinΨnmpq

and

Ψnmpq = (n− 2p)ω +(n− 2p+ q)M+m(Ω −θ )

where Fnmp(i) is the inclination function, Gnpq(e) is the
eccentricity functions, µ is the gravitational parameter of
the Earth, a is the semi-major axis, Re is the radius of the
Earth, Snm and Cnm are the normalized geopotential
coefficients, (a,e, i,M,ω ,Ω) are the orbital elements and
θ is the sidereal time.

Now we proceed to formulate the Earth’s gravitational
potential in terms of the orbital elements, we have

x̄ = cos( f +ω +Ω)+ 2sin( f +ω)sinΩ sin2 i/2

ȳ = sin( f +ω +Ω)− 2sin( f +ω)cosΩ sin2 i/2 (2)

z̄ = 2sin( f +ω)sin i/2cos i/2

and using the developments in powers of the eccentricity
truncated at an arbitrary order [3]:

r

a
= 1+

e2

2
− 2e

+∞

∑
s=1

1

s2

d

de
Js(se)cos sM

sin f = 2
√

1− e2
+∞

∑
s=1

1

s

d

de
Js(se)sin sM (3)

cos f =−e+
2(1− e2)

e
+

∞

∑
s=1

cossM
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where Js(se) is the Bessel function, f and r are the true
anomaly and the geocentric distance of the satellite,
respectively.

RJ2
=

µ4R2
e

2L6
(

a

r

2
)
(

1− 3z̄2
)

,

RJ22
=

3µ4R2
e

L6

[

C22

(

x̄2 − ȳ2
)

+ S22(2x̄ȳ)
]

.

(4)

where J2 is the second zonal harmonic, J22 is the sectorial
harmonic of second degree and order and L =

√
µa.

Now we introduce the variables U and V rather than
the eccentricity and inclination:

U =
√

2P
L
, V =

√

2Q
L

Let us note that for small moderate eccentricity and
inclination, we have:

U ≈ e , V ≈ 2sin i
2
≈ i,

e =U − 1
8
U3 − 1

128
U5 +O(U7), (5)

2sin i
2
=V + 1

4
VU2 + 3

32
VU4 +O(U6).

therefore, it is straightforward to deduce the final
expansion in the set of non-dimensional Cartesian
variables (X1,Y1,X2,Y2), defined by:

X1 =U sin p =
√

2P
L

sin p, Y1 =U cos p =
√

2P
L

cos p

X2 =V sinq =

√

2Q
L

sinq, Y2 =V cosq =

√

2Q
L

cosq

(6)

After removing the short-period terms (those terms
depending on λ ) from the disturbing function the
Hamiltonian functions due to J2 and J22 can be written as:

HJ2
=

J2R2
(

1+ 3X2
1 − 24X2

2 + 3Y2
1 − 24Y2

2

)

µ4

2L6
, (7)

HJ22
=−

9C22R2X2
1 µ4

4L6
+

9C22R2Y 2
1 µ4

4L6
−

24C22R2µ4X2
2

L6
+

24C22R2µ4Y 2
2

L6
−

9R2S22X1Y1µ4

2L6
−

48R2S22X2Y2µ4

L6

+
12C22R2µ4Y1Y 2

2

L6
−

12S22R2µ4X1Y 2
2

L6

−
24S22R2µ4Y1X2Y2

L6
−

24C22R2µ4X1X2Y2

L6

−
12C22R2µ4Y1X2

2

L6
+

12S22R2µ4X1X2

L6
.

(8)

the new differential system of equations of motion are
given by [13]:

Ẋi =
1

L

(

∂H

∂Yi

−
1

2
XiL̇

)

, Ẏi =−
1

L

(

∂H

∂Xi

−
1

2
YiL̇

)

,

λ̇ =
∂H

∂L
−

1

2L

[

2

∑
i=1

∂H

∂Xi

Xi +
2

∑
i=1

∂H

∂Yi

Yi

]

,

L̇ =−
∂H

∂λ
.

(9)

where (i = 1,2) and H = H (X1,Y1,X2,Y2,L) is the
Hamiltonian function rewritten in the non-dimensional
and Cartesian set of variables defined in equation (6).

4 The gravitational resonance 13:1

In this part, we will study the effect of the gravitational
resonance 13:1 on the evolution of the orbital elements of
an artificial satellite. To handle this dynamical problem,
we will use Lagrange planetary equations. we will focus
our attention on the variations of the semi-major axis a,
inclination i, and eccentricity e. Now Lagrange’s equations
of motion can be written as [14], [15]

danmpq

dt
=

2µRn
eFnmpGnpqS′nmpq

nan+2
(n− 2p+ q),

dinmpq

dt
=

µRn
eFnmpGnpqS′nmpq

nan+3
√

1− e2 sin i
((n− 2p)cosi−m),

denmpq

dt
=

µRn
eFnmpGnpqS′nmpq

nan+3e
×

(

(

1− e2
)

(n− 2p+ q)−
√

1− e2(n− 2p)
)

.

