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Abstract: The current study aims at showing trace estimates, following the way of the method proved by Rodrigo 
Bañuelos, Jebessa B. Mijena and Erkan Nane [1] for the relativistic (1 + 𝜖)-stable process extending the result of 
Bañuelos, and Kulczycki [2] in the stable case. 
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1 Introduction  

Introduction and statement of main results 
For 𝜖 ≥ 0, an ℝ*+,-valued process with 

independent, stationary increments having the following 
characteristic function: 

𝔼𝑒/0	·3456
756,456

	= 	 𝑒
9(:+,);<(:+,)

7
756+|0	|7>

756
7
9(:+,)?

	,									𝜉	
∈ ℝ*+,, 

is called relativistic (2 + 𝜖)-stable process with mass (1 +
𝜖). We assume that sample paths of 𝑋:+,

*+,,:+,	 are right 
continuous and have left-hand limits a.s. If we put 𝜖	 = −1 
we obtain the symmetric rotation invariant (2 + 𝜖)-stable 
process with the characteristic function 𝑒9(:+,)|0	|756	, 𝜉	 ∈
ℝ*+,. We refer to this process as isotropic (2 + 𝜖)-stable 
Lévy process. For the rest of the paper we keep 𝜖 ≥ 0 fixed 
and drop 2 + 𝜖, in the notation, when it does not lead to 
confusion. Hence from now on the relativistic (2 + 𝜖)-
stable process is denoted by 𝑋:+, and its counterpart 
isotropic (2 + 𝜖)-stable Lévy process by 𝑋F:+,. We keep 
this notational convention consistently throughout the 
paper, e.g., if 𝑝:+,(𝜖) is the transition density of 𝑋:+,, then 
𝑝H:+,(𝜖) is the transition density of 𝑋F:+,. 

In Ryznar [3] Green function estimates of the 
Schödinger operator with the free Hamiltonian of the form 

I−Δ +	(1 + 𝜖)
7
456K

456
7 	− (1 + 𝜖), 

were investigated, where 𝜖 ≥ 0 and Δ	 is the Laplace 
operator acting on 𝐿*(ℝ*+,). Using the estimates in Lemma 
2.6 below and proof in Bañuelos and Kulczycki (2008) we 
provide an extension of the asymptotics in [2]to the 
relativistic (1 + 𝜖)-stable processes for any 0 ≤ 𝜖 < 1. 
Brownian motion has a characteristic function 

𝔼O𝑒/0	·P456 	= 	 𝑒9(:+,)|0	|7	,														𝜉	 ∈ ℝ*+,.	 

Let 𝜖 ≥ 0. Ryznar showed that 𝑋:+, can be represented as a 
time-changed Brownian motion. Let 𝑇456

7
	(1 + 𝜖), 𝜖	 ≥ 	0, 

denote the strictly I:+,
*
K-stable subordinator with the 

following Laplace transform 

𝔼O𝑒
9RS

I4567 K
	(:+,)

	= 	 𝑒
9(:+,)R

I4567 K	,									𝜆
> 	0.																																																					(1.1) 

Let 𝜃456
7
	(1 + 𝜖, 𝑢), 𝑢	 > 	0, denote the density function of 

𝑇I4567 K(1 + 𝜖). Then the process 𝐵S456
7
	(1 + 𝜖) is the 

standard symmetric (1 + 𝜖)-stable process. 
Ryznar [[3], Lemma 1] showed that we can obtain 𝑋:+, 	=
	𝐵S

I4567 K
(:+,,:+,), where a subordinator 𝑇456

7
(1 + 𝜖, 1 + 𝜖) is 

a positive infinitely divisible process with stationary 
increments with probability density function 

𝜃456
7
(1 + 𝜖, 𝑢, 1 + 𝜖)

= 	𝑒9(:+,)
7
456	Y+(:+,)7𝜃I4567 K(1

+ 𝜖, 𝑢),										𝑢	 > 	0. 
Transition density of 𝑇I4567 K(1 + 𝜖, 1 + 𝜖) is given by 

