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Abstract: The current study aims at showing trace estimates, following the way of the method proved by Rodrigo
Baiiuelos, Jebessa B. Mijena and Erkan Nane [1] for the relativistic (1 + €)-stable process extending the result of

Baiiuelos, and Kulczycki [2] in the stable case.
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1 Introduction

Introduction and statement of main results

For €>0, an R**¢-valued process with
independent, stationary increments having the following
characteristic function:

i 2+e
—(1+e){<(1+e)m+|g|2) 2 —(1+e)}

Eeif'xlzig'ﬂe — e ’ f
€ R2+e,

is called relativistic (2 + €)-stable process with mass (1 +

€). We assume that sample paths of X{F&'*¢ are right

continuous and have left-hand limits a.s. If we put e = —1

we obtain the symmetric rotation invariant (2 + €)-stable

process with the characteristic function e~(1+eIE "™ ¢ ¢

R2*€, We refer to this process as isotropic (2 + €)-stable
Lévy process. For the rest of the paper we keep € > 0 fixed
and drop 2 + €, in the notation, when it does not lead to
confusion. Hence from now on the relativistic (2 + €)-
stable process is denoted by X;,. and its counterpart
isotropic (2 + €)-stable Lévy process by X;,.. We keep
this notational convention consistently throughout the
paper, e.g., if p;,.(€) is the transition density of X, ., then
P1+e(€) is the transition density of X ;.

In Ryznar [3] Green function estimates of the

Schodinger operator with the free Hamiltonian of the form
1+€

2Nz
(-a+ A+eome) " —(1+e),
were investigated, where € > 0 and A is the Laplace
operator acting on L?(R?*€). Using the estimates in Lemma
2.6 below and proof in Bafiuelos and Kulczycki (2008) we
provide an extension of the asymptotics in [2]to the
relativistic (1 + €)-stable processes forany 0 < € < 1.
Brownian motion has a characteristic function
]Eoeif ‘Bite — e_(1+5)|§ 12 ) g € R2+5.

Let € = 0. Ryznar showed that X, . can be represented as a
time-changed Brownian motion. Let Ti+e (1 +¢€),e = 0,
2
denote the strictly (%)—stable subordinator with the
following Laplace transform
—AT ;1+e\ (1+6€)
E% (_) 2

2
> 0. (1.1)
Let O1+¢ (1 + €,u),u > 0, denote the density function of

—(1+E)ﬂ.(£)

=e A

2
T(g)(l +€). Then the process Br,, (1+¢€) is the
2 =z

standard symmetric (1 + €)-stable process.
Ryznar [[3], Lemma 1] showed that we can obtain X;,, =
BT(ﬁ)(1+e,1+e)a where a subordinator T%(l +e1l+e€)is
2
a positive infinitely divisible process with stationary
increments with probability density function
O1+e(1+€,u,1+€)
2
2
= p-(H+eTFeut(1+e)?yg

(9@

2
+€,u), u > 0.
Transition density of T(ﬁ)(l‘l‘E,l‘l‘E) is given by
2

9(§)(1 +€,u — v,1+¢€). Hence the transition density
2

of Xi,eisp(1+€,x,x—¢€) p(1 + €, €) given by

p(1+¢€,x)
2+€

(4mu) =z
+ €, u)du. (1.2)
Then
p(1+¢€x,x)= p(l+¢0)

1 2
— e(1+6)2f E— e_(1+€)1+€u9(£)(1 + €, u)du-
0 2

(4mu) =z
The function p(1 + €, x) is a radially symmetric decreasing
and that

(1+€)? ” 1 _la 1 %
= ellte ———e aw g~(149) “9(£)(1
0

2
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p(1+¢6x) <p(l+¢0)

1
< e(“e)zf ———z01+e(1 + €, w)du
0 (4mu)= 2
— e(1+e)2 (1
2+
e ol (55)
+€) 1He (1.3)

2m)2re(1+¢)’

