133

Two-Term Trace Estimates for Gradually Successive Relativistic Stable Processes

A. Ali H. Al-rabiaa ${ }^{1, *}$ and S. Hussein ${ }^{2}$
${ }^{1}$ Department of Mathematics, Deanship of Preparatory Year, Shaqra University, Shaqra, Saudi Arabia
${ }^{2}$ Department of Mathematics, College of Science, Sudan University of Science and Technology, Khartoum, Sudan

Received: 12 Sep. 2022, Revised: 13 Oct. 2022, Accepted: 21 Oct. 2022.
Published online: 1 Jan. 2023.

Abstract

The current study aims at showing trace estimates, following the way of the method proved by Rodrigo Bañuelos, Jebessa B. Mijena and Erkan Nane [1] for the relativistic $(1+\epsilon)$-stable process extending the result of Bañuelos, and Kulczycki [2] in the stable case.

Keywords: Relativistic stable process, Trace Asymptotics.

1 Introduction

Introduction and statement of main results

For $\epsilon \geq 0$, an $\mathbb{R}^{2+\epsilon}$-valued process with independent, stationary increments having the following characteristic function:

$$
\mathbb{E} e^{i \xi \cdot X_{1+\epsilon}^{2+\epsilon}, 1+\epsilon}=e^{-(1+\epsilon)}\left\{\left(\left(1+\epsilon \mathbb{R}^{2+\epsilon},\right.\right.\right.
$$

is called relativistic $(2+\epsilon)$-stable process with mass $(1+$ ϵ). We assume that sample paths of $X_{1+\epsilon}^{2+\epsilon, 1+\epsilon}$ are right continuous and have left-hand limits a.s. If we put $\epsilon=-1$ we obtain the symmetric rotation invariant $(2+\epsilon)$-stable process with the characteristic function $e^{-(1+\epsilon)|\xi|^{2+\epsilon}}, \xi \in$ $\mathbb{R}^{2+\epsilon}$. We refer to this process as isotropic $(2+\epsilon)$-stable Lévy process. For the rest of the paper we keep $\epsilon \geq 0$ fixed and drop $2+\epsilon$, in the notation, when it does not lead to confusion. Hence from now on the relativistic $(2+\epsilon)$ stable process is denoted by $X_{1+\epsilon}$ and its counterpart isotropic $(2+\epsilon)$-stable Lévy process by $\tilde{X}_{1+\epsilon}$. We keep this notational convention consistently throughout the paper, e.g., if $p_{1+\epsilon}(\epsilon)$ is the transition density of $X_{1+\epsilon}$, then $\tilde{p}_{1+\epsilon}(\epsilon)$ is the transition density of $\tilde{X}_{1+\epsilon}$.

In Ryznar [3] Green function estimates of the Schödinger operator with the free Hamiltonian of the form

$$
\left(-\Delta+(1+\epsilon)^{\frac{2}{1+\epsilon}}\right)^{\frac{1+\epsilon}{2}}-(1+\epsilon)
$$

were investigated, where $\epsilon \geq 0$ and Δ is the Laplace operator acting on $L^{2}\left(\mathbb{R}^{2+\epsilon}\right)$. Using the estimates in Lemma 2.6 below and proof in Bañuelos and Kulczycki (2008) we provide an extension of the asymptotics in [2]to the relativistic $(1+\epsilon)$-stable processes for any $0 \leq \epsilon<1$. Brownian motion has a characteristic function

$$
\mathbb{E}^{0} e^{i \xi \cdot B_{1+\epsilon}}=e^{-(1+\epsilon)|\xi|^{2}}, \quad \xi \in \mathbb{R}^{2+\epsilon} .
$$

Let $\epsilon \geq 0$. Ryznar showed that $X_{1+\epsilon}$ can be represented as a time-changed Brownian motion. Let $T_{\frac{1+\epsilon}{2}}(1+\epsilon), \epsilon \geq 0$, denote the strictly $\left(\frac{1+\epsilon}{2}\right)$-stable subordinator with the following Laplace transform

$$
\begin{align*}
& \mathbb{E}^{0} e^{-\lambda T}\left(\frac{1+\epsilon}{2}\right)(1+\epsilon) \\
& >0 \tag{1.1}
\end{align*}
$$

Let $\theta_{\frac{1+\epsilon}{2}}(1+\epsilon, u), u>0$, denote the density function of $T_{\left(\frac{1+\epsilon}{2}\right)}(1+\epsilon)$. Then the process $B_{\frac{1+\epsilon}{2}}(1+\epsilon)$ is the standard symmetric $(1+\epsilon)$-stable process.
Ryznar [[3], Lemma 1] showed that we can obtain $X_{1+\epsilon}=$ $B_{T_{\left(\frac{1+\epsilon}{2}\right)}^{(1+\epsilon, 1+\epsilon)}}$, where a subordinator $T_{\frac{1+\epsilon}{2}}(1+\epsilon, 1+\epsilon)$ is a positive infinitely divisible process with stationary increments with probability density function

$$
\begin{aligned}
& \theta_{\frac{1+\epsilon}{2}}(1+\epsilon, u, 1+\epsilon) \\
&=e^{-(1+\epsilon)^{\frac{2}{1+\epsilon}} u+(1+\epsilon)^{2}} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1 \\
&+\epsilon, u), \quad u>0 .
\end{aligned}
$$

Transition density of $T_{\left(\frac{1+\epsilon}{2}\right)}(1+\epsilon, 1+\epsilon)$ is given by $\theta_{\left(\frac{1+\epsilon}{2}\right)}(1+\epsilon, u-v, 1+\epsilon)$. Hence the transition density of $X_{1+\epsilon}$ is $p(1+\epsilon, x, x-\epsilon)=p(1+\epsilon, \epsilon)$ given by

$$
\begin{aligned}
& =e^{(1+\epsilon)^{2}} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{\frac{2+\epsilon}{2}}} e^{-\frac{|x|^{2}}{4 u}} e^{-(1+\epsilon)^{\frac{2}{1+\epsilon}} u} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1 \\
& +\epsilon, u) d u .
\end{aligned}
$$

Then

$$
\begin{aligned}
& p(1+\epsilon, x, x)=p(1+\epsilon, 0) \\
& =e^{(1+\epsilon)^{2}} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{\frac{2+\epsilon}{2}}} e^{-(1+\epsilon)^{\frac{2}{1+\epsilon}}} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1+\epsilon, u) d u
\end{aligned}
$$

The function $p(1+\epsilon, x)$ is a radially symmetric decreasing and that

[^0]\[

$$
\begin{align*}
& p(1+\epsilon, x) \leq p(1+\epsilon, 0) \\
& \leq e^{(1+\epsilon)^{2}} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{\frac{2+\epsilon}{2}}} \theta_{\frac{1+\epsilon}{2}}(1+\epsilon, u) d u \\
& =e^{(1+\epsilon)^{2}}(1 \\
& +\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}} \frac{\omega_{2+\epsilon} \Gamma\left(\frac{2+\epsilon}{1+\epsilon}\right)}{(2 \pi)^{2+\epsilon}(1+\epsilon)} \tag{1.3}
\end{align*}
$$
\]

where $\omega_{2+\epsilon}=\frac{2 \pi^{\frac{2+\epsilon}{2}}}{\Gamma\left(\frac{2+\epsilon}{2}\right)}$ is the surface area of the unit sphere in $\mathbb{R}^{2+\epsilon}$. For an open set D in $\mathbb{R}^{2+\epsilon}$ we define the first exit time from D by $\tau_{D}=\inf \left\{\epsilon \geq-1: X_{1+\epsilon} \notin D\right\}$.
We set