(10)

where, as mentioned, Fnmp(i) represents the inclination
function, Gnpq(e) is the eccentricity function and n is the
mean motion of the spacecraft.

S′nmpq =
dSnmpq

dΨnmpq

=−

[

Cnm

−Snm

]n−modd

n−meven

sinΨnmpq

+

[

Cnm

Snm

]n−modd

n−meven

cosΨnmpq

and

Ψ̇nmpq = (n− 2p)ω̇ +(n− 2p+ q)Ṁ+m(Ω̇ − θ̇) (11)

Artificial satellites orbiting near the Earth at
low-altitude orbits are affected by different types of
perturbing forces, the gravitational resonance 13:1 is one
of these forces. This resonance affects the orbital
elements of the satellite, especially on the semi-major
axis. So, in order to formulate an accurate mathematical
theory to describe the dynamics of artificial satellites in
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low Earth orbits, the effect of resonance should be taken
into account.

Considering all the significant resonant terms of the
disturbing function due to this resonance is important.
Integrating Lagrange planetary equations, the derivative
Ψ̇nmpq will appear in the denominator of the resultant

solution. When the quantity Ψ̇nmpq ≃ 0, the resonance
occurs and as a result, we encounter a large perturbation
case.

In the gravitational resonance 13:1, the condition for
resonance can be written as:

Ψ̇nmpq = β ω̇ + Ṁ+ 13(Ω̇ − θ̇)≃ 0, β = 0,1, .. (12)

5 Results and discussion

Once we formulate the quasi-Hamiltonian system of
equations that represents the motion of an Earth satellite
that moves in the LEO region, we will be able to
investigate its long-period dynamics. As we mentioned,
the gravitational potential due to the Earth is taken into
account up to second degree and order. In order to make
the problem clear, we will carry out some selected cases
by integrating numerically the equations of motion. The
case of small eccentricity and inclination will be among
the selected cases. The time history of the eccentricity
and inclination is modeled over three years for different
initial conditions.
Figs. 1a and 1b depict the evolutions of the eccentricity
and inclination for the initial values e = 0.0001 and
i = 2◦. It is clear from fig. 1a that the maximum
amplitude of variation of the eccentricity can reach values
up to 0.000089, while we can see from fig. 1b that the
change in the inclination is small. Figs. 1c and 1d show
the variations of the eccentricity and inclination in the
case of initial values e = 0.001 and i = 30◦.
Fig.2 illustrates the dynamical evolution of the
semi-major axis and the eccentricity of an artificial
satellite that moves in low Earth orbit. The satellite moves
under the effect of Earth’s gravity field up to the second
zonal harmonic and perturbation due to the gravitational
resonance 13:1. The integration of Lagrange planetary
equations is carried out for three years from the initial
time. Figs. 2a, 2b, and figs. 2c, 2d represent the time
history of the semi-major axis and eccentricity for the
initial conditions i = 55◦ and i = 60.3◦, respectively,
a = 7230 km in both cases. It is visible from both figures
that the variation in the semi-major axis due to the
perturbations considered can reach tens of meters. Also,
we see that the variation in the eccentricity is small and
the maximum amplitude can only reach the value of
0.002.
Fig. 3a shows the location of resonance centers in the
space (i,e), of the form ψ̇ ≃ 0, where only the effects of
the second zonal harmonic perturbation on the argument
of perigee and longitude of the node have been

Fig. 1: Time history of the eccentricity and inclination for

different initial conditions. In figs. 1a, 1b the initial eccentricity

and inclination are e = 0.0001 and i = 2◦, while in figs. 1c and

1d, e = 0.001 and i = 30◦. Time is measured in canonical units.
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Fig. 2: Time history of the semi-major axis and eccentricity. In

figs. 2a, 2b the initial inclination is i = 55◦. In figs. 2c, 2d the

initial inclination is i = 60.3◦. In both figs. the initial eccentricity

and semi-major axis are e = 0.02 and a = 7230 km.