2+€

2w 2 . . .
where w, ., = ﬁ is the surface area of the unit sphere in
I" ——
2

R2*€, For an open set D in R?*¢ we define the first exit
time from D by 1, = inf{e = —1: X;,. € D}.
We set
p(1+¢€x,x—¢€)
= [E*¥ [p(l +e — 1p, X, X —€); Tp
<1l+e€], (1.4)
and
pp(1+€x,x—¢€)
=p(l+ex,x—€) —rp(1+€x,x
—€), (1.5)
for any x,x — e € R?*€, ¢ > 0. For a nonnegative Borel
function f and € = 0,let

Phef (x) =B [f X14e): 1+ € < 1p]
=f pp(l+e€x,x—€)f(x —e)d(x
—o),

be the semigroup of the killed process acting on L2(D), see,
Ryznar [[3], Theorem 1].

Let D be a bounded domain (or of finite volume).
Then the operator PP, maps L?(D) into L*(D) for every
€ = 0. This follows from (1.3), (1.4), and the general
theory of heat semigroups as described in [4]. It follows
that there exists an orthonormal basis of eigenfunctions
{p:n = 1,2,3,...} for L?>(D) and corresponding
eigenvalues {1,:n = 1,2,3,...} of the generator of the
semigroup PP, satisfying 4; < A, < A3 <---, with 4, —
0 asn — oo, By definition, the pair {¢,, 1,,} satisfies
Plre n(x) = e70%9 g, (x), x €D, €20
Under such assumptions we have

pp(1+€x,x—¢€)

[ee)

=Z e+ g, () (x
n=1
—€). (1.6)

In this paper we are interested in the behavior of the trace
of this semigroup

= fD pp(1

+€,x,x)dx.
Because of (1.6) we can write (1.7) as

Zp(1+¢€)

(1.7)

[ee)

Zp(1+¢) = Z e~ An(1+€) f @2 (x)dx
D

n=1
[ee)

— Z e—ln(1+e) .

n=1
We denote (2 + €)-dimensional volume of D by |D|.
The first result is Weyl’s asymptotic for the eigenvalues of
the relativistic Laplacian

(1.8)

2+€
lim (1 + €)iree~14* 7 (1 4 ¢€)
€—>—
= ¢,|D|, (1.9)

2+€
— (‘)2+5F(1+e)

where C; = Grere)

Let N(4) be the number of eigenvalues {4;} which do not
exceed A. It follows from (1.9) and the classical Tauberian
theorem (see for example [[5], p. 445, Theorem 2]) where
L(1+¢€) = C|Dle is our slowly varying function at

infinity that
_2te _1te
Alim A 1ree 2 N(A)
G,|D]
=——. (1.10)

3+2€
r ()
This is the analogue for the relativistic stable process of the

celebrated Weyl’s asymptotic formula for the eigenvalues
of the Laplacian.

Remark 1.2. The first author of [1] presented (1.10) at a
conference in Vienna at the Schrodinger Institute in 2009
(see [6]) and at the 34th conference in stochastic processes
and their applications in Osaka in 2010 (see [7]). Thus this
result has been known to the authors [1], and perhaps to
others, for a number of years.

The author in [1] obtains the second term in the asymptotics
of Zp(1+ €) under some additional assumptions on the
smoothness of D. The result is inspired by the result for
trace estimates for stable processes by Baiuelos and
Kulczycki [2]. To state our main result we need the
following property of the domain D (see [1]).

Definition 1.3. The boundary, D, of an open set D in R?*¢
is said to be (1 + 2¢)-smooth if for each point x, € 9D
there are two open balls B; and B, with radii (1 + 2€) such
that B, € D,B, c R?®*¢\(D U dD)and d B, N d B, =
Xg-

Theorem 1.4. Let D c R2%¢,¢ > 0, be an open bounded
set with (1 4+ 2€)-smooth boundary. Let |D| denote the
volume ((2 + €)-dimensional Lebesgue measure) of D and
|0D| denote its surface area ((1 + €)-dimensional Lebesgue
measure) of its boundary. Suppose 0 < € < 1. Then
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C,(1+ €)e@+e?|p|

