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Abstract: MapReduce is one of the most popular distributed programming frameworks. However, MapReduce in the 
public cloud suffers from a lack of confidence in the participating virtual machines. Also, malicious nodes may 
purposely cheat the processing result during map tasks or reduce tasks. Thus, the results will be unreliable and 
erroneous. In this paper, we propose a technique which overlays on a hybrid cloud. We run the master and some of the 
slave workers on a private cloud that is a trusted cloud, and the remaining workers run on a public cloud. Our 
technique depends on replicating a subset of each task to reduce overhead. When a malicious worker on the public 
cloud executes a task and an error is detected as a part of replicated subset, we detect and exclude this worker from the 
cloud. We carry out several theoretical experiments to investigate the security and performance overhead. The results 
provide high computation integrity and little performance overhead. 
Keywords: Big data; MapReduce; Security; Distributed computing. 

 
 

1 Introduction 

Big data is an expression that depicts the large structured and unstructured volume of data collected about our 
surroundings. Big data is a data set that is characterized by being big, high in variety, and velocity [1]. The advancement 
of social networks and information technology lead to the fast increase of data with the coming of cloud computing and 
big data era [2]. Many political and economic interests are existed in big data, particularly the process of data analysis, 
integration, and data mining [3]. However, big data faces many security risks and privacy-preserving challenges [4]. The 
traditional security mechanisms are not able to deal with big data security. This is because of the volume, variety, and 
velocity of big data. One of these challenges is secure computations in distributed programming frameworks (DPFs).  
      MapReduce is a popular example for DPFs [5]. MapReduce presents large-scale data processing in parallel [6]. On a 
public cloud or hybrid cloud, it’s utilized to make distributed processing of massive amounts of data more efficient and 
fault-tolerant without any overprice (MapReduce is presented as platform-as-service by cloud) [7]. Without taking into 
consideration physical infrastructures and installation of software, there are more public clouds (e.g. Google App Engine, 
Amazon Elastic MapReduce) that enable users to complete computations of MapReduce. MapReduce on both public 
cloud and hybrid cloud suffers from various security and attacks threats. The users can cost-effectively process big data 
using MapReduce on public clouds. But MapReduce on public cloud or hybrid cloud faces integrity vulnerability 
problem. If the public cloud is evaded because of security problems and running everything on private cloud, this will 
achieve result accuracy but with less economic benefit. 
      On the public cloud, MapReduce jobs are executed by a cluster containing hundreds of nodes or thousands of nodes 
for computation. If an impersonation attack dominated any worker on this cluster, it will control this worker and make it 
tamper with computations. This worker becomes a malicious worker and may generate the wrong results and the total 
result of computation becomes incorrect. So, it is necessary to check the result integrity of all workers whether mapper or 
reducer to satisfy the integrity of computations requirement and eliminate malicious adversary. In addition, more 
applications (e.g., Yahoo!, Google, Facebook, etc.) use MapReduce to process data, so the integrity of the result of 
MapReduce computation must be ensured.  

     In this paper, we propose a technique that deploys MapReduce on the hybrid cloud to combine the advantages of both 
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public and private clouds. The private cloud contains a small number of workers known as verifiers and the master, while 
other workers and Distributed File System (DFS) are deployed on the public cloud. The verifiers, master, and DFS are all 
trustworthy, but the workers aren’t. We describe our technique details of the two phases: map phase integrity check and 
reduce phase integrity check. In map phase, each map task executes on the public cloud but on the private cloud part of 
each map task input (called a subset records) will be replicated to verify each map task result. In the reduce phase, we 
replicate all reduce tasks but, part of reduce tasks will be replicated on the private cloud and the rest of reduce tasks will be 
replicated on trusted node on public cloud.  
    We explain the performance overhead and quantitative analyzes on the security of the proposed technique. Also, the 
ideal value for the subset record ratio that produces the lowest error number within the stated security limits is determined 
through the security analysis. We implement our technique based on Apache Hadoop MapReduce. We illustrate that the 
proposed technique is an effective framework for ensuring high computation integrity.  
    The rest of the paper is arranged as follows. In sections 2, explain MapReduce model. Related work is discussed by 
section 3. In sections 4 and 5, the proposed technique and its evaluation will be explained respectively. Finally, Section 6 
shows the conclusion of the paper.  
 