Fig. 3: The phase space contours (e, i) at a = 7230 km. (a)

represents the structure of the phase space considering only the

disturbing function due to the second zonal harmonic, J2. (b)

Represents the contours considering the resonance 13:1 besides

the effect of J2.

considered. The figure represents the curve when the
semi-major axis is fixed at a = 7230 km. Fig. 3b depicts
the phase space structure when the effects due to the
gravitational resonance 13:1 are taken into consideration
in addition to the oblateness coefficient J2. It is visible
from the figure that the web structure is modified due to
the disturbing function of the resonance 13:1. If we
consider more combinations of (n− 2p) a greater array of
resonances are obtained, see equation (11). If we have
multiple resonances case, then the different resonances
will interact with each other leading to chaotic phase
space.
Fig. 4a shows the space (a,e) at fixed i = 55◦, while fig.
5a shows the space (a, i) at fixed e = 0.02. Both figures
are obtained only under the influences of the oblateness
coefficient J2. Fig. 4b shows the space (a,e) at fixed
i = 55◦, while fig. 5b shows the space (a, i) at fixed
e = 0.02. In the latter-mentioned case, the effects of the
gravitational resonance are taken into account besides the
oblateness coefficient. We can easily see from the two
figures the variations in the phase space due to resonance
13:1.
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Fig. 4: The phase space contours (e,a) at i = 55◦. (a) represents

the structure of the phase space considering only the disturbing

function due to the second zonal harmonic, J2. (b) Represents the

contours considering the resonance 13:1 besides the effect of J2.

6 Computational algorithms

Now we design some computational algorithms to explain
the sequence of computations.
Computational algorithm (1): An algorithm to integrate
the quasi-Hamiltonian system of equations.

–Express the disturbing function R= RJ2
+RJ22

in terms
of the orbital elements using equations (2) and (3).

–Use equation (5) and the relations U =
√

2P
L

,

V =
√

2Q
L

to formulate the disturbing function R in

terms of the variables
(U,V,q, p,L,λ ), i.e. R = R(U,V,q, p,L,λ ).

–Eliminate the short-period terms from the disturbing
function to obtain the normalized one, R′ =R′(U,V,L).

–Use equations (6) to express R in terms of a set of
non-dimensional Cartesian variables
(X1,Y1,X2,Y2), i.e. R′ = R′(X1,Y1,X2,Y2,L).

–Construct the Hamiltonian function of the problem,

H = − µ2

2L2 + Λθ̇ + HJ2 + HJ22. Where Λ is the
conjugate momentum corresponding to the sidereal
time.

–Construct the quasi-Hamiltonian system of differential
equations, equation (9).

Fig. 5: The phase space contours (a, i) at e = 0.02. (a) represents

the structure of the phase space considering only the disturbing

function due to the second zonal harmonic, J2. (b) Represents the

contours considering the resonance 13:1 besides the effect of J2.

–Integrate numerically the system using the initial
values (X10,Y10,X20,Y20,L0), initial epoch t0 and t f .

–Plot the results to obtain the time history of eccentricity
and inclination, fig.1.

Computational algorithm (2): An algorithm to
integrate Lagrange planetary equations.

–Use equation (1) to formulate the disturbing function
due to the gravitational resonance 13 : 1,RGr, in terms
of the orbital element.

–Use equation (1) to formulate the normalized
disturbing function, RJ2, due to the Earth’s potential
up to the second zonal harmonic J2.

–Evaluate the required eccentricity and inclination
functions Gnpq and Fnmp.

–Construct the total disturbing function R = RJ2 +RGr

–Use the disturbing function R to construct Lagrange
planetary equations, equation (10).

–Integrate numerically Lagrange planetary equations
using the initial values (e0,a0, i0,ω0,Ω0,M0), initial
epoch t0 and t f .

–Plot the results to obtain the time history of eccentricity
and semi-major axis, fig.2.

Computational algorithm (3): An algorithm to plot the
phase spaces (e,a), (e, i) and (a, i).
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–Construct the quantities ω̇ , Ṁ and Ω̇ taking into
consideration effects due to Earth’s oblateness and the
gravitational resonance 13:1.

–Construct the condition for resonance, equation (12).
–Plot the required phase spaces, fig.3, fig.4, and fig.5.

7 Conclusion

Investigating the long-period dynamics of artificial
satellites in low Earth orbits is crucial. In the present
work, we studied the dynamics of orbiters that move in
the LEO region under perturbations due to the Earth’s
gravity field and gravitational resonance 13:1. We used
non-singular variables to avoid singularity problems at
small inclinations and eccentricities. The non-singular
variables allowed us to study the behavior of the
dynamical system near small eccentricity and inclination.
The gravitational resonance 13:1 causes a small variation
in the semi-major axis. However, when formulating a
high-accuracy theory of the motion of satellites in this
region, we have to take its effect into account.

Acknowledgement

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

Declaration of conflicting interests

The author declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

Data availability

Data will be available on request.

References

[1] T.A. Ely and K.C. Howell, East–West stationkeeping of

satellite orbits with resonant tesseral harmonics. Acta

Astronautica, 46 (1), pp.1-15, (2000)

[2] A. Celletti, C. Gales and C. Lhotk., Resonances in the Earth’s

space environment. Communications in Nonlinear Science

and Numerical Simulation, 84 ,p.105-185(2020).