Zp(1+¢€)— STe + C,(1+¢€)|oD|
(1 +e)1+e
2
C;e2+%|D|(1 + €)1+e
< S
(1+2€)2(1 + e)1+e
€=0, (1.11)
Where

1 o0
Ga+o=—= [ @
(4m)=z o

_2te e
—2€) z e~ () HeG-20g,, (1, x
2

—2e)d(x —2¢) - C;
Woyel (2+e)

1+€

= T orea .~ _11
(Zm)2 (1 + €) ase =

[ee]

C,(1+¢) =f

0

rH(l +¢€,(x,0,...,0), (x4, 0, ...,0)) dx,

1
C,e2+% (1 4 ¢)Tve
< 2+€ ’

(1 + e)1+e

e=> 0,

C, =f 7y (1,(x4,0,...,0),(x,0,...,0))dx,,
0

C;=C02+¢1+e)H = {(x1,.--,%4¢) E RZ* €1, >
0} and ry is given by (1.4).
Remark 1.5. When 0<e<1,(,(1+¢€) = C,(1+

1 2+€
€)1+¢/(1 + €)1+e. Then the result in Theorem 1.4 becomes,
for bounded domains with (1 + 2€)-smooth boundary,

1
CDl  C,18D|(1 + €)ive
ZD (1 + E) - : 2+€ - 2+€
(14 €e)i+e (14 €e)1+e
2
C,ID|(1 + €)1+e
v (1.12)

(1 426)%(1 + €)1ee

where C;, C, are as in Theorem 1.4. This was established by
Baiiuelos and Kulczycki [2] recently.

The asymptotic for the trace of the heat kernel when € = 1
(the case of the Laplacian with Dirichlet boundary
condition in a domain of R2*€), has been extensively
studied by many authors. For Brownian motion van den
Berg [8], proved that under the (1 + 2€)-smoothness

condition
2+€ Ja(l+ e
Z,(1+€) — (4n(1 + e))_T<|D| —% |6D|>|
CorelDI(1+€)2
- (1 + 2¢)? ’

e> 0.(1.13)

For domains with C! boundaries the result

D1 -2 )

Zy(1+6) = (4n(l+e) 7 -

+o(a+er)],

ase - —1,(1.14)

was proved by Brossard and Carmona [9], for Brownian
motion.

2 Preliminaries

Let the ball in R2*¢ with center at x and radius 7, {x —
€: |e] < r}, be denoted by B(x,r). We will use 6,(x) to
denote the Euclidean distance between x and the boundary,
0D, of D. That is, §,(x) = dist(x,dD). Define

(oo}

Yo) = f e~? vIte(6 + v/2)1*€ dv, 6 >0,
0

We put
where

R(A+€2+¢€) =A1+¢6),2+¢€)/Y(0),
AW,24+¢€) = I'((2+€ — v)/2))/

2+€
(r2 27 |I" (v/2)]). Let v(x), 7(x) be the densities of the
Lévy measures of the relativistic (1 + €)-stable process and

the standard (1 + €)-stable process, respectively. These
densities are given by

R(1+¢€2+¢€) o
V) == ¢ Ty (a
1
+ e)m|x|) , 2.1)

And

7(x)
_ A= +e)2+e€)
- |x|3+25 ’

We need the following estimate of the transition
probabilities of the process X;,, which is given in [[10],
Lemma 2.2]: For any x,x —¢ € R**and € = 0 there
exist constants € = 0,

p(l+ex,x—¢e)<(1

1+e€
2 .
+ €)e(1*9” min {|e|3+25

e—(1+2£)|e| ) (1

_z+e
+€) 1+e} . (2.3)
We will also use the fact [[11], Lemma 6] thatif D c R2*¢
is an open bounded set satisfying a uniform outer cone
condition, then P*(X(tp) € dD) = 0 for all x € D. For
the open bounded set D we will denoted by G, (x,x — €)
the Green function for the set D equal to,

Gp(x,x —€) = f

0

+e),

po(1+¢€x,x—¢€)d(1
x,x —e € R%*E,

For any such D the expectation of the exit time of the
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processes X;, . from D is given by the integral of the Green
function over the domain. That is

E*(tp) = f

D

Gp(x,x —€)d(x — €).