2 Map Reduce Frameworks 
MapReduce presents parallel processing using computing nodes cluster over large-scale data as shown in Fig.1. Three 
entities are components of MapReduce [8]: master, workers, and distributed file system (DFS). Data blocks are used to 
store data in a distributed file system (DFS). The master uses staff members to illustrate load balancing, task scheduling, 
and job management. While the workers are compute resources that complete the tasks assigned by the master. 

      MapReduce contains two phases: 1) a map phase, in this phase; parallel processing is done by distributing input data 
to different distributed workers. 2) Reduce phase will be collected the intermediate results together. The master takes 
the job of MapReduce from users. This job’s input text files will be put in DFS in the data blocks form. This job is 
partitioned into several map and reduce tasks. The number of map tasks depends on how many data blocks are included 
in the input text files. Only one data block will be taken by each map task as its input. 

      In the map phase: the map task assignment is sent by the master to the mapper and the data block is read by the 
mapper from DFS. Then mapper processes the data block and stores its intermediate result in its local storage. Each 
mapper generates an intermediate result that is partitioned into k partitions p1, p2,..., pk by partitioning function. Reduce 
tasks number is equal to partitions number k. In reduce phase, the master will send a notification when a map task is 
completed. When each mapper has finished its map operation, the reducer will read the intermediate result. Then, the 
reducer processes its partition that is read from the intermediate result. Finally, each reducer result will be written to the 
DFS.  

3 Related Works 
The importance of MapReduce lies in its simple architecture and capability for parallel computation for data-intensive 
computation in a variety of applications and research domains. Some researchers are interested in how to apply 
MapReduce to certain application domains to solve problems. Other researches (that will be mentioned in this paper) 
are interested in computation integrity protection for MapReduce.  

      To address computation integrity problems for MapReduce, some solutions are proposed such as replication 
sampling, and verification techniques. Some of these techniques achieve high result integrity but incur high 
performance overhead and other techniques achieve low-performance overhead but they are more vulnerable to attack.  

       Secure MapReduce (Secure MR) [8] proposes MapReduce service integrity and prevents replay and denial of 
service attacks. It adds a set of security components for MapReduce to check the result integrity of map/reduce tasks. 
This technique imposes small performance overhead while achieving data processing service integrity but it is not able 
to find collusive malicious workers. Cross Cloud MapReduce (CCMR) [9] offers combining the features of private and 
public clouds, and it employs the MapReduce framework on a hybrid cloud with single private cloud and single public 
cloud. It implements three kinds of tasks (original task, replication task, verification task) on both map and reduce 
phases to check the result integrity of MapReduce. This technique ensures high result integrity but it causes non-
negligible performance overhead.  

       Integrity MR [10] is the same architecture of CCMR but it contains single private cloud and multiple public clouds. 
It also has the same kinds of tasks on CCMR (original task, replication task, verification task) but in this technique, the 
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Fig. 1: The MapReduce data processing reference model. 

 

original task is executed on public cloud, the replication task is run on another public cloud and the verification task is 
run on the private cloud but, on CCMR the original task and the replication task are run on one public cloud. This 
technique achieves high integrity with a non-negligible performance overhead. Accountable MapReduce [11] will 
detect malicious workers through the master submits the input data and output of each mapper and reducer to auditor 
group that their members will repeat the input data processing and match its output with the original one for 
inconsistency check.  

      In TrustMR [12] both map and reduce tasks are divided into smaller computation pieces. To ensure the result 
integrity of each task, TrustMR depends on replicating a subset of pieces of computation two times. This technique 
achieves a high detection rate by decreasing the overhead of replication but a map verifier that checks result integrity of 
intermediate results may be malicious and provide wrong input to the reducer. Result verification mechanism is 
proposed based on the value of reputation-threshold using voting method [13]. This technique is based on the reputation 
of a worker whereas the result that is received from a worker is true if the reputation of this worker surpasses the 
minimum worker score (R(P1) > WS).  

      MtMR [14] applies on a hybrid cloud that contains of single private cloud (consisting of master and verifiers) and 
one public cloud (consisting of DFS and slave workers). In MTMR, the checker (the private cloud) wants to check if the 
result executed by the prover (the public) is correct or not. In Credibility-Based Result Verification [15], the credibility 
of nodes is a factor for result verification whereas the result with the highest level of credibility is picked above the one 
with the lowest level of credibility. 