$$
\begin{array}{ll}
& r_{D}(1+\epsilon, x, x-\epsilon) \\
=\mathbb{E}^{x}\left[p\left(1+\epsilon-\tau_{D}, X_{\tau_{D}}, x-\epsilon\right) ; \tau_{D}\right. \\
<1+\epsilon], & (1.4) \tag{1.4}
\end{array}
$$

and

$$
\begin{aligned}
& \quad p_{D}(1+\epsilon, x, x-\epsilon) \\
& =p(1+\epsilon, x, x-\epsilon)-r_{D}(1+\epsilon, x, x \\
& -\epsilon)
\end{aligned}
$$

for any $x, x-\epsilon \in \mathbb{R}^{2+\epsilon}, \epsilon \geq 0$. For a nonnegative Borel function f and $\epsilon \geq 0$, let

$$
\begin{aligned}
P_{1+\epsilon}^{D} f(x)=\mathbb{E}^{x} & {\left[f\left(X_{1+\epsilon}\right): 1+\epsilon<\tau_{D}\right] } \\
& =\int_{D} p_{D}(1+\epsilon, x, x-\epsilon) f(x-\epsilon) d(x \\
& -\epsilon)
\end{aligned}
$$

be the semigroup of the killed process acting on $L^{2}(D)$, see, Ryznar [[3], Theorem 1].

Let D be a bounded domain (or of finite volume). Then the operator $P_{1+\epsilon}^{D}$ maps $L^{2}(D)$ into $L^{\infty}(D)$ for every $\epsilon \geq 0$. This follows from (1.3), (1.4), and the general theory of heat semigroups as described in [4]. It follows that there exists an orthonormal basis of eigenfunctions $\left\{\varphi_{n}: n=1,2,3, \ldots\right\}$ for $L^{2}(D)$ and corresponding eigenvalues $\left\{\lambda_{n}: n=1,2,3, \ldots\right\}$ of the generator of the semigroup $P_{1+\epsilon}^{D}$ satisfying $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots$, with $\lambda_{n} \rightarrow$ ∞ as $n \rightarrow \infty$. By definition, the pair $\left\{\varphi_{n}, \lambda_{n}\right\}$ satisfies $P_{1+\epsilon}^{D} \varphi_{n}(x)=e^{-\lambda_{n}(1+\epsilon)} \varphi_{n}(x), \quad x \in D, \quad \epsilon \geq 0$. Under such assumptions we have

$$
=\sum_{n=1}^{\infty} e^{-\lambda_{n}(1+\epsilon)} \varphi_{n}(x) \varphi_{n}(x
$$

$$
p_{D}(1+\epsilon, x, x-\epsilon)
$$

$$
\begin{equation*}
-\epsilon) \tag{1.6}
\end{equation*}
$$

In this paper we are interested in the behavior of the trace of this semigroup
$=\int_{D} p_{D}(1$

$$
Z_{D}(1+\epsilon)
$$

$+\epsilon, x, x) d x$.
Because of (1.6) we can write (1.7) as

$$
\begin{align*}
& Z_{D}(1+\epsilon)=\sum_{n=1}^{\infty} e^{-\lambda_{n}(1+\epsilon)} \int_{D} \varphi_{n}^{2}(x) d x \\
& =\sum_{n=1}^{\infty} e^{-\lambda_{n}(1+\epsilon)} \tag{1.8}
\end{align*}
$$

We denote $(2+\epsilon)$-dimensional volume of D by $|D|$. The first result is Weyl's asymptotic for the eigenvalues of the relativistic Laplacian

$$
\begin{align*}
& \lim _{\epsilon \rightarrow-1}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}} e^{-(1+\epsilon)^{2}} Z_{D}(1+\epsilon) \tag{1.9}\\
& =C_{1}|D|,
\end{align*}
$$

where $C_{1}=\frac{\omega_{2+\epsilon} \Gamma\left(\frac{2+\epsilon}{1+\epsilon}\right)}{(2 \pi)^{2+\epsilon}(1+\epsilon)}$.
Let $N(\lambda)$ be the number of eigenvalues $\left\{\lambda_{j}\right\}$ which do not exceed λ. It follows from (1.9) and the classical Tauberian theorem (see for example [[5], p. 445, Theorem 2]) where $L(1+\epsilon)=C_{1}|D| e$ is our slowly varying function at infinity that

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \lambda^{-\frac{2+\epsilon}{1+\epsilon}} e^{-\frac{1+\epsilon}{\lambda}} N(\lambda) \tag{1.10}
\end{equation*}
$$

$=\frac{C_{1}|D|}{\Gamma\left(\frac{3+2 \epsilon}{1+\epsilon}\right)}$.
This is the analogue for the relativistic stable process of the celebrated Weyl's asymptotic formula for the eigenvalues of the Laplacian.

Remark 1.2. The first author of [1] presented (1.10) at a conference in Vienna at the Schrödinger Institute in 2009 (see [6]) and at the 34th conference in stochastic processes and their applications in Osaka in 2010 (see [7]). Thus this result has been known to the authors [1], and perhaps to others, for a number of years.

The author in [1] obtains the second term in the asymptotics of $Z_{D}(1+\epsilon)$ under some additional assumptions on the smoothness of D. The result is inspired by the result for trace estimates for stable processes by Bañuelos and Kulczycki [2]. To state our main result we need the following property of the domain D (see [1]).

Definition 1.3. The boundary, ∂D, of an open set D in $\mathbb{R}^{2+\epsilon}$ is said to be $(1+2 \epsilon)$-smooth if for each point $x_{0} \in \partial D$ there are two open balls B_{1} and B_{2} with radii $(1+2 \epsilon)$ such that $B_{1} \subset D, B_{2} \subset \mathbb{R}^{2+\epsilon} \backslash(D \cup \partial D)$ and $\partial B_{1} \cap \partial B_{2}=$ x_{0}.

Theorem 1.4. Let $D \subset \mathbb{R}^{2+\epsilon}, \epsilon \geq 0$, be an open bounded set with $(1+2 \epsilon)$-smooth boundary. Let $|D|$ denote the volume $((2+\epsilon)$-dimensional Lebesgue measure) of D and $|\partial D|$ denote its surface area $((1+\epsilon)$-dimensional Lebesgue measure) of its boundary. Suppose $0 \leq \epsilon<1$. Then

$$
\begin{gather*}
\left|Z_{D}(1+\epsilon)-\frac{C_{1}(1+\epsilon) e^{(1+\epsilon)^{2}}|D|}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}+C_{2}(1+\epsilon)|\partial D|}\right| \\
\leq \frac{C_{3} e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \\
\epsilon \geq 0 \tag{1.11}
\end{gather*}
$$

Where

$$
\begin{aligned}
& \begin{aligned}
& C_{1}(1+\epsilon)= \frac{1}{(4 \pi)^{\frac{2+\epsilon}{2}}} \int_{0}^{\infty}(x \\
&-2 \epsilon)^{-\frac{2+\epsilon}{2}} e^{-\left((1+\epsilon)^{2}\right)^{\frac{2}{1+\epsilon}}(x-2 \epsilon)} \theta_{\frac{1+\epsilon}{2}}(1, x \\
&-2 \epsilon) d(x-2 \epsilon) \rightarrow C_{1} \\
&=\frac{\omega_{2+\epsilon} \Gamma\left(\frac{2+\epsilon}{1+\epsilon}\right)}{(2 \pi)^{2+\epsilon}(1+\epsilon)}, \quad \text { as } \epsilon \rightarrow-1, \\
& C_{2}(1+\epsilon)=\int_{0}^{\infty} r_{H}\left(1+\epsilon,\left(x_{1}, 0, \ldots, 0\right),\left(x_{1}, 0, \ldots, 0\right)\right) d x_{1} \\
& \leq \frac{C_{4} e^{2(1+\epsilon)^{2}}(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}, \quad \epsilon \geq 0,
\end{aligned} \\
& C_{4}=\int_{0}^{\infty} \tilde{r}_{H}\left(1,\left(x_{1}, 0, \ldots, 0\right),\left(x_{1}, 0, \ldots, 0\right)\right) d x_{1}, \\
& C_{3}=C_{3}(2+\epsilon, 1+\epsilon), H=\left\{\left(x_{1}, \ldots, x_{2+\epsilon}\right) \in \mathbb{R}^{2+\epsilon}: x_{1}>\right. \\
& 0\} \text { and } r_{H} \text { is given by }(1.4) .
\end{aligned}
$$