Lemma 2.1. Let D < R?*€ be an open set. For any x, x —
€ € D we have

p,(1+€x,x—¢€)
<@

+e)ere’ ( 1te

= o-(+208p()
6[3)‘+26(x)

_2+e
A (14+e€) e,

Proof. Using (1.4) and (2.3) we have

p,(1+€x,x—¢€)
= E* ¢ (pA+e — 1pX(tp),x) ; Tp

< 14¢€)
<@
+ €)e(1+e)? pr-c (I ;: E)|3+26 o-(1+20)lx-X(xp)]
x - TD

_2+e
A(l+e) 1+s)

1+e€

= (14205
6[3)‘+2€ (x)

< (1 + €)e@+e’ (
_2+e
AN (1+e)1re].

We need the following result for the proof of Proposition
1.1.

Lemma 2.2.

- —(1+€)? e
llm1 p(1+¢€,0)e (1 + €e)1+e
€->—

=, (2.4)
Where
2te [ 2+e
C, = (4m)2 f u 2 9(§)(1,u)du
0 2
2
_ Watel (ﬁ)
T C2mFe(1+e)’
Proof. By (1.2) we have
p(1+¢€x,x)=p(l+¢0)
= e(“f)zf _— e_(1+e)1+eu9(£)(1 + €,u)du.
0 (4mu) =z 2

Now using the scaling of stable subordinator 9(§) 1+
2

2 2
eu) = (1+4+¢€) 1+e 9(§) (1,u(1 + €) 1+¢) and a change
2
of variables we get

e(1+e)2

PUte=—— [ @
(A4m) 2 (1 + e)1+e Y0

2+€ 2
—2€) 2z e"(1H*e(
2(x-2€)

+ E)Te(g)(l,x —2e)d(x — 2¢)

C,(1+ e)e+e?
=T 2%

(14 €e)1+e

then by dominated convergence theorem, we obtain

2 2te
lim1 p(1+ € 0)e~1*9%(1 + €)tre
€e——

= ;m fw (x — 26)_¥9(£)(1'x
(4m)= o 2
— 2e)d(x — 2¢),

and this last integral is equal to the density of (1 + €)-
stable process at time 1 and x = 0 which was calculated in
[2] to be
2
w2+er ( +E)

1+e
@2rn)**e(1+e)’
We next give the proof of Proposition 1.1.
Proof of Proposition 1.1. By (1.4) we see that
pp(1+€,x,x)

C,e(+e?(1 + E)_g
p(1+¢€,0)

= 2+€
C,e+e?(1 + €)T1re

(1 +€,x,%)
. (25)
C,e(+O?* (1 + ) T1ve

Since the first term tend to 1 as € = —1 by (2.4), in order
to prove (1.9), we show that

2+€

(14 €e)1+e

— as e
1+4€)2
C,e(1+e

f (1 +¢€,x,x)dx = 0,
D
(2.6)

For € = —1, we define D;,. = {x € D:§p(x) =1+ €}.

- —1.

Then for 0 < € < 1, consider the subdomain
1

D(Cl_e)1/2(1+e) = {x € D:6p(x) = (1 —€)20+9} and its

complement D(Cl_e)l/Z(HE) ={x € D:6p(x) <

1
(1 —e)2a+e}. Recalling that |[D| < oo, by Lebesgue
dominated convergence theorem we get |D(Cl—e)1 2a+e) | 2
0, as € » 1. Since pp(1 —€,x,x) <p(l—¢€,x,x), by
(1.3) we see that

© 2023 NSP
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(1 —€,x,%)

) _2¥e
Ciel™¢" (1 —€) 1+e

<1,

for all x € D. It follows that

24+€

(1 —é€)1+e f
T~ 1—ez
Cyel—¢ e .