4 Proposed Technique 
4.1 System Overview and Architecture 

 As illustrated in Fig.2, Our solution performs MapReduce on a hybrid cloud that combines single private cloud and 
single public cloud. The master node and a few slave nodes are operated by the secure private cloud (referred to as 
verifiers). The Distributed File System (DFS) is scattered throughout the public cloud, as are other slave nodes, also 
referred to as workers. The DFS integrity can be ensured by the techniques proposed in Ref [16, 17]. The verifiers, 
master, and DFS are all trustworthy, but the workers aren’t. 
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Fig. 2: Architecture of our technique. 

       Our technique presents two kinds of tasks in both the map and reduce phases: the original task and the verification 
task. The workers in the public cloud execute the original task. While the verifier on the private cloud executes the 
verification task. Because the original task cannot be trusted, the verification task only repeats a portion of the original 
task to check the result returned by the original task. In a map task, each repeated portion is termed a subset, however in 
the reduce phase, it’s called reduce sampled records. Our technique performs one-layer check on each returned original 
task result in both the map and reduce phases: verification. The worker just sends the result’s hash value to reduce the 
communication cost. 

4.2 Map Phase Integrity Check 

In our technique, we break map phase integrity check into four steps: the original, replication, request, and response 
step. 

       In the original step, outputs of each map task are a group of key-value pairs. The hash value (h1) of each pair and 
the hash value (H) of the concatenation of these hash values for each map task will be calculated. H of each map task 
will be sent to the master. In the replication step, our technique applies one-layer check on each returned original map 
task result. In this layer, our technique replicates the execution of a subset of each map task input by verifier on the 
private cloud. In the request step, the master sends to the public cloud the hash values of the output of the execution of 
subsets to request from all map tasks on the public cloud the complementary hash values for these sent hash values. In 
the response step, all map tasks on public cloud response and send the complementary hash values to the verifier (on the 
private cloud). Then, the private cloud calculates the hash value of concatenation of complementary hash values and the 
hash value(s) of the output of subset execution for a map task as H* and sends H* to the master. Then, the master 
compares H, H*. If H equals H*, the results of these workers (mappers) are accepted.  

       Map tasks are carried out on the public cloud during the map phase. The output is a list of <key, value> pairs for 
each map task. The protocol between the private cloud and one map task (i.e., the public cloud) is shown in fig.3. First, 
the map task calculates the hash value for each key value pair of its output then computes (H) and sends it to master (on 
the private cloud). (H) is defined in equation (1). Second, the private cloud runs the map task on verifiers with the 
subset of map input <k2,v2> and produces key value pair <k’2,v’2> and its hash value h’2. Third, Verifier requests 
complementary hash values for subset (h’2) from the map task on the public cloud. After the map task receives a 
request, it sends a response (h1,h3) to prove the correctness of the computation. Finally, the verifier concatenates the 
hash value of subset (h’2) and complementary hash values (h1,h3) then, computes the hash value of this concatenation as 
H* then, H* will be sent to the master that checks if H=H* or not. 

 

𝐻 = hash	value	of	(ℎ1	 + 	ℎ2	 + 	ℎ3)																																																																										(1) 
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Fig. 3: The Protocol of Map Phase Integrity Check. 

 

4.3 Reduce Phase Integrity Check 
We break reduce phase integrity check into five steps: the original, request, response, verification, and rest verification 
step.  

      In the original step, reduce tasks normally begin their works on the public cloud whereas output records produced 
by map tasks are the input of all reduce tasks. After each reduce task finishes, the hash value of its output will be sent to 
the master as Hi. In the request step, after the private cloud verifies from all map tasks, it will take some distinct keys 
records (as reduce sampled records) that are outputs of re-computation of subsets of map tasks input on the private 
cloud. Then, the private cloud requests from output of all map tasks on the public cloud all records that belong to these 
distinct keys. Whereas all map tasks are verified from their outputs in map phase integrity check. In the response step, 
the public cloud responds and sends all records that belong to the received distinct keys.  