Remark 1.5. When $0 \leq \epsilon \leq 1, C_{2}(1+\epsilon)=C_{4}(1+$ $\epsilon)^{\frac{1}{1+\epsilon}} /(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}$. Then the result in Theorem 1.4 becomes, for bounded domains with $(1+2 \epsilon)$-smooth boundary,

$$
\begin{gather*}
\left|Z_{D}(1+\epsilon)-\frac{C_{1}|D|}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}+\frac{C_{4}|\partial D|(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}\right| \\
\quad \leq \frac{C_{7}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}, \tag{1.12}
\end{gather*}
$$

where C_{1}, C_{4} are as in Theorem 1.4. This was established by Bañuelos and Kulczycki [2] recently.
The asymptotic for the trace of the heat kernel when $\epsilon=1$ (the case of the Laplacian with Dirichlet boundary condition in a domain of $\mathbb{R}^{2+\epsilon}$), has been extensively studied by many authors. For Brownian motion van den Berg [8], proved that under the $(1+2 \epsilon)$-smoothness condition

$$
\begin{array}{r}
\left|Z_{D}(1+\epsilon)-(4 \pi(1+\epsilon))^{-\frac{2+\epsilon}{2}}\left(|D|-\frac{\sqrt{\pi(1+\epsilon)}}{2}|\partial D|\right)\right| \\
\leq \frac{C_{2+\epsilon}|D|(1+\epsilon)^{-\frac{\epsilon}{2}}}{(1+2 \epsilon)^{2}}, \quad \epsilon \geq 0 . \text { (1.13) }
\end{array}
$$

For domains with C^{1} boundaries the result

$$
\begin{gathered}
Z_{D}(1+\epsilon)=(4 \pi(1+\epsilon))^{-\frac{2+\epsilon}{2}}\left(|D|-\frac{\sqrt{\pi(1+\epsilon)}}{2}|\partial D|\right. \\
\left.+o\left((1+\epsilon)^{\frac{1}{2}}\right)\right) \\
\text { as } \epsilon \rightarrow-1,(1.14)
\end{gathered}
$$

was proved by Brossard and Carmona [9], for Brownian motion.

2 Preliminaries

Let the ball in $\mathbb{R}^{2+\epsilon}$ with center at x and radius $r,\{x-$ $\epsilon:|\epsilon|<r\}$, be denoted by $B(x, r)$. We will use $\delta_{D}(x)$ to denote the Euclidean distance between x and the boundary, ∂D, of D. That is, $\delta_{D}(x)=\operatorname{dist}(x, \partial D)$. Define

$$
\psi(\theta)=\int_{0}^{\infty} e^{-v} v^{1+\epsilon}(\theta+v / 2)^{1+\epsilon} d v, \quad \theta \geq 0
$$

We put $\mathcal{R}(1+\epsilon, 2+\epsilon)=\mathcal{A}(-(1+\epsilon), 2+\epsilon) / \psi(0)$, where $\quad \mathcal{A}(v, 2+\epsilon)=(\Gamma((2+\epsilon-v) / 2)) /$ $\left(\pi^{\frac{2+\epsilon}{2}} 2^{v}|\Gamma(v / 2)|\right)$. Let $v(x), \tilde{v}(x)$ be the densities of the Lévy measures of the relativistic $(1+\epsilon)$-stable process and the standard $(1+\epsilon)$-stable process, respectively. These densities are given by

$$
\begin{align*}
& v(x)=\frac{\mathcal{R}(1+\epsilon, 2+\epsilon)}{|x|^{3+2 \epsilon}} e^{-(1+\epsilon)^{\frac{1}{1+\epsilon}|x|} \psi((1} \\
& \quad+\epsilon)^{\left.\frac{1}{1+\epsilon}|x|\right),} \tag{2.1}
\end{align*}
$$

And

$$
\begin{equation*}
=\frac{\mathcal{A}(-(1+\epsilon), 2+\epsilon)}{|x|^{3+2 \epsilon}} \tag{v}
\end{equation*}
$$

We need the following estimate of the transition probabilities of the process $X_{1+\epsilon}$ which is given in [[10], Lemma 2.2]: For any $x, x-\epsilon \in \mathbb{R}^{2+\epsilon}$ and $\epsilon \geq 0$ there exist constants $\epsilon \geq 0$,

$$
\left.\begin{array}{ll}
& p(1+\epsilon, x, x-\epsilon) \leq(1 \\
+\epsilon) e^{(1+\epsilon)^{2}} \min & \left\{\frac{1+\epsilon}{|\epsilon|^{3+2 \epsilon}} e^{-(1+2 \epsilon)|\epsilon|},(1\right.
\end{array}\right\}
$$

We will also use the fact [[11], Lemma 6] that if $D \subset \mathbb{R}^{2+\epsilon}$ is an open bounded set satisfying a uniform outer cone condition, then $P^{x}\left(X\left(\tau_{D}\right) \in \partial D\right)=0$ for all $x \in D$. For the open bounded set D we will denoted by $G_{D}(x, x-\epsilon)$ the Green function for the set D equal to,

$$
\begin{aligned}
G_{D}(x, x-\epsilon)= & \int_{0}^{\infty} p_{D}(1+\epsilon, x, x-\epsilon) d(1 \\
& +\epsilon), \quad x, x-\epsilon \in \mathbb{R}^{2+\epsilon}
\end{aligned}
$$

For any such D the expectation of the exit time of the
processes $X_{1+\epsilon}$ from D is given by the integral of the Green function over the domain. That is

$$
E^{x}\left(\tau_{D}\right)=\int_{D} G_{D}(x, x-\epsilon) d(x-\epsilon)
$$

Lemma 2.1. Let $D \subset \mathbb{R}^{2+\epsilon}$ be an open set. For any $x, x-$ $\epsilon \in D$ we have

$$
\begin{aligned}
r_{D}(1+\epsilon, x, x-\epsilon) & \\
& \leq(1 \\
& +\epsilon) e^{(1+\epsilon)^{2}}\left(\frac{1+\epsilon}{\delta_{D}^{3+2 \epsilon}(x)} e^{-(1+2 \epsilon) \delta_{D}(x)}\right. \\
& \left.\wedge(1+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}\right)
\end{aligned}
$$

Proof. Using (1.4) and (2.3) we have

$$
\begin{aligned}
& r_{D}(1+\epsilon, x, x-\epsilon) \\
& \\
& =E^{x-\epsilon}\left(p\left(1+\epsilon-\tau_{D}, X\left(\tau_{D}\right), x\right) ; \tau_{D}\right. \\
& <1+\epsilon) \\
& \leq(1 \\
& +\epsilon) e^{(1+\epsilon)^{2}} E^{x-\epsilon}\left(\frac{1+\epsilon}{\left|x-X\left(\tau_{D}\right)\right|^{3+2 \epsilon}} e^{-(1+2 \epsilon)\left|x-X\left(\tau_{D}\right)\right|}\right. \\
& \wedge(1+\epsilon)^{\left.-\frac{2+\epsilon}{1+\epsilon}\right)} \begin{array}{c}
\\
\leq(1+\epsilon) e^{(1+\epsilon)^{2}}\left(\frac{1+\epsilon}{\delta_{D}^{3+2 \epsilon}(x)} e^{-(1+2 \epsilon) \delta_{D}(x)}\right. \\
\left.\wedge(1+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}\right)
\end{array}
\end{aligned}
$$

We need the following result for the proof of Proposition 1.1.