(1-€)2(+€)

ase - 1. (2.7)
On the other hand, by Lemma 2.2 in [10] we obtain

1p(1 —€,x,x)dx

- 0,

p(1 —€,x,%)

2 24+€
Ciet=¢"(1 —¢e) 1+e

IE"[p(l —€ — Tp, Xy ,x); 1—€e> ‘[D]
- Clel—ez(]_ _ 6)—(2+e)(1+e)

3+2€

(1-e) e

< cE*®min \ ———————————
lx — X(zp)[**2€

e—(1+25)|x—X(‘L'D)| 1

3+2€

JA - 5
< cmin W e (1+26) D(x); 1 (28)
Forx € D 1 and 0 <€ < 1, the right-hand side

(1_5)2(1+e)
3+2€

of (2.8) is bounded above by c(1 — €)2(+e) and hence

2+€
(1 —é€)1+e
Ciel=¢ f

3+2€
< c(1 —€)2a+9|D|,

1 (1 —€,x,x)dx
2(1+€)
1—€

(2.9)
and this last quantity goesto 0 as € — 1.

For an open set D © R?*€ and x € R?*¢, the distribution
P*(tp < 0,X(tp) €-) will be called the relativistic (1 +
€)-harmonic measure for D. The following Ikeda—
Watanabe formula recovers the relativistic (1 + €)-
harmonic measure for the set D from the Green function.

Proposition 2.3. (See [10].) Assume that D is an open,
nonempty, bounded subset of R?*€, and A is a Borel set
such that dist(D,A) > 0. Then

P*(X(zp) EA,tp < 0 =)f Gp(x,x — E)f v(e)d(x
—2e)d(x — E)ij € D.(2.10) !

Here we need the following generalization already stated
and used in [2].

Proposition 2.4. (See [12], [[L10], Proposition 2.5].)
Assume that D is an open, nonempty, bounded subset of
R2*€, and A is a Borel set such that A ¢ D\dD and 0 <
€ < oo,x € D.Then we have

P*(X(tp) €A 1+e<ty <1+ 2€)

1+2€
=ff pp(s,x,x
D JY1+€

- e)dsf v(e)d(x — 2¢e)d(x — €).
4

The following proposition holds for a large class of Lévy
processes

Proposition 2.5. (See [[2], Proposition 2.3].) Let D and F
be open sets in R?*€ such that € F . Then for any x,x —
€ € R?*€ we have

pr(l+e€x,x—€)—pp(1+€x,x—¢€)
=FE*(tp <1+4¢€X(tp)
€EF/D; pr(1+€—1p,X(1p),x —€)).

Lemma 2.6. (See [[3], Lemma 5].) Let D c R2*€ be an
open set. For any x,x —€ € D and € > 0 the following
estimates hold

pp(1+¢€x,x—¢) < e(“e)zﬁD(l +€,x,x —€),

p(1+€x,x—€)
< ez(1+e)27~,D(1 +6x,x
—e). (2.11)

We need the following lemma given by van den Berg in

(8].

Lemma 2.7. (See [[8], Lemma 5].) Let D be an open
bounded set in R?*€ with (1 + 2¢)-smooth boundary dD
and for € = 0 denote the area of boundary of dD,,. by
0D, 4|.Then

(%)

Corollary 2.8. (See [[2], Corollary 2.14].) Let D be an
open bounded set in R?*€ with (1 + 2¢)-smooth boundary.
For any € = 0 we have

1t+e 1+ 2e\1%€

) D], e

loD| < |aDm|(
>0. (2.12)

1) 2-(1+9|9D| < |8D,,.| < 21*€|aD|,
.. 22+6|D|

UNNEES Fa

(i)  |0Dy,.| — |9D| < Z—Z90+9I0D] o

142¢
22(2+€) (24¢€)(1+€)|D|
(1+2€)2

3 Proof of the main result

1
Proof of Theorem 1.4. (See [1])For the case (1 + €)1+e >
1+2€

- the theorem holds trivially. Indeed, by Eq. (1.3)

© 2023 NSP
Natural Sciences Publishing Cor.