      In the verification step, these records that are received in the response step will use as input of reduce tasks that are 
executed and computed the hash values of their outputs as H’i by verifier on the private cloud whereas these reduce 
tasks executed on private cloud are a sample of original reduce tasks to check reduce tasks integrity (i.e. some of reduce 
tasks on the public cloud will be taken as sample to execute on private cloud to check reduce phase integrity). These 
hash values of outputs that are computed in this step will be sent to the master. The master selects from the received 
hash values of reduce tasks in the original step the hash values (Hi) that belong to the reduce tasks of the same selected 
distinct keys in the request step on the private cloud. Then, the master compares Hi, H’i. In the rest verification step, if 
Hi equals to H’i, the nodes that execute these reduce tasks on the public cloud are trusted so, the rest of the reduce tasks 
on the public cloud that are not checked on the private cloud will be replicated their execution on these nodes to reduces 
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communication overhead and will be computed the hash values of their output. Then, these hash values will be sent to 
the master. The master compares these hash values with the hash values of the original reduce tasks that belong to the 
same keys. 

 
Fig. 4: The Protocol of reduce Phase Integrity Check. 
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  Fig.4.shows the connectivity between the private and public clouds in reduce phase integrity check. First, all reduce 
tasks on the public cloud are normally executed whereas all outputs of all map tasks that have been verified on map 
phase integrity check are the inputs of reduce tasks whereas (<k’1,v’1>,<k’1,v’3>,<k’1,v’4>) belong k’1 reduce tasks 
and(<k’2,v’2>,<k’2,v’5>) belong k’2 reduce tasks. These reduce tasks generate their outputs (<k”1,v”1>,<k”2,v”2>), 
compute the hash values of these outputs as H1, H2 and send them to the master. Then, since the output of the subset of 
map task on private cloud <k’2,v’2>, the master will take k2 and send it as a request to the public cloud. On the public 
cloud, all records that belong to k2 are selected from all output of all map tasks (<k’2,v’2>,<k’2,v’5>) and sends these 
records to the private cloud in response. 

      After the private cloud receives these records, it uses these records as input of reduce task (k’2 reduce) that is 
executed on verifier as checked sample of original reduce tasks. After k’2 reduce task finishes, it computes the hash 
value of its output <k”2,v”2> as H’2 and sends this hash value to the master. Then, the master checks if H2 equals H’2 or 
not. If H2 equals H’2, node2 that executes k’2 reduce task is trusted so, k’1 reduce task that is on public cloud and not 
checked will be replicated its execution on this node. The hash value of the output of k’1 reduce task will be sent as H’1 
to the master. The master checks if H1 equals H’1 or not. therefore, we check all reduce tasks whereas part of these tasks 
checks on the private cloud and the rest of reduce tasks on trusted nodes on the public cloud. 

5 System Evaluations 
The security and the performance overhead are two aspects that our analysis is based on them. They will be discussed. 

5.1 Security Analysis 

The quantitative and the qualitative analysis are performed on the security of the system. In the qualitative analysis, we 
show that a semi-honest worker is not computationally able to cheat safely. Error detection probability and the number 
of predicted incorrect records are analyzed through the quantitative analysis if a cheating by a semi-honest worker 
occurs with a certain probability. The relationship is also modelled between the expected security guarantee and the 
optimal parameter value. 

5.1.1 Qualitative Analysis 

For each map task, only some records from the public cloud can be sampled and checked in the private cloud because 
It’s challenging for the private cloud to gather all input records for each map task from the public cloud. In our 
technique, if the malicious worker returns wrong results when the input records that correspond to these wrong results 
are taken as a sample, it has to guarantee that the sample processing can produce the same wrong results. But, our 
following proofs illustrate that it is computationally impossible. 

      Theorem 1. Assume a malicious worker commits a cheat output the records set S′, while the correct records set is S. 
If a record psi∈(S-S′), an input is chosen as a subset of map input is replicated its execution by verifier on the private 
cloud in our technique, such as a cheat can be detected through the map phase integrity check. 

       Proof. Suppose S is set of the correct output records for a map task, yet a malicious worker commits a cheat and 
outputs wrong output records set S′ where S′≠S. In the original step, the master get H of S′ = hash value of ∥ni=1 hi, where 
h is the hash value of each output record (key value pair) on this mapper and n is the number of output records that this 
mapper generates. Suppose the master chooses the input record of output record psi∈(S-S′) as a subset of map input that 
is replicated its execution by verifier on private cloud, the master thus sends the hash value of psi in a request req=[hi] to 
the original map task on public cloud. To surpass the verification, the map task must return complementary hash values 
for the hash value of psi in the response res, so that 

H o f S′ = hash value for (the hash value of psi +Complementary hash values for the hash value of psi) 

       If psi ÏS′, there is no hash value of psi. Therefore it is computationally infeasible to find complementary hash values 
for the hash value of psi. Thus, the hash value for (the hash value of psi + Complementary hash values for the hash value 
of psi) = H. As a result, the malicious worker cannot evade the detection. 