Lemma 2.2.

$$
=C_{1}, \quad \lim _{\epsilon \rightarrow-1} p(1+\epsilon, 0) e^{-(1+\epsilon)^{2}}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}
$$

Where

$$
\begin{gathered}
C_{1}=(4 \pi)^{\frac{2+\epsilon}{2}} \int_{0}^{\infty} u^{-\frac{2+\epsilon}{2}} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1, u) d u \\
=\frac{\omega_{2+\epsilon} \Gamma\left(\frac{2+\epsilon}{1+\epsilon}\right)}{(2 \pi)^{2+\epsilon}(1+\epsilon)}
\end{gathered}
$$

Proof. By (1.2) we have

$$
\begin{aligned}
& p(1+\epsilon, x, x)=p(1+\epsilon, 0) \\
& =e^{(1+\epsilon)^{2}} \int_{0}^{\infty} \frac{1}{(4 \pi u)^{\frac{2+\epsilon}{2}}} e^{-(1+\epsilon)^{\frac{2}{1+\epsilon}} u} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1+\epsilon, u) d u .
\end{aligned}
$$

Now using the scaling of stable subordinator $\theta_{\left(\frac{1+\epsilon}{2}\right)}(1+$
$\epsilon, u)=(1+\epsilon)^{-\frac{2}{1+\epsilon}} \theta_{\left(\frac{1+\epsilon}{2}\right)}\left(1, u(1+\epsilon)^{-\frac{2}{1+\epsilon}}\right)$ and a change of variables we get

$$
\begin{gathered}
p(1+\epsilon, 0)=\frac{e^{(1+\epsilon)^{2}}}{(4 \pi)^{\frac{2+\epsilon}{2}}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \int_{0}^{\infty}(x \\
-2 \epsilon)^{-\frac{2+\epsilon}{2}} e^{-(1+\epsilon)^{\frac{2}{1+\epsilon}}}(1 \\
+\epsilon)^{\frac{2(x-2 \epsilon)}{1+\epsilon}} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1, x-2 \epsilon) d(x-2 \epsilon) \\
=\frac{C_{1}(1+\epsilon) e^{(1+\epsilon)^{2}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}
\end{gathered}
$$

then by dominated convergence theorem, we obtain

$$
\begin{aligned}
\lim _{\epsilon \rightarrow-1} p(1+\epsilon, 0) & e^{-(1+\epsilon)^{2}}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}} \\
& =\frac{1}{(4 \pi)^{\frac{2+\epsilon}{2}}} \int_{0}^{\infty}(x-2 \epsilon)^{-\frac{2+\epsilon}{2}} \theta_{\left(\frac{1+\epsilon}{2}\right)}(1, x \\
& -2 \epsilon) d(x-2 \epsilon),
\end{aligned}
$$

and this last integral is equal to the density of $(1+\epsilon)$ stable process at time 1 and $x=0$ which was calculated in [2] to be

$$
\frac{\omega_{2+\epsilon} \Gamma\left(\frac{2+\epsilon}{1+\epsilon}\right)}{(2 \pi)^{2+\epsilon}(1+\epsilon)} .
$$

We next give the proof of Proposition 1.1.
Proof of Proposition 1.1. By (1.4) we see that

$$
\begin{align*}
& \quad \frac{p_{D}(1+\epsilon, x, x)}{C_{1} e^{(1+\epsilon)^{2}}(1+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}} \\
& =\frac{p(1+\epsilon, 0)}{C_{1} e^{(1+\epsilon)^{2}}(1+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}} \\
& -\frac{r_{D}(1+\epsilon, x, x)}{C_{1} e^{(1+\epsilon)^{2}}(1+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}} . \tag{2.5}
\end{align*}
$$

Since the first term tend to 1 as $\epsilon \rightarrow-1$ by (2.4), in order to prove (1.9), we show that

$$
\begin{align*}
& \frac{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}{C_{1} e^{(1+\epsilon)^{2}}} \int_{D} r_{D}(1+\epsilon, x, x) d x \rightarrow 0 \\
& \rightarrow-1 \tag{2.6}
\end{align*}
$$

$a s \epsilon$

For $\epsilon \geq-1$, we define $D_{1+\epsilon}=\left\{x \in D: \delta_{D}(x) \geq 1+\epsilon\right\}$. Then for $0<\epsilon<1$, consider the subdomain $D_{(1-\epsilon)^{1 / 2(1+\epsilon)}}^{C}=\left\{x \in D: \delta_{D}(x) \geq(1-\epsilon)^{\frac{1}{2(1+\epsilon)}}\right\}$ and its complement $\quad D_{(1-\epsilon)^{1 / 2(1+\epsilon)}}^{C}=\left\{x \in D: \delta_{D}(x)<\right.$ $\left.(1-\epsilon)^{\frac{1}{2(1+\epsilon)}}\right\}$. Recalling that $|D|<\infty$, by Lebesgue dominated convergence theorem we get $\left|D_{(1-\epsilon)^{1 / 2(1+\epsilon)}}^{C}\right| \rightarrow$ 0 , as $\epsilon \rightarrow 1$. Since $p_{D}(1-\epsilon, x, x) \leq p(1-\epsilon, x, x)$, by (1.3) we see that

$$
\frac{r_{D}(1-\epsilon, x, x)}{C_{1} e^{1-\epsilon^{2}}(1-\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}} \leq 1
$$

for all $x \in D$. It follows that

$$
\begin{align*}
& \frac{(1-\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}{C_{1} e^{1-\epsilon^{2}}} \int_{D^{C}} r_{D}(1-\epsilon, x, x) d x \\
& \rightarrow 0, \quad \text { as } \epsilon \rightarrow 1 . \tag{2.7}
\end{align*}
$$

On the other hand, by Lemma 2.2 in [10] we obtain

$$
\begin{gather*}
\frac{r_{D}(1-\epsilon, x, x)}{C_{1} e^{1-\epsilon^{2}}(1-\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}}} \\
=\frac{\mathbb{E}^{x}\left[p\left(1-\epsilon-\tau_{D}, X_{\tau_{D}}, x\right) ; 1-\epsilon \geq \tau_{D}\right]}{C_{1} e^{1-\epsilon^{2}}(1-\epsilon)^{-(2+\epsilon)(1+\epsilon)}} \\
\leq c \mathbb{E}^{x-\epsilon} \min \left\{\frac{(1-\epsilon)^{\frac{3+2 \epsilon}{1+\epsilon}}}{\left|x-X\left(\tau_{D}\right)\right|^{3+2 \epsilon}} e^{-(1+2 \epsilon)\left|x-X\left(\tau_{D}\right)\right|}, 1\right\} \\
\leq c \min \left\{\frac{(1-\epsilon)^{\frac{3+2 \epsilon}{1+\epsilon}}}{\delta_{D}(x)^{3+2 \epsilon}} e^{-(1+2 \epsilon) \delta_{D}(x)}, 1\right\} . \tag{2.8}
\end{gather*}
$$

For $x \in D_{(1-\epsilon)^{\frac{1}{2(1+\epsilon)}}}$ and $0<\epsilon<1$, the right-hand side of (2.8) is bounded above by $c(1-\epsilon)^{\frac{3+2 \epsilon}{2(1+\epsilon)}}$ and hence

$$
\begin{align*}
& \frac{(1-\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}{C_{1} e^{1-\epsilon^{2}}} \int_{D_{1-\epsilon}} \frac{1}{2(1+\epsilon)} \\
\leq & r_{D}(1-\epsilon, x, x) d x \tag{2.9}\\
& (1-\epsilon)^{\frac{3+2 \epsilon}{2(1+\epsilon)}}|D|
\end{align*}
$$

and this last quantity goes to 0 as $\epsilon \rightarrow 1$.
For an open set $D \subset \mathbb{R}^{2+\epsilon}$ and $x \in \mathbb{R}^{2+\epsilon}$, the distribution $P^{x}\left(\tau_{D}<\infty, X\left(\tau_{D}\right) \in \cdot\right)$ will be called the relativistic ($1+$ ϵ)-harmonic measure for D. The following IkedaWatanabe formula recovers the relativistic $(1+\epsilon)$ harmonic measure for the set D from the Green function.