13 N SS

A. Al-Rabiaa, S. Hussein: Two-Term Trace....

(14 €)e@o?|p|
Zp(1+¢€) Sf p(1+¢€,x,x)dx < >7e

D 1+ e)m
(1 +€)e*|D|(1 + e)1+e

(1+2e)?(1+ e)1+e
By Corollary 2.8 and Lemma 2.6 we also have

1
C,e2+O*|9D|(1 + €)1+e

C,(1+¢€)|aD| <

24+€

(1+€)se
2 4219 D)1 + e)1+e

1+2e)(1 + E)1+6
23+fc 42149 D|(1 + e)1+e

]

(1+2e)?>(1 + 6)1+E

c,(1+ e)e<1+6>2|D| Cle(“f)z ID|(1 + e)l—+e

2+€ *
(14 2e)?(1 + €)1+e

1+2¢€

1+ 6)1+e

Therefore for (1 + E)m >

(1. 11) holds. Here and in

(1+e)
and the fact that p(1+¢€,x,x) = %, we have
(1+€)T+e
that
C,(1+ €)e+e?|p
Zy(1+e) - 1( ) — D]
(14 €e)1+e
=f pp(1+€,x,x)dx
D
—f p(1+¢€,x,x)dx
D
= —f 1p(1 + €, x,x)dx, (3.1
D

where C;(1 + €) is as stated in the theorem. Therefore we
must estimate (3.1). We break our domain into two pieces,

D1+2¢ and its complement Dfyze. We will first consider the
2 2

contribution of Di+ze.
2
1
Claim 1. For (1 + €)1+e < 1+2£ we have

f (1 +€,x,x)dx
D

1+2€
2

(1 + €)e2@+? | p|(1 + e)1+e

(3.2)
(1+2e)2(1+ E)1+6

Proof. By Lemma 2.6 we have

(1 +€,x,x)dx

D1+2e
2

< g2(1+e)? f (1
D

+€,x,x)dx,

1+2€

(3.3)
and by scaling of the stable density the right-hand side of

(3.3) equals
x x
(1. — T ) dx.
1+ e)ve (1 +€)r+e

2(1+€)?
_— s 1
1+ e)i—: f D/(1+€)1+e

D1+2e
2
1
For x € D1+25 we have & L(x/(1+e)1+e) >
D/(1+€)T+e
1+2€ 2 By [[2], Lemma 2.1], we get
2(1+e)

. x x
r 1 1, 1 1
D/H+OTFE \ (1 4 e)Tve (1 + €)Tre
C

= 1
§3%2e | (x/(1 +e)m)
D/(1+€)T+e
C

1
52 1 (x/(l + e)1+e)
D/(1+€)I+e
2
c(1+ e)r+e
T (14262

Using the above inequality, we get

f (1 +€,x,x)dx
D

1+2€
2(1+e)2
<: 2+€ J“

2
2
c(1+ e)r+e
(1 + 6)1+e D1+ze

(1+ 2¢)?

2
- ce2+9%|D|(1 + e)m
< >

(1+2e)2(1+ e)1+e

which proves (3.2).

Now we will introduce the following notation. Since D has

(1 + 2¢)-smooth boundary, for any point x —e € 9D

there are two open balls B; and B, both of radius (1 + 2¢)

such  that B, ¢ D,B, c R**\(D U dD),d B, n

0B, = x —e€. For any x € Di+2¢ there exists a unique
2

point x, € dD such that §,(x) = |x — x,|. Let B; =
B(x, —2¢,1+ 2¢€),B, = B(x, —2¢,1+ 2¢) be
inner/outer balls for the point x,. Let H(x) be the half-
space containing B; such that d H(x) contains x, and is
perpendicular to the segment (x; — 2€)(x, — 2€).

We will need the following very important proposition in
the proof of Theorem 1.4. Such a proposition has been
proved for the stable process in [[2], Proposition 3.1] (see
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[LD).