       The worker has no way of knowing which record will be chosen as a subset of map input that is replicated its 
execution by verifier on the private cloud because the original step is executed before the request step. Thus, to safely 
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pass checks in the map phase integrity check, the best method for a worker is to work rightly 

       Theorem 2. If any reduce task cheats in its result, this cheat can be detected by the reduce phase integrity check. 

     Proof. Suppose r1,r2,r3,r4 are all reduce tasks whereas each reduce task belong one key. If reduce sampled records 
(output of re-execution of subsets of map tasks on private cloud) are belong r1,r2 reduce tasks, these reduce tasks of r1,r2 
will be replicated on private cloud so if these reduce tasks that are referred as r1,r2 cheat in their outputs, the reduce 
phase integrity check phase can detect such a cheat. After the nodes that executes r1,r2 reduce tasks on public cloud are 
verified(because they are replicated on private cloud), the rest of reduce tasks (r3,r4) will be replicated on public cloud 
on these nodes because they become trusted so also if these reduce tasks that are referred as r3,r4 cheat in their outputs, 
the reduce phase integrity check can detect such a cheat. 

5.1.2 Quantitative Analysis 

Malicious workers may cheat at random in the hopes of avoiding detection. To analyze this case, we perform 
quantitative studies. Measurement metrics and the parameters for quantifying system security are defined in Table 1. 

Table 1: Metrics and Parameters of Quantifying System Security 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       We show the analysis results on both map phase integrity check and reduce phase integrity check in Theorem 3 and 
4 respectively 

        Theorem 3. In a map task with N input records. If subset records ratio for this map task is Sm (whereas Sm is here 
the ratio of records number of the subset of a map task input to input records number N in a map task). Then, we can 
compute the map phase detection probability (Dm) and map phase error number (Em) as follow:  

𝐷𝑚	 = 	1	 −	(1	 − 	𝐶𝑚𝑆𝑚)!	                                           (2) 

 

𝐸𝑚	 = 𝐶𝑚(1	 − 𝑆𝑚)	𝑁(1	 − 	𝐶𝑚𝑆𝑚)!"#									                                    (3) 

Notation Definition 
N The count of input records in a map task 
Nr The count of all reduce tasks 
MI The count of input records for all map tasks 
MO The count of output records for all map tasks 
Sm The ratio of records number of all subsets of 

all map tasks input to MI 
Sr The ratio of reduced sampled records to MO 
RO The number of output records of all reduce tasks 
α The average number of input records in a reduce task. 
cm The worker probability to cheat whenever it executes a 

map task input record. 
cr The worker probability to cheat whenever it executes a 

reduce task input records or when it generates a reduce 
task output. 

wh The workload of a single hash function invocation. 
wt The workload of processing or generating single input 

record. 
sh The size of one hash value. 
sk The key size of a task input/output record. 
wr The workload associated with accessing single record in 

the map task input/output records based on its position. 
sr The length of a single input/output record in a map task. 
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        The results for reduce phase are similar to the map phase. Thus, in reduce phase with Nr reduce tasks, the reduce 
phase detection probability (Dr) and reduce phase error number (Er) are computed as follow:  

𝐷𝑟	 = 	1	 −	 (1	 − 	𝐶𝑟𝑆𝑟)!$																																							                                (4) 

                                 𝐸𝑟 = 𝐶𝑟(1	 − 𝑆𝑟)𝑁𝑟(1	 − 	𝐶𝑟𝑆𝑟)!$"#                                                  (5) 

In our technique, we assume the ratio of reduced sampled records Sr equal 1. So, Dr and Er are computed as follow: 
 

                                𝐷𝑟	 = 	1	 −	(1	 − 	𝐶𝑟)!$																		                                                         (6)        
	

              																				   𝐸𝑟 = 0							                                                                                              (7) 
 