Proposition 2.3. (See [10].) Assume that D is an open, nonempty, bounded subset of $\mathbb{R}^{2+\epsilon}$, and A is a Borel set such that $\operatorname{dist}(D, A)>0$. Then

$$
\begin{gathered}
P^{x}\left(X\left(\tau_{D}\right) \in A, \tau_{D}<\infty=\right) \int_{D} G_{D}(x, x-\epsilon) \int_{A} v(\epsilon) d(x \\
-2 \epsilon) d(x-\epsilon), x \in D \cdot(2.10)
\end{gathered}
$$

Here we need the following generalization already stated and used in [2].

Proposition 2.4. (See [12], [[10], Proposition 2.5].) Assume that D is an open, nonempty, bounded subset of $\mathbb{R}^{2+\epsilon}$, and A is a Borel set such that $A \subset D^{c} \backslash \partial D$ and $0 \leq$ $\epsilon<\infty, x \in D$. Then we have

$$
\begin{aligned}
P^{x}\left(X\left(\tau_{D}\right) \in A, 1\right. & \left.+\epsilon<\tau_{D}<1+2 \epsilon\right) \\
& =\int_{D} \int_{1+\epsilon}^{1+2 \epsilon} p_{D}(s, x, x \\
& -\epsilon) d s \int_{A} v(\epsilon) d(x-2 \epsilon) d(x-\epsilon)
\end{aligned}
$$

The following proposition holds for a large class of Lévy processes

Proposition 2.5. (See [[2], Proposition 2.3].) Let D and F be open sets in $\mathbb{R}^{2+\epsilon}$ such that $\subset F$. Then for any $x, x-$ $\epsilon \in \mathbb{R}^{2+\epsilon}$ we have

$$
\begin{aligned}
p_{F}(1+\epsilon, x, x-\epsilon) & -p_{D}(1+\epsilon, x, x-\epsilon) \\
& =E^{x}\left(\tau_{D}<1+\epsilon, X\left(\tau_{D}\right)\right. \\
& \left.\in F / D ; p_{F}\left(1+\epsilon-\tau_{D}, X\left(\tau_{D}\right), x-\epsilon\right)\right)
\end{aligned}
$$

Lemma 2.6. (See [[3], Lemma 5].) Let $D \subset \mathbb{R}^{2+\epsilon}$ be an open set. For any $x, x-\epsilon \in D$ and $\epsilon \geq 0$ the following estimates hold

$$
\begin{align*}
& p_{D}(1+\epsilon, x, x-\epsilon) \leq e^{(1+\epsilon)^{2}} \tilde{p}_{D}(1+\epsilon, x, x-\epsilon) \\
& r_{D}(1+\epsilon, x, x-\epsilon) \\
& \leq e^{2(1+\epsilon)^{2}} \tilde{r}_{D}(1+\epsilon, x, x \\
& -\epsilon) . \tag{2.11}
\end{align*}
$$

We need the following lemma given by van den Berg in [8].

Lemma 2.7. (See [[8], Lemma 5].) Let D be an open bounded set in $\mathbb{R}^{2+\epsilon}$ with $(1+2 \epsilon)$-smooth boundary ∂D and for $\epsilon \geq 0$ denote the area of boundary of $\partial D_{1+\epsilon}$ by $\left|\partial D_{1+\epsilon}\right|$.Then

$$
\begin{gathered}
\left(\frac{\epsilon}{1+2 \epsilon}\right)^{1+\epsilon}|\partial D| \leq\left|\partial D_{1+\epsilon}\right|\left(\frac{1+2 \epsilon}{\epsilon}\right)^{1+\epsilon}|\partial D| \\
\geq 0 . \quad(2.12)
\end{gathered}
$$

Corollary 2.8. (See [[2], Corollary 2.14].) Let D be an open bounded set in $\mathbb{R}^{2+\epsilon}$ with $(1+2 \epsilon)$-smooth boundary. For any $\epsilon \geq 0$ we have

$$
\begin{align*}
& 2^{-(1+\epsilon)}|\partial D| \leq\left|\partial D_{1+\epsilon}\right| \leq 2^{1+\epsilon}|\partial D| \tag{i}\\
& |\partial D| \leq \frac{2^{2+\epsilon}|D|}{1+2 \epsilon} \tag{ii}\\
& \left|\partial D_{1+\epsilon}\right|-|\partial D| \leq \frac{2^{2+\epsilon}(2+\epsilon)(1+\epsilon)|\partial D|}{1+2 \epsilon} \leq \tag{iii}\\
& \frac{2^{2(2+\epsilon)}(2+\epsilon)(1+\epsilon)|D|}{(1+2 \epsilon)^{2}}
\end{align*}
$$

3 Proof of the main result

Proof of Theorem 1.4. (See [1])For the case $(1+\epsilon)^{\frac{1}{1+\epsilon}}>$ $\frac{1+2 \epsilon}{2}$ the theorem holds trivially. Indeed, by Eq. (1.3)

$$
\begin{gathered}
Z_{D}(1+\epsilon) \leq \int_{D} p(1+\epsilon, x, x) d x \leq \frac{(1+\epsilon) e^{(1+\epsilon)^{2}}|D|}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \\
\leq \frac{(1+\epsilon) e^{(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}
\end{gathered}
$$

By Corollary 2.8 and Lemma 2.6 we also have

$$
\begin{aligned}
& C_{2}(1+\epsilon)|\partial D| \leq \frac{C_{4} e^{2(1+\epsilon)^{2}}|\partial D|(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \\
& \leq \frac{2^{2+\epsilon} C_{4} e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+2 \epsilon)(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \\
& \leq \frac{2^{3+\epsilon} C_{4} e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}, \\
& \frac{C_{1}(1+\epsilon) e^{(1+\epsilon)^{2}}|D|}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \leq \frac{C_{1} e^{(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}
\end{aligned}
$$

Therefore for $(1+\epsilon)^{\frac{1}{1+\epsilon}}>\frac{1+2 \epsilon}{2}$ (1.11) holds. Here and in sequel we consider the case $(1+\epsilon)^{\frac{1}{1+\epsilon}} \leq \frac{1+2 \epsilon}{2}$. From (1.5) and the fact that $p(1+\epsilon, x, x)=\frac{c_{1}(1+\epsilon) e^{(1+\epsilon)^{2}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}$, we have that

$$
\begin{align*}
Z_{D}(1+\epsilon)- & \frac{C_{1}(1+\epsilon) e^{(1+\epsilon)^{2}}|D|}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \\
& =\int_{D} p_{D}(1+\epsilon, x, x) d x \\
& -\int_{D} p(1+\epsilon, x, x) d x \\
=- & \int_{D} r_{D}(1+\epsilon, x, x) d x \tag{3.1}
\end{align*}
$$

where $C_{1}(1+\epsilon)$ is as stated in the theorem. Therefore we must estimate (3.1). We break our domain into two pieces, $D_{\frac{1+2 \epsilon}{2}}$ and its complement $D_{\frac{1+2 \epsilon}{2}}^{C}$. We will first consider the contribution of $\frac{D_{\frac{1+2 \epsilon}{}}}{}$.