𝜃I4567 K(1 + 𝜖, 𝑢	 − 	𝑣, 1 + 𝜖). Hence the transition density 

of 𝑋:+, is 𝑝(1 + 𝜖, 𝑥, 𝑥 − 𝜖) 	= 	𝑝(1 + 𝜖, 𝜖) given by 
𝑝(1 + 𝜖, 𝑥)

= 	 𝑒(:+,)7 	\ 	
]

O

1

(4𝜋𝑢)
756
7

𝑒9
|`|7
ab 	𝑒9(:+,)

7
456Y𝜃I4567 K(1

+ 𝜖, 𝑢)𝑑𝑢.									(1.2) 
Then 
𝑝(1 + 𝜖, 𝑥, 𝑥) = 	𝑝(1 + 𝜖, 0)

= 	 𝑒(:+,)7 \ 	
]

O

1

(4𝜋𝑢)
756
7

	𝑒9(:+,)
7
456Y𝜃I4567 K(1 + 𝜖, 𝑢)𝑑𝑢. 

The function 𝑝(1 + 𝜖, 𝑥) is a radially symmetric decreasing 
and that 
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𝑝(1 + 𝜖, 𝑥) ≤ 𝑝(1 + 𝜖, 0)

≤ 𝑒(:+,)7 \ 	
]

O

1

(4𝜋𝑢)
756
7

𝜃456
7
(1 + 𝜖, 𝑢)𝑑𝑢	

= 𝑒(:+,)7(1

+ 𝜖)9
756
456 	

𝜔*+,𝛤 I
*+,
:+,
K

(2𝜋)*+,(1 + 𝜖),																							(1.3) 

where 𝜔*+, =
*g

756
7

hI7567 K
 is the surface area of the unit sphere in 

ℝ*+,. For an open set 𝐷 in ℝ*+, we define the first exit 
time from 𝐷 by 𝜏k = 	𝑖𝑛𝑓{𝜖 ≥ −1:	𝑋:+, ∉ 𝐷}. 
We set 

𝑟k(1 + 𝜖, 𝑥, 𝑥 − 𝜖) 	
= 𝔼t	u𝑝(1 + 𝜖	 −	𝜏k, 𝑋vw	, 𝑥 − 𝜖);	𝜏k 	
< 	1 + 𝜖y		,																										(1.4) 

and 
𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖) 	

= 	𝑝(1 + 𝜖, 𝑥, 𝑥 − 𝜖) 	−	𝑟k(1 + 𝜖, 𝑥, 𝑥
− 𝜖),																			(1.5) 

for any 𝑥, 𝑥 − 𝜖	 ∈ ℝ*+,, 𝜖 ≥ 0. For a nonnegative Borel 
function 𝑓 and 𝜖 ≥ 0,let 
𝑃:+,k 	𝑓	(𝑥) 	= 𝔼t		[𝑓	(𝑋:+,):	1 + 𝜖	 < 	 𝜏k] 		

= \ 	
k
	𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)𝑓(𝑥 − 𝜖)𝑑(𝑥

− 𝜖), 
be the semigroup of the killed process acting on 𝐿*(𝐷), see, 
Ryznar [[3], Theorem 1]. 

Let 𝐷 be a bounded domain (or of finite volume). 
Then the operator 𝑃:+,k  maps 𝐿*(𝐷) into 𝐿](𝐷)	for every 
𝜖 ≥ 	0. This follows from (1.3), (1.4), and the general 
theory of heat semigroups as described in [4]. It follows 
that there exists an orthonormal basis of eigenfunctions 
{𝜑�:	𝑛	 = 	1, 2, 3, . . . } for 𝐿*(𝐷) and corresponding 
eigenvalues {𝜆�:	𝑛	 = 	1, 2, 3, . . . } of the generator of the 
semigroup 𝑃:+,k  satisfying 𝜆: 	< 	 𝜆* ≤ 𝜆� ≤···, with 𝜆� 	→
	∞ as 𝑛	 → 	∞. By definition, the pair {𝜑�, 𝜆�} satisfies 
𝑃:+,k 	𝜑�(𝑥) = 	 𝑒9R�(:+,)	𝜑�(𝑥),														𝑥	 ∈ 	𝐷, 𝜖 ≥ 	0. 
Under such assumptions we have 

𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖) 	

= � 	
]

��:

	𝑒9R�(:+,)	𝜑�(𝑥)𝜑�(𝑥

− 𝜖).																																											(1.6) 
In this paper we are interested in the behavior of the trace 
of this semigroup 

 	
𝑍k(1 + 𝜖) 	

= \	
k
	𝑝k(1

+ 𝜖, 𝑥, 𝑥)𝑑𝑥.																																																																					(1.7) 
Because of (1.6) we can write (1.7) as 

𝑍k(1 + 𝜖) = �	
]

��:

	𝑒9R�(:+,) 	\ 	
k
	𝜑�*(𝑥)𝑑𝑥	

= � 	
]

��:

	𝑒9R�(:+,)	.																													(1.8) 

We denote (2 + 𝜖)-dimensional volume of 𝐷 by |𝐷|. 
The first result is Weyl’s asymptotic for the eigenvalues of 
the relativistic Laplacian 

lim
,→9:

		(1 + 𝜖)
756
456𝑒9(:+,)7	𝑍k(1 + 𝜖)

= 	𝐶:|𝐷|,																							(1.9) 

where 𝐶: 	=
�756hI

756
456K

(*g)756(:+,)
 . 

Let 𝑁(𝜆) be the number of eigenvalues {𝜆�} which do not 
exceed 𝜆. It follows from (1.9) and the classical Tauberian 
theorem (see for example [[5], p. 445, Theorem 2]) where 
𝐿(1 + 𝜖) 	= 	𝐶:|𝐷|𝑒	 is our slowly varying function at 
infinity that 

lim
R→]

		𝜆9
756
456𝑒9

456
� 𝑁(𝜆)

=
𝐶:|𝐷|

𝛤	 I�+*,
:+,

K
	.																																													(1.10) 

This is the analogue for the relativistic stable process of the 
celebrated Weyl’s asymptotic formula for the eigenvalues 
of the Laplacian. 

Remark 1.2. The first author of [1] presented (1.10) at a 
conference in Vienna at the Schrödinger Institute in 2009 
(see [6]) and at the 34th conference in stochastic processes 
and their applications in Osaka in 2010 (see [7]). Thus this 
result has been known to the authors [1], and perhaps to 
others, for a number of years. 

The author in [1] obtains the second term in the asymptotics 
of 𝑍k(1 + 𝜖) under some additional assumptions on the 
smoothness of 𝐷. The result is inspired by the result for 
trace estimates for stable processes by Bañuelos and 
Kulczycki [2]. To state our main result we need the 
following property of the domain 𝐷 (see [1]). 

Definition 1.3. The boundary, 𝜕𝐷, of an open set 𝐷 in ℝ*+, 
is said to be (1 + 2𝜖)-smooth if for each point 𝑥O 	∈ 	𝜕𝐷 
there are two open balls 𝐵: and 𝐵* with radii (1 + 2𝜖) such 
that 𝐵: 	⊂ 	𝐷, 𝐵* 	⊂ ℝ*+,\(𝐷	 ∪ 	𝜕𝐷)	and 𝜕	𝐵: 	∩ 	𝜕	𝐵* 	=
	𝑥O. 

Theorem 1.4. Let 𝐷	 ⊂ ℝ*+,, 𝜖 ≥ 0, be an open bounded 
set with (1 + 2𝜖)-smooth boundary. Let |𝐷| denote the 
volume ((2 + 𝜖)-dimensional Lebesgue measure) of 𝐷 and 
|𝜕𝐷| denote its surface area ((1 + 𝜖)-dimensional Lebesgue 
measure) of its boundary. Suppose 0 ≤ 𝜖 < 1. Then 
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�𝑍k(1 + 𝜖) −
𝐶:(1 + 𝜖)𝑒(:+,)