Decreasing the number of incorrect records to a small value is very beneficial because completely removing the 
incorrect records is very difficult. So it is useful to search for parameters of the system to assure certain security 
guarantee. In our technique, in map phase integrity check our analysis (shown below) refers that Sm has an impact on 
the security guarantees in terms of map phase integrity check error number (i.e., Em). Our performance analysis for map 
phase integrity check in Section 5.2 refers that Sm determines overhead of the performance of the map phase. 
Therefore, finding optimal values for Sm can give a perfect trade-off between performance overhead and the security 
guarantee. The result of Theorem 3 is used to guide our analysis for optimal values.  
     In Table 2, we present the numerical analysis of map phase error number Em with different records ratio (i.e., Sm = 
0.01, 0.02, and 0.03, respectively) and cheat probabilities Cm ∈ [0, 0.1]. Since Ems under various Sms are all near to 0 
when Cm is bigger than 0.1.  
     We also present a graphical analysis to explain the map phase integrity check error number Em under various map 
subset records ratios Sm. The maximal map phase integrity check error number, marked as Emmax will reduce because of 
increasing the map subset records ratio Sm. For example, as shown in Fig. 5, when Sm rises from 0.01 to 0.03, Emmax 
reduces from 36 to 12. Also, from Fig. 5, we can notes that the records ratio Sm effect the value of Emmax. Thus, we need 
to find the minimal map subset records ratio Smmin for maximal map phase integrity check error number Emmax. 
 

                          𝑆𝑚𝑚𝑖𝑛	 = A

	(#"#/!)!"#	

)**+,-.#"#!/
!"#		 , 𝑖𝑓	

!(#"#/!)!"#

)**+,-		(#"#/!)!"#
≥ 1

1 − EEmmax/𝑁! ,															𝑖𝑓 !(#"#/!)!"#

)**+,-		(#"#/!)!"#
< 1

																							(8) 

 
 

Table 2: Numerical Analysis of Em with different Sm and Cm. 
 

Sm=0.01 Sm=0.02 Sm=0.03 
Cm Em Cm Em Cm Em 
0 0 0 0 0 0 

0.004 26.54552328 0.004 17.6145408974 0.004 11.6868963966 
0.01 36.4218857854 0.01 13.26285767 0.01 4.828621067 
0.02 26.7963859022 0.02 3.588429085 0.02 0.480300955 
0.04 7.2500914159 0.04 0.131185943 0.04 0.002369682 
0.06 1.4706122036 0.06 0.003591167 0.06 0.0000087370 
0.08 0.2650491507 0.08 0.0000872439 0.08 0.0000000285 
0.1 0.0447663789 0.1 0.0000019838 0.1 0.0000000001 
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Table 3: The Minimal Map Subset Records Ratios Smmin. 

Emax=10 Emax=5 Emax=3 Emax=1 
N Smmin N Smmin N Smmin N Smmin 

100 0.0356547 100 0.0688544 100 0.1097209 100 0.2699289 
20000 0.0354835 20000 0.0685351 20000 0.1092342 20000 0.2689463 
40000 0.0354830 40000 0.0685343 40000 0.1092330 40000 0.2689439 
60000 0.0354829 60000 0.0685340 60000 0.1092326 60000 0.2689431 
80000 0.0354828 80000 0.0685339 80000 0.1092324 80000 0.2689427 
100000 0.0354828 100000 0.0685338 100000 0.1092323 100000 0.2689424 

 

 

Fig. 5: Graphical Analysis of Em with different Sm and cm. 

      Fig. 6, 7, and 8 show the minimal map subset records ratios/numbers under various requirements of system, 
including the number of input records and the maximal map phase integrity check error number. As shown in Fig 6 and 
Table 3, our technique can get the minimal map subset records ratios with various number of input records under 
different maximal map phase integrity check error number requirements. It also refers that a lower value of Emmax needs 
a higher Smmin. For example, when Emmax are set to 1, 3, 5, and 10 the minimal map subset records ratio Smmins are 0.27, 
0.11, 0.07. and 0.04 respectively. Thus, when 4 % of map input records is taken as a sample, it can ensure that no more 
than 10 wrong output records will be put to the map output and also sampling 27% of input records of map can ensure 
that no more than 1 wrong output record will be put to the map output. 