Claim 1. For $(1+\epsilon)^{\frac{1}{1+\epsilon}} \leq \frac{1+2 \epsilon}{2}$ we have

$$
\begin{align*}
& \int_{\frac{D_{1+2 \epsilon}}{2}} r_{D}(1+\epsilon, x, x) d x \\
& \leq \frac{(1+\epsilon) e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \tag{3.2}
\end{align*}
$$

Proof. By Lemma 2.6 we have

$$
\begin{align*}
& \int_{D_{\frac{D_{1+2 \epsilon}}{2}}} r_{D}(1+\epsilon, x, x) d x \\
& \leq e^{2(1+\epsilon)^{2}} \int_{D_{\frac{1+2 \epsilon}{}}^{2}} \tilde{r}_{D}(1 \\
& +\epsilon, x, x) d x \tag{3.3}
\end{align*}
$$

and by scaling of the stable density the right-hand side of (3.3) equals
$\frac{e^{2(1+\epsilon)^{2}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \int_{D_{\frac{1+2 \epsilon}{2}}} \tilde{r}_{D /(1+\epsilon)^{\frac{1}{1+\epsilon}}}\left(1, \frac{x}{(1+\epsilon)^{\frac{1}{1+\epsilon}}}, \frac{x}{(1+\epsilon)^{\frac{1}{1+\epsilon}}}\right) d x$.
For $x \in D_{\frac{1+2 \epsilon}{2}}$ we have $\delta_{D /(1+\epsilon)^{\frac{1}{1+\epsilon}}}\left(x /(1+\epsilon)^{\frac{1}{1+\epsilon}}\right) \geq$ $\frac{1+2 \epsilon}{2(1+\epsilon)^{\frac{1}{1+\epsilon}}} \geq 1$. By [[2], Lemma 2.1], we get

$$
\begin{aligned}
\tilde{r}_{D /(1+\epsilon)^{\frac{1}{1+\epsilon}}}(1, & \left.\frac{x}{(1+\epsilon)^{\frac{1}{1+\epsilon}}}, \frac{x}{(1+\epsilon)^{\frac{1}{1+\epsilon}}}\right) \\
& \leq \frac{c}{\delta^{3+2 \epsilon}}\left(x /(1+\epsilon)^{\frac{1}{1+\epsilon}}\right) \\
& \leq \frac{c}{\delta^{2}(1+\epsilon)^{\frac{1}{1+\epsilon}}} \\
& \leq \frac{c(1+\epsilon)^{\frac{1}{1+\epsilon}}\left(x /(1+\epsilon)^{\frac{1}{1+\epsilon}}\right)}{(1+2 \epsilon)^{2}} .
\end{aligned}
$$

Using the above inequality, we get

$$
\begin{aligned}
\int_{\frac{D_{1+2 \epsilon}^{2}}{2}} r_{D}(1+\epsilon, x & x) d x \\
& \leq \frac{e^{2(1+\epsilon)^{2}}}{(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}} \int_{\frac{D_{1+2 \epsilon}}{2}} \frac{c(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}} d x \\
& \leq \frac{c e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{\frac{2}{1+\epsilon}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}
\end{aligned}
$$

which proves (3.2).
Now we will introduce the following notation. Since D has $(1+2 \epsilon)$-smooth boundary, for any point $x-\epsilon \in \partial D$ there are two open balls B_{1} and B_{2} both of radius $(1+2 \epsilon)$ such that $B_{1} \subset D, B_{2} \subset \mathbb{R}^{2+\epsilon} \backslash(D \cup \partial D), \partial B_{1} \cap$ $\partial B_{2}=x-\epsilon$. For any $x \in D_{\frac{1+2 \epsilon}{2}}$ there exists a unique point $x_{*} \in \partial D$ such that $\delta_{D}(x)=\left|x-x_{*}\right|$. Let $B_{1}=$ $B\left(x_{1}-2 \epsilon, 1+2 \epsilon\right), B_{2}=B\left(x_{2}-2 \epsilon, 1+2 \epsilon\right) \quad$ be inner/outer balls for the point x_{*}. Let $H(x)$ be the halfspace containing B_{1} such that $\partial H(x)$ contains x_{*} and is perpendicular to the segment $\overline{\left(x_{1}-2 \epsilon\right)\left(x_{2}-2 \epsilon\right)}$.
We will need the following very important proposition in the proof of Theorem 1.4. Such a proposition has been proved for the stable process in [[2], Proposition 3.1] (see
[1]).
Proposition 3.1. Let $D \subset \mathbb{R}^{2+\epsilon}, \epsilon \geq 0$, be an open bounded set with $(1+2 \epsilon)$-smooth boundary ∂D. Then for any $x \in D_{\frac{1+2 \epsilon}{2}}^{C}$ and $\epsilon \geq 0$ such that $(1+\epsilon)^{\frac{1}{1+\epsilon}} \leq \frac{1+2 \epsilon}{2}$ we have
$\left|r_{D}(1+\epsilon, x, x)-r_{H(x)}(1+\epsilon, x, x)\right|$
$\leq \frac{c e^{2(1+\epsilon)^{2}}(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+2 \epsilon)(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}\left(\left(\frac{(1+\epsilon)^{\frac{1}{1+\epsilon}}}{\delta_{D}(x)}\right)^{\frac{1+2 \epsilon}{2}}\right.$
$\wedge 1$).
Proof. Exactly as in [2], let $x_{*} \in \partial D$ be a unique point such that $\left|x-x_{*}\right|=\operatorname{dist}(x, \partial D)$ and B_{1} and B_{2} be balls with radius $(1+2 \epsilon)$ such that $B_{1} \subset D, B_{2} \subset \mathbb{R}^{2+\epsilon} \backslash(D \cup$ $\partial D), \partial B_{1} \cap \partial B_{2}=x_{*}$. Let us also assume that $x_{*}=0$ and choose an orthonormal coordinate system $\left(x_{1}, x_{2}, \ldots, x_{2+\epsilon}\right)$ so that the positive axis $0 x_{1}$ is in the direction of $\overrightarrow{0 p}$ where p is the center of the ball B_{1}. Note that x lies on the interval $0 p$ so $x=(|x|, 0,0, \ldots, 0)$. Note also that $B_{1} \subset D \subset\left(\overline{B_{2}}\right)^{c}$ and $B_{1} \subset H(x) \subset\left(\overline{B_{2}}\right)^{c}$. For any open sets A_{1}, A_{2} such that $A_{1} \subset A_{2}$ we have $r_{A_{1}}(1+\epsilon, x, x-\epsilon) \geq r_{A_{2}}(1+\epsilon, x, x-\epsilon)$ so
$\left|r_{D}(1+\epsilon, x, x)-r_{H(x)}(1+\epsilon, x, x)\right|$

$$
\leq r_{B_{1}}(1+\epsilon, x, x)-r_{\left(\overline{B_{2}}\right)^{c}}(1+\epsilon, x, x) .
$$

So in order to prove the proposition it suffices to show that

$$
\begin{aligned}
& r_{B_{1}}(1+\epsilon, x, x)-r_{\left(\overline{B_{2}}\right)}(1+\epsilon, x, x) \\
& \leq \frac{c e^{2(1+\epsilon)^{2}}(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+2 \epsilon)(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}\left(\left(\frac{(1+\epsilon)^{\frac{1}{1+\epsilon}}}{\delta_{D}(x)}\right)^{\frac{1+2 \epsilon}{2}} \wedge 1\right)
\end{aligned}
$$

for any $x=(|x|, 0, \ldots, 0),|x| \in\left(0, \frac{1+2 \epsilon}{2}\right]$. Such an estimate was proved for the case $\epsilon=-1$ in [2]. In order to complete the proof it is enough to prove that

$$
\begin{aligned}
r_{B_{1}}(1+\epsilon, x, x)- & r_{\left(\overline{B_{2}}\right)}{ }^{c}(1+\epsilon, x, x) \\
& \leq c e^{2(1+\epsilon)^{2}}\left\{\tilde{r}_{B_{1}}(1+\epsilon, x, x)-\tilde{r}_{\left(B_{2}\right)^{c}}(1\right. \\
& +\epsilon, x, x)\} .
\end{aligned}
$$