Proposition 3.1. Let D c R?*¢,¢>0, be an open
bounded set with (1 4+ 2€)-smooth boundary dD. Then for

c L 1+2e
any x € Diszeand € = 0 such that (1 + €)re < —
2

we

have
|rD(1 +6x,x)— Tyl +€x, x)|

1+2€

1 1
ce?+% (1 4 e)twe [ [ (1 + €)1+e
= =| | 5w
(1+2e)(1+ e)r+e b
At . (3.5)

Proof. Exactly as in [2], let x, € dD be a unique point
such that |[x — x,| = dist(x,dD) and B; and B, be balls
with radius (1 + 2¢) such that B; ¢ D,B, c R?*¢\(D U
0D),0 B, N9 B, = x,. Let us also assume that x, = 0
and choose an orthonormal coordinate system
(xq,%3,...,X54¢) so that the positive axis 0x; is in the
direction of @ where p is the center of the ball B;. Note
that x lies on the interval Op so x = (|x],0,0,...,0). Note
also that B ¢ D c (B,)¢ and B, € H(x) c (B,)° .
For any open sets A;,A4, such that A; € A, we have
, A+ex,x—€) =71, (1+6x,x—€)so
|rD(1 +€x,x)— Tyl + E,x,x)|

<1 (1+6x,x)— rgyc (1+6€x,x).
So in order to prove the proposition it suffices to show that

Tg, AQ+exx)— TBy)e (1+€xx)

1+2€

1 1
- ce2+* (1 + e)twe [ [ (1 + €)T3e A1
= 2t€ ’
(1+26)(1+e)mre | \ X
for any x = (|x|,0,...,0),|x| € (0,%]. Such an
estimate was proved for the case € = —1 in [2]. In order to

complete the proof it is enough to prove that

15, 1+ 6€,x,x) — 1@y (L+6€,x,x)
< cez(l“)Z{f‘B1 (1+exx)—Fyd
+¢,x, x)}.
To show this given the ball B,, we set U = (B,)¢. Now
using the generalized Ikeda—Watanabe formula, Proposition
2.5 and Lemma 2.6 we have
13, (1+€x,x) —1y(1 +¢€x,x)
= Ex[l +e>1p ,X(TB1 )
€ U\By;py (1+ € — 15, X(15,), )]

1+€
= f f pg, (S, X, x
B; Jo

- E)dsf v(e)py(1+€—s,x
U\B;
—2€,x)d(x — 2€)d(x — €)

1+e
< 82(1+e)zf f Ps, (5, x,x — €)ds f v(e)py (1
B1 YO U\By
+e — s,x —26,x)d(x — 2€)d(x — €)
< Cez(1+e)2Ex[1 +e> ‘EBl ,X(Tgl)

€ U\By;py(1+e—15,X(%5, ) x)]
= cez(”e)Zf‘B1 (1+¢€x,x)

—7y(1+€x,x)
1t2e
2 1 1
- ce?+* (1 + e)tre [ [ (1 + €)THe A1
- 2+€
(1+26)(1+e)mre | \ X

The last inequality followed by Proposition 3.1 in [2].

Now using this proposition we estimate the contribution
from D\D1+2¢ to the integral of 1, (1 + €, x, x) in (3.1).

2

1
Claim 2. For (1 + €)1+e < 1+2£ we get
f p(1+€,x,x)dx
D

\D1+2¢
2
T (1 + € x,x)dx

L\D1+25

2
Cez(1+e)2 |D|(1 + 6)2(1+e)
T (142621 +e)ta0te”

Proof. By Proposition 3.1 the left-hand side of (3.6) is
bounded above by

(3.6)

1+2e 1+2€

10D1.| (((1 tow)

2
C82(1+e)

1+2e)(1+¢€) ),

A 1) d(l+e€).

By Corollary 2.8, (i), the last quantity is smaller than or
equal to

1+2e 14+2€

ce2+0*|9p| 73 L4 o)
_— 1+€
1+201+0), (a+e7)

+¢€).