[3] D. Brouwer, G. M. Clemence, Methods of Celestial

Mechanics. Academic Press, New York and London ( 1961).

[4] J. Henrard, Virtual singularities in the artificial satellite

theory. Celestial Mechanics, 10 (4), pp.437-449 ( 1974).

[5] D. Barton, Lunar disturbing function. The Astronomical

Journal, 71, p.438 ( 1966).

[6] D. Brouwer, Solution of the problem of artificial satellite

theory without drag. YALE UNIV NEW HAVEN CT NEW

HAVEN United States(1959).

[7] M. Lara, On inclination resonances in artificial satellite

theory. Acta Astronautica, 110, pp.239-246 (2015).

[8] S. Valk, A. Lemaı̂tre and F. Deleflie, Semi-analytical theory

of mean orbital motion for geosynchronous space debris

under gravitational influence. Advances in Space Research,

43 (7), pp.1070-1082 ( 2009).

[9] A. Celletti, C. Gales and G. Pucacco, Bifurcation of lunisolar

secular resonances for space debris orbits. SIAM Journal on

Applied Dynamical Systems, 15 (3), pp.1352-1383 ( 2016.

[10] A. Celletti and C. Gales , Dynamics of resonances and

equilibria of Low Earth Objects. SIAM Journal on Applied

Dynamical Systems, 17 (1), pp.203-235 ( 2018).

[11] E.M.Alessi, G. Schettino, A. Rossi and G.B. Valsecchi,

Solar radiation pressure resonances in Low Earth Orbits.

Monthly Notices of the Royal Astronomical Society, 473 (2),

pp.2407-2414 (2018).

[12] A.G. Aleksandrova, E.V. Blinkova, T.V.Bordovitsyna, N.A.

Popandopulo and I.V. Tomilova, Secular resonances in the

dynamics of objects moving in LEO–MEO regions of near-

Earth orbital space. Solar System Research, 55 (3), pp.266-

281 ( 2021).

[13] S. Valk, A. Lemaı̂tre and L. Anselmo, Analytical and semi-

analytical investigations of geosynchronous space debris with

high area-to-mass ratios. Advances in Space Research, 41 (7),

pp.1077-1090( 2008).

[14] G. Seeber, Satellite geodesy: foundations, methods and

applications. INTERNATIONAL HYDROGRAPHIC

REVIEW, 4 (3), pp.92-93.(2003)

[15] S.F. Lin and C. Hwang, Orbital resonances of Taiwan’s

FORMOSAT-2 remote sensing satellite. Acta Astronautica,

147, pp.71-85 (2018).

Ahmed B. Yassen
is PhD student at Faculty
of Science, AL-Azhar
University. He received
M. Sc. in Space Dynamics,
at Cairo University in 2016.
His current position Assistant
Lecturer of Space Science,
faculty of Navigation Science
and Space technology

(NSST), Beni-Suef University

c© 2023 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


216 A. B. Yassen, et al.: Semi-Analytical technique to study the dynamics of low...

Ahmed H. Ibrahim
is a lecturer of Space
dynamics at Al-Azhar
University, faculty of science,
He received the Ph.D. degree
in Space dynamics. His
research interests are in the
areas of applied mathematics
including space dynamics and
dynamical systems. He has

published research articles in reputed international
journals of mathematical and astronomy sciences.

Mohamed Radwan is a
Professor of space dynamics
at Cairo University, faculty
of science, Astronomy, and
space science Department.
He received the Ph.D.
degree in “space dynamics” at
Cairo University. His research
interests are in the areas
of space dynamics, artificial
satellite theory and dynamical

systems. He is now supervising doctoral and master’s
thesis for some students.

Waleed N. Ahmed
is a Researcher of
Applied-Mathematics
at National Research
Centre, institute of Physics.
He received the Ph.D
in Applied Mathematics
(Space-dynamics) at
Helwan University, Faculty
of Science, Mathematics

Department. His research interests are in the areas of
space dynamics, artificial satellite theory and dynamical
systems.

Abdelaziz Bakry is
a Professor of Mathematical
Astronomy at Al-Azhar
University, faculty of science.
He received the Ph.D.
degree in “Mathematical
Astronomy” at Cairo
University. His research
interests are in the areas
of Mathematical Astronomy
and Physics. He is now

supervising doctoral and master’s thesis for some
students.

c© 2023 NSP

Natural Sciences Publishing Cor.


	Introduction
	Singularities and universal set of variables
	Potential of the Earth 
	The gravitational resonance 13:1
	Results and discussion
	Computational algorithms
	Conclusion 