To show this given the ball B_{2}, we set $U=\left(\overline{B_{2}}\right)^{c}$. Now using the generalized Ikeda-Watanabe formula, Proposition 2.5 and Lemma 2.6 we have

$$
\begin{aligned}
r_{B_{1}}(1+\epsilon, x, x)- & r_{U}(1+\epsilon, x, x) \\
& =E^{x}\left[1+\epsilon>\tau_{B_{1}}, X\left(\tau_{B_{1}}\right)\right. \\
& \left.\epsilon U \backslash B_{1} ; p_{U}\left(1+\epsilon-\tau_{B_{1}}, X\left(\tau_{B_{1}}\right), x\right)\right] \\
& =\int_{B_{1}} \int_{0}^{1+\epsilon} p_{B_{1}}(s, x, x \\
& -\epsilon) d s \int_{U \backslash B_{1}} v(\epsilon) p_{U}(1+\epsilon-s, x \\
& -2 \epsilon, x) d(x-2 \epsilon) d(x-\epsilon)
\end{aligned}
$$

$$
\begin{gathered}
\leq e^{2(1+\epsilon)^{2}} \int_{B_{1}} \int_{0}^{1+\epsilon} \tilde{p}_{B_{1}}(s, x, x-\epsilon) d s \int_{U \backslash B_{1}} \tilde{v}(\epsilon) \tilde{p}_{U}(1 \\
+\epsilon-s, x-2 \epsilon, x) d(x-2 \epsilon) d(x-\epsilon) \\
\leq c e^{2(1+\epsilon)^{2}} E^{x}\left[1+\epsilon>\tilde{\tau}_{B_{1}}, \tilde{X}\left(\tau_{B_{1}}\right)\right. \\
\left.\quad \in U \backslash B_{1} ; \tilde{p}_{U}\left(1+\epsilon-\tilde{\tau}_{B_{1}}, \tilde{X}\left(\tilde{\tau}_{B_{1}}\right), x\right)\right] \\
\quad=c e^{2(1+\epsilon)^{2}} \tilde{r}_{B_{1}}(1+\epsilon, x, x) \\
\quad-\tilde{r}_{U}(1+\epsilon, x, x) \\
\leq \frac{c e^{2(1+\epsilon)^{2}}(1+\epsilon)^{\frac{1}{1+\epsilon}}}{(1+2 \epsilon)(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}}}\left(\frac{(1+\epsilon)^{\frac{1}{1+\epsilon}}}{\delta_{D}(x)}\right)^{\frac{1+2 \epsilon}{2}} \\
\end{gathered}
$$

The last inequality followed by Proposition 3.1 in [2].
Now using this proposition we estimate the contribution from $D \backslash D_{\frac{1+2 \epsilon}{2}}$ to the integral of $r_{D}(1+\epsilon, x, x)$ in (3.1).
Claim 2. For $(1+\epsilon)^{\frac{1}{1+\epsilon}} \leq \frac{1+2 \epsilon}{2}$ we get

$$
\begin{align*}
& \left\lvert\, \int_{D \backslash D_{\frac{1+2 \epsilon}{}}^{2}} r_{D}(1+\epsilon, x, x) d x\right. \\
& -\int_{D \backslash D_{1+2 \epsilon}} r_{H(x)}(1+\epsilon, x, x) d x \mid \\
& \leq \frac{c e^{2(1+\epsilon)^{2}}|D|(1+\epsilon)^{2(1+\epsilon)}}{(1+2 \epsilon)^{2}(1+\epsilon)^{(2+\epsilon)(1+\epsilon)}} \tag{3.6}
\end{align*}
$$

Proof. By Proposition 3.1 the left-hand side of (3.6) is bounded above by

$$
\begin{gathered}
\frac{c e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)(1+\epsilon)} \int_{0}^{\frac{1+2 \epsilon}{2}}\left|\partial D_{1+\epsilon}\right|\left(\left((1+\epsilon)^{-\frac{\epsilon}{1+\epsilon}}\right)^{\frac{1+2 \epsilon}{2}}\right. \\
\wedge 1) d(1+\epsilon)
\end{gathered}
$$

By Corollary 2.8, (i), the last quantity is smaller than or equal to

$$
\begin{gathered}
\frac{c e^{2(1+\epsilon)^{2}}|\partial D|}{(1+2 \epsilon)(1+\epsilon)} \int_{0}^{\frac{1+2 \epsilon}{2}}\left(\left((1+\epsilon)^{-\frac{\epsilon}{1+\epsilon}}\right)^{\frac{1+2 \epsilon}{2}} \wedge 1\right) d(1 \\
+\epsilon)
\end{gathered}
$$

The integral in the last quantity is bounded by $c(1+\epsilon)^{\frac{1}{1+\epsilon}}$. To see this observe that since $(1+\epsilon)^{\frac{1}{1+\epsilon}} \leq \frac{1+2 \epsilon}{2}$ the above integral is equal to

$$
\begin{aligned}
& \int_{0}^{(1+\epsilon)^{\frac{1}{1+\epsilon}}}\left(\left((1+\epsilon)^{-\frac{\epsilon}{1+\epsilon}}\right)^{\frac{1+2 \epsilon}{2}} \wedge 1\right) d(1+\epsilon) \\
&+\int_{(1+\epsilon)^{\frac{1}{1+\epsilon}}}^{\frac{1+2 \epsilon}{2}}\left(\left((1+\epsilon)^{-\frac{\epsilon}{1+\epsilon}}\right)^{\frac{1+2 \epsilon}{2}}\right. \\
&\wedge 1) d(1+\epsilon) \\
&=\int_{0}^{(1+\epsilon)^{\frac{1}{1+\epsilon}}} 1 d(1+\epsilon) \\
&+\int_{(1+\epsilon)^{\frac{1}{1+\epsilon}}}^{\frac{1+2 \epsilon}{2}}\left((1+\epsilon)^{-\frac{\epsilon}{1+\epsilon}}\right)^{\frac{1+2 \epsilon}{2}} d(1+\epsilon) \\
& \leq c(1+\epsilon)^{\frac{1}{1+\epsilon}}
\end{aligned}
$$

Using this and Corollary 2.8, (ii), we get (3.6).
Recall that $H=\left\{\left(x_{1}, \ldots, x_{2+\epsilon}\right) \in \mathbb{R}^{2+\epsilon}: x_{1}>0\right\}$. For abbreviation let us denote

$$
\begin{aligned}
& f_{H}(1+\epsilon, 1+2 \epsilon) \\
= & r_{H}(1 \\
+ & \epsilon,(1+2 \epsilon, 0, \ldots, 0),(1 \\
+ & 2 \epsilon, 0, \ldots, 0)), \quad \epsilon \geq 0
\end{aligned}
$$

Of course we have $r_{H}(x)(1+\epsilon, x, x)=f_{H}(1+$ $\left.\epsilon, \delta_{H}(x)\right)$. In the next step we will show that

$$
\begin{align*}
& \left\lvert\, \int_{D \backslash D_{\frac{1+2 \epsilon}{}}^{2}} r_{H(x)}(1+\epsilon, x, x) d x\right. \\
& -|\partial D| \int_{0}^{\frac{1+2 \epsilon}{2}} f_{H}(1+\epsilon, 1+2 \epsilon) d(1 \\
& \quad+2 \epsilon) \mid \\
& \leq \frac{c e^{2(1+\epsilon)^{2}}|D|}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{\epsilon}{1+\epsilon}}} \tag{3.7}
\end{align*}
$$