A 1>d(1

1
The integral in the last quantity is bounded by c(1 + €)1+e.

1
To see this observe that since (1 + €)1+e < % the above

integral is equal to
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1+2€

(1+e)ﬁ e\
fo (((1 +¢€) 1+e)

1+2€

A 1) d(l+e€)
S ((05075)
A 1) d(1+¢€)

(1+e)ﬁ
= f 1d(1+¢€)
0

1+2€

1+2€
2 __ €\ 2
+f 1 ((1 +e€) 1+e)
(1+€)1+e

1
< c(1 + €)r+e,

d(l+e€)

Using this and Corollary 2.8, (ii), we get (3.6).

Recall that H = {(x;,...,%X3.c) € R**¢:x; > 0}. For
abbreviation let us denote

fu(l+¢€1+2€)

=Ty (1
+¢6,(1+2¢0,..,0),(1
+2¢,0,..,0), €=0.
Of course we have 1ry(x)(1+¢€xx) = f(1+

€,6y (x)). In the next step we will show that

f o1+ €,x,x)dx
D\D1+2¢
2 1+2€
—1apl | © £y +e1+20)d(1
0
+ 2¢€)

Cez(1+e)2|D|
(14 26)%(1 + e)THe
We have

(3.7)

f ry(x)(1 +€,x,x)dx

\D1+2e
2
142€

= f *10Dysaelfy (1 46,1+ 26)d(1
0
+ 2e).
Hence the left-hand side of (3.7) is bounded above by

1+2€

[0D112¢] = 10D|fy (1 + €1+ 26)d(1 + 2¢).

0

By Corollary 2.8, (iii), this is smaller than

1+2€

f L +20)f,(1+61+26)d(1 + 2€)

c|D|
(1+ 2¢)?

c|D|eZ(1+5)2 e ~
< —f (1+2¢) f, (1
(1+26)? J, "

+¢€ 1+ 2e)d(1+ 2¢)

1+2€

f (1+26)(1

roefy (L0
+26)(1+€)7me) d(1 +2€)

ClDlez(1+e)2
T (1+2e)2

1
1+2 —
%(1+5)1+6

C|D|62(1+e)2
(14261

= 2+€
(14 26)?2(1 + e)rve 7o
2
+ o)t fy (1,1 + 26)d(1 + 2¢)
C|D|62(1+e)2 e
) [ a
(14 2€)?(1 + €)1+e o
+26)((1 4 2€)"C*29 A 1)d(1 + 2¢)
C|D|62(1+e)2
(14 26)%(1 + €)1+
This shows (3.7). Finally, we have

1+2€

|au|f © fu(l 4614 20)d(1 + 2€)
0

- |6D|f fu(l+¢€14+2e)d(1 + 2¢)
0

< |aD]| fHZE fu(l+¢€14+26)d(1
2

+ 2¢)
c[D|
<
1+ 2€ Ji+2e
2

fu(l+¢€14+2e)d(1

+ 2€) by Corollary 2.8, (ii)

C|D|62(1+e)2 ©
[ (10

T (14 26)(1 + e)rre S
+26)(1+ €)™ ) d(1 + 2€)

C|D|ez(1+e)2 ©

T A+20(1+6) fy (1,14 26)d(1 + 2¢).
A +20) (1 + ) Jusze, e fu ( €)d(1 + 2€)

Tte 1
Sincewz 1,sof0r1+262w2 1
we have Fu (L1 4 26€) < c(1+26)"6*20 <

c(1 + 2€)~2. Therefore,
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f 1 fy (1L, 1+ 2€)d(1 + 2€)
(14+2€)(1+€)1+€
2
f°° d(1 + 2¢€)
<c 1 ——
(1426)(1+€)1+€ (1 + 26)2

2

1

c(1+ e)i+e
1+ 2e

fu(l+¢€,142e)d(1+ 2¢)

0

—|6D|f fu(l+¢€14+2€)d(1+ 2¢)
0

C|D|62(1+e)2
<,
T (1+26)?(+€)

Note that the constant C,(1 + €) which appears in the
formulation of Theorem 1.4 satisfies C,(1+¢€) =

Jo. fu(l+€1+26)d(1+26€). Now Egs. (3.1), (3.2),
(3.6), (3.7), (3.8) give (1.11).

(3.8)
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