     Under the same Emmax, we also find that when the number of input records N raises, the minimal map subset records 
ratio Smmin actually decreases slowly. As shown in Fig.7, when Emmax is set to 10, the minimal map subset records ratio 
reduces from 0.0354835 to 0.0354828 when N increases from 20000 to 100000. Now, we can compute the minimal 
map subset records number (i.e. SNmmin=Smmin·N) as explained in Table 4. Fig. 8 displays minimal map subset records 
numbers under various Emmaxs when N raises from 100 to 100000. The minimal map subset records number is 
proportional to the number of input record N. For example, at Emmax is 10, when the number of input records grows from 
100 to 100000 the minimal map subset records number increases from 4 to 3548. At Emmax is 5 when N grows from 100 
to 100000, the minimal map subset records number grows from 7 to 6853. 
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Fig. 6: Smmin with different Emmax and N. 

 

Fig. 7: Smmin with Emmax =10. 

 

Fig. 8: SNmmin with different Emmax and N. 
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Table 4: The Minimal Map Subset Records Number SNmmin 

Emax=10 Emax=5 Emax=3 Emax=1 
N SNmmin N SNmmin N SNmmin N SNmmin 

100 3.56547 100 6.885442 100 10.97209 100 26.99289 
20000 709.6693 20000 1370.701 20000 2184.684 20000 5378.927 
40000 1419.322 40000 2741.371 40000 4369.32 40000 10757.76 
60000 2128.974 60000 4112.041 60000 6553.955 60000 16136.58 
80000 2838.626 80000 5482.71 80000 8738.59 80000 21515.41 
100000 3548.278 100000 6853.38 100000 10923.23 100000 26894.24 

 

5.2 Performance Analysis 
The performance analysis is performed on both all map tasks and all reduce tasks but their overheads are analyzed 
separately. Both reduce task’s performance and map task’s performance are dependent on a few factors, which are 
found in Table 1. In the analysis we assume the following parameter wn, α, wt , wr, sr, sk, wh, and sh are constants. We 
show the analysis details for map phase integrity check and reduce phase integrity check. 

       In map phase integrity check, we explain the details of analysis for the four steps explained before. In the original 
step, each map task on the public cloud generates output as a set of key value pairs. For each map task we need to 
generate a hash value for each key value pair. The workload of all map tasks for generating a hash value for each key 
value pair is whMo. Thus, the time complexity in this step is O(Mo) and the communication overhead is O(1) as each 
map task send the hash value H to the master. 

       In the replication step, the private cloud has to retrieve a subset of each map task input from the public cloud. 
Therefore, the communication overhead is sr Sm MI = O( Sm MI ). Then, the verifiers will replicate the execution of each 
subset of each map task input. We suppose the computation workload of these replications is proportional to subsets 
records number of all map tasks input that are retrieved from the public cloud. Thus, the computation overhead for the 
verifiers will be wt SmMI = O(Sm MI ). After the verifiers finish these replications computation, they will generate hash 
values for all key value pairs that are outputs of these replications computation. Since outputs records number that 
verifiers need to generate from them hash values are proportional to records number of subsets of map tasks input so the 
overhead of generating the hash values from these outputs that are on verifier is whSm MI = O(Sm MI ). So the total 
overhead on private cloud SmMI ( wt +wh) = O(Sm MI ). 

    In the request step, the master will send all outputs records hash values of subsets of map tasks input. The 
communication overhead in this step is shSmMI = O(SmMI ). As we mentioned before, the verifiers that need to generate 
the hash values from outputs records number is proportional to records number of subsets of map tasks input.  

    In the response step, upon receiving the request from the private cloud, each map task should locate the 
complementary hash values for the hash values that is received from the request step. Then, the complementary hash 
values are sent to the private cloud. As a result, in order to find all complementary hash values, search through the 
outputs of all map tasks. The number of all map tasks output records hash values equal to the number of all map tasks 
output records Mo (i.e. each record (key value pair)has one hash value). Thus, locating the complementary hash values 
for one record of subsets output takes O(Mo). Since outputs records number of subsets execution on verifier is 
proportional to records number of subsets of map tasks input (SmMI ) records. Then, locating the complementary hash 
values for all output records of all subsets execution will incur a computation overhead of O(SmMI Mo). The 
complementary hash values that the total size of them is sh(Mo – SmMI ) will be sent to the private cloud. Thus, the cross-
cloud communication overhead is sh(Mo – SmMI ) = O(Mo – SmMI ). 