We have

$$
\begin{aligned}
\int_{D \backslash D_{\frac{1+2 \epsilon}{2}}^{2}} r_{H}(x)(1 & +\epsilon, x, x) d x \\
& =\int_{0}^{\frac{1+2 \epsilon}{2}}\left|\partial D_{1+2 \epsilon}\right| f_{H}(1+\epsilon, 1+2 \epsilon) d(1 \\
& +2 \epsilon) .
\end{aligned}
$$

Hence the left-hand side of (3.7) is bounded above by

$$
\int_{0}^{\frac{1+2 \epsilon}{2}}\left|\partial D_{1+2 \epsilon}\right|-|\partial D| f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon)
$$

By Corollary 2.8, (iii), this is smaller than

$$
\begin{gathered}
\left.\begin{array}{c}
\frac{c|D|}{(1+2 \epsilon)^{2}} \int_{0}^{\frac{1+2 \epsilon}{2}}(1+2 \epsilon) f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon) \\
\\
\leq \frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}} \int_{0}^{\frac{1+2 \epsilon}{2}}(1+2 \epsilon) \tilde{f}_{H}(1 \\
\\
+\epsilon, 1+2 \epsilon) d(1+2 \epsilon) \\
=\frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}} \int_{0}^{\frac{1+2 \epsilon}{2}}(1+2 \epsilon)(1 \\
\\
+\epsilon)^{-\frac{2+\epsilon}{1+\epsilon}} \tilde{f}_{H}(1,(1 \\
\\
\left.+2 \epsilon)(1+\epsilon)^{-\frac{1}{1+\epsilon}}\right) d(1+2 \epsilon) \\
=\frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}} \int_{0}^{\frac{1+2 \epsilon}{2}(1+\epsilon)^{\frac{1}{1+\epsilon}}}(1+2 \epsilon)(1} \\
\quad+\epsilon)^{\frac{2}{1+\epsilon}} \tilde{f}_{H}(1,1+2 \epsilon) d(1+2 \epsilon) \\
\leq \frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{\epsilon}{1+\epsilon}} \int_{0}^{\infty}}(1 \\
\quad+2 \epsilon)\left((1+2 \epsilon)^{-(3+2 \epsilon)}\right.
\end{array} 1\right) d(1+2 \epsilon) \\
\leq \frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}(1+\epsilon)^{\frac{\epsilon}{1+\epsilon}}}
\end{gathered}
$$

This shows (3.7). Finally, we have

$$
\begin{aligned}
& \begin{array}{r}
|\partial D| \int_{0}^{\frac{1+2 \epsilon}{2}} f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon) \\
\\
\quad-|\partial D| \int_{0}^{\infty} f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon) \mid \\
\quad \leq|\partial D| \int_{\frac{1+2 \epsilon}{2}}^{\infty} f_{H}(1+\epsilon, 1+2 \epsilon) d(1 \\
\\
\quad+2 \epsilon) \\
\quad \leq \frac{c|D|}{1+2 \epsilon} \int_{\frac{1+2 \epsilon}{2}}^{\infty} f_{H}(1+\epsilon, 1+2 \epsilon) d(1 \\
\quad+2 \epsilon) \text { by Corollary } 2.8,(\mathrm{ii})
\end{array} \\
& \quad \leq \frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)(1+\epsilon)^{\frac{2+\epsilon}{1+\epsilon}} \int_{\frac{1+2 \epsilon}{2}}^{\infty} f_{H}(1,(1} \\
& \quad+2 \epsilon)(1+\epsilon)^{\left.-\frac{1}{1+\epsilon}\right) d(1+2 \epsilon)} \\
& =\frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)(1+\epsilon)} \int_{\frac{1+2 \epsilon}{2}(1+\epsilon)^{\frac{1}{1+\epsilon}}}^{\infty}
\end{aligned}
$$

Since $\frac{(1+2 \epsilon)(1+\epsilon)^{\frac{1}{1+\epsilon}}}{2} \geq 1$, so for $1+2 \epsilon \geq \frac{(1+2 \epsilon)(1+\epsilon)^{\frac{1}{1+\epsilon}}}{2} \geq 1$
we \quad have $\quad \tilde{f}_{H}(1,1+2 \epsilon) \leq c(1+2 \epsilon)^{-(3+2 \epsilon)} \leq$ $c(1+2 \epsilon)^{-2}$. Therefore,

$$
\begin{aligned}
\int_{\frac{(1+2 \epsilon)(1+\epsilon)^{\frac{1}{1+\epsilon}}}{2}}^{\infty} \tilde{f}_{H} & (1,1+2 \epsilon) d(1+2 \epsilon) \\
& \leq c \int_{\frac{(1+2 \epsilon)(1+\epsilon)^{\frac{1}{1+\epsilon}}}{\infty}}^{\infty} \frac{d(1+2 \epsilon)}{(1+2 \epsilon)^{2}} \\
& \leq \frac{c(1+\epsilon)^{\frac{1}{1+\epsilon}}}{1+2 \epsilon}
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \left||\partial D| \int_{0}^{\frac{1+2 \epsilon}{2}} f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon)\right. \\
& -|\partial D| \int_{0}^{\infty} f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon) \mid \\
& \leq \frac{c|D| e^{2(1+\epsilon)^{2}}}{(1+2 \epsilon)^{2}(1+\epsilon)} . \tag{3.8}
\end{align*}
$$

Note that the constant $C_{2}(1+\epsilon)$ which appears in the formulation of Theorem 1.4 satisfies $C_{2}(1+\epsilon)=$ $\int_{0}^{\infty} f_{H}(1+\epsilon, 1+2 \epsilon) d(1+2 \epsilon)$. Now Eqs. (3.1), (3.2), (3.6), (3.7), (3.8) give (1.11).

Conflict of interest

The authors declare that there is no conflict regarding the publication of this paper.

References

[1] R. Bañuelos, J.B. Mijena, and E. Nane, Two-term trace estimates for relativistic stable processes, Journal of Mathematical Analysis and Applications. 410(2), 837-846 (2014).
[2] R. Bañuelos and T. Kulczycki, Trace estimates for stable processes, Probability theory and related fields. 142(3), 313-338 (2008).
[3] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Analysis. 17(1), 1-23 (2002).
[4] E.B. Davies, Heat kernels and spectral theory. Cambridge university press, Cambridge, (1989).
[5] W. Feller, An introduction to probability theory and its applications. Vol. II. Wiley, New York, (1971).
[6] R. Bañuelos, Trace asymptotics for stable heat semigroups. Schrödinger Institute Lecture, Vienna, (2009).
[7] R. Banuelos, Heat and Weyl asymptotics for fractional Laplacians. 2010, SPA2010 lecture: Osaka, Japan.
[8] M. van den Berg, On the asymptotics of the heat equation and bounds on traces associated with the

Dirichlet Laplacian, Journal of functional analysis. 71(2), 279-293 (1987).
[9] J. Brossard and R. Carmona, Can one hear the dimension of a fractal?, Communications in mathematical physics. 104(1), 103-122 (1986).
[10] T. Kulczycki and B. Siudeja, Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes, Transactions of the American Mathematical Society. 358(11), 5025-5057 (2006).
[11] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Mathematica. 1(123), 4380 (1997).
[12] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, Journal of Mathematics of Kyoto University. 2(1), 79-95 (1962).

[^0]: *Corresponding author e-mail: afnanali2020202@gmail.com