7|𝐷|

(1 + 𝜖)
756
456

	+	𝐶*(1 + 𝜖)|𝜕𝐷|�

≤
𝐶�𝑒*(:+,)

7|𝐷|(1 + 𝜖)
7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

,

𝜖 ≥ 0,																																																				(1.11) 

 Where 

𝐶:(1 + 𝜖) =
1

(4𝜋)
756
7

	\ 	
]

O
	(𝑥

− 2𝜖)9
756
7 𝑒9�(:+,)7�

7
456(t9*,)𝜃456

7
(1, 𝑥

− 2𝜖)𝑑(𝑥 − 2𝜖) 	→ 	𝐶: 	

= 	
𝜔*+,𝛤 I

*+,
:+,
K

(2𝜋)*+,(1 + 𝜖)	, 𝑎𝑠	𝜖	 → −1, 

𝐶*(1 + 𝜖) = \ 	
]

O
	𝑟��1 + 𝜖, (𝑥:, 0, … , 0), (𝑥:, 0, … , 0)�	𝑑𝑥:

≤
𝐶�𝑒*(:+,)

7(1 + 𝜖)
4
456

(1 + 𝜖)
756
456

	 , 𝜖 ≥ 	0, 

𝐶� 	= \ 	
]

O
	�̃��	(1, (𝑥:, 0, . . . , 0), (𝑥:, 0, . . . , 0))𝑑𝑥:,	 

𝐶� = 𝐶�(2 + 𝜖, 1 + 𝜖), 𝐻	 = 	 {(𝑥:, . . . , 𝑥*+,) ∈ ℝ*+,:	𝑥: 	>
	0} and 𝑟� is given by (1.4). 

Remark 1.5. When 	0 ≤ 𝜖 ≤ 1, 𝐶*(1 + 𝜖) 	= 	𝐶�(1 +
𝜖)

4
456/(1 + 𝜖)

756
456. Then the result in Theorem 1.4 becomes, 

for bounded domains with (1 + 2𝜖)-smooth boundary, 

�𝑍k(1 + 𝜖) −
𝐶:|𝐷|

(1 + 𝜖)
756
456

	+
𝐶�|𝜕𝐷|(1 + 𝜖)

4
456

(1 + 𝜖)
756
456

�

≤
𝐶£|𝐷|(1 + 𝜖)

7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

	,									(1.12) 

where 𝐶:, 𝐶� are as in Theorem 1.4. This was established by 
Bañuelos and Kulczycki [2] recently. 

The asymptotic for the trace of the heat kernel when 𝜖 = 1 
(the case of the Laplacian with Dirichlet boundary 
condition in a domain of ℝ*+,), has been extensively 
studied by many authors. For Brownian motion van den 
Berg [8], proved that under the (1 + 2𝜖)-smoothness 
condition 

¤𝑍k(1 + 𝜖) −	(4𝜋(1 + 𝜖))
97567 <|𝐷| −

¥𝜋(1 + 𝜖)
2 	|𝜕𝐷|>¤

≤
𝐶*+,|𝐷|(1 + 𝜖)9

6
7

(1 + 2𝜖)* 	 , 𝜖 ≥ 	0. (1.13) 

For domains with 𝐶: boundaries the result 

𝑍k(1 + 𝜖) = 	 (4𝜋(1 + 𝜖))
97567 	¦|𝐷| −

¥𝜋(1 + 𝜖)
2 	|𝜕𝐷| 	

+ 	𝑜	 I(1 + 𝜖)
4
7K¨	,

𝑎𝑠	𝜖	 → −1, (1.14) 

was proved by Brossard and Carmona [9], for Brownian 
motion. 

2 Preliminaries 

Let the ball in ℝ*+, with center at 𝑥 and radius 𝑟, {𝑥 −
𝜖:	|𝜖| 	< 	𝑟}, be denoted by 𝐵(𝑥, 𝑟). We will use 𝛿k(𝑥) to 
denote the Euclidean distance between 𝑥 and the boundary, 
𝜕𝐷, of 𝐷