    In reduce phase integrity check, we explain the details of analysis for the five steps. In the original step, each reduce 
task 

on the public cloud will generate the hash value of its output so the overhead is whRo = O(Ro). Since each reduce task 
only has to send the hash value of its output Hk (whereas k is a distinct key that belongs to one reduce task) to the 
master on the private cloud. Thus, the communication overhead is O(1). 
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    In the request step, distinct keys in output records of subsets execution are sent to the public cloud by the master as a 
request. In the worst case, each output record includes a distinct key, at most SrMo records (whereas the output of 
subsets of map tasks input on the private cloud are part of the output of mappers on the public cloud) are sent to the 
public cloud  
 

  Table 5: The Overhead of our technique. 

 
 
by the master. Therefore, the communication overhead in this step is skSrMo = O(SrMo). In the response step, each map 
task on the public cloud needs to locate from their output records all records for each received key in the request step. 
So, locating all records for each key from the output of all map tasks takes wrMo = O (Mo) time. Thus, there exists 
O(SrMo) keys in the request step, locating all records from all map tasks output for all received keys will incur a 
computation overhead of wrSrMoMo = O(SrM2o). Also in the response step, output records number of all map tasks that 
belongs to the received keys to be returned is at most O(SrMoα). The communication overhead is O(SrMoα). 
 
In the verification step, after the master receives the records from the previous step, it uses these records to be executed 
by reduce tasks on the private cloud (these reduce tasks are replication of some reduce tasks on the private cloud). The 
computation overhead is proportional to the received records. So the time complexity for this computation is wt SrMoα. 
After the reduce tasks finish on the private cloud, it computes the hash value of their outputs. Since each reduce task 
generates its output as one record, the overhead for computing the hash value of all reduce task’s output whSrMo. The 
total overhead in this step is (SrMo(wt α+wh)) = O (SrMo). 
 
In the rest verification step, the rest of reduce tasks that are not verified from their result on the private cloud will be 
replicated its execution on the public cloud on verified nodes. Since the reduce tasks that are verified from its result on 
private cloud takes some of map tasks outputs as inputs of these reduce tasks, the rest of map tasks outputs are used as 
inputs of the rest reduce tasks that are not verified from its result. So the overhead of this computation is wt (Mo-SrMoα). 
The overhead of generating the hash values of outputs of these reduce tasks (the rest of reduce tasks) is wh(Ro - SrMo) 
whereas SrMo presents the number of outputs of reduce tasks on the private cloud because each record in SrMo presents 
distinct key so the total overhead of computation is o(Mo - SrMoα)+o(Ro - SrMo) = o(Ro+Mo(1 - Sr)) whereas α is a 
constant value. Then, each reduce task from these reduce tasks (the rest of reduce tasks) will only send the hash value of 
its output to the master as H’K so the overhead of sending is O(1). The total overhead can be simplified by assuming 
O(MI ) = O(Mo). Table 5. shows overhead for different aspects and the total overhead for different aspects are shown in 
the last row in Table 5. 
 
6 Conclusions 
In this paper, we present our technique that checks the result’s integrity of MapReduce computation to ensure the result 
accuracy. Our technique deploys MapReduce on a hybrid cloud to combine the advantages of both public and private 
clouds. We design our technique in two phases: map phase integrity check and reduce phase integrity check 
respectively. In the map phase, all the map tasks execute on the public cloud, but subset records are replicated on the 
private cloud to verify each map task result. While, in the reduce phase, only a portion of reduce tasks will be replicated 
on the private cloud, and the remainder will be replicated on a trusted node on the public cloud. The performance 
overhead and quantitative analyzes of the proposed technique provide high computation integrity and little performance 
overhead. 
 

Phase Step Public Cloud 
Computation 

Private Cloud 
Computation 

Cross-Cloud 
Communication 

Map Phase 
Integrity Check 

Original 
Replication 
Request 
Response 

O(MO) 
- 
- 

O(Sm MI MO) 

- 
O(Sm MI) 

- 
- 

O(1) 
O(Sm MI) 
O(Sm MI) 

O(MO -Sm MI) 

Reduce Phase 
Integrity Check 

Original 
Request 
Response 
Verification 
Rest_verification 

O(RO) 
- 

O(Sr M2O) 
- 

O(RO+MO(1 - Sr)) 

- 
- 
- 

O(Sr MO) 
- 

O(1) 
O(Sr MO) 
O(Sr MO) 

- 
O(1) 

Total Overhead  (Sm+Sr)M2I+MISr+RO (Sr+Sm) MI (Sr+Sm) MI 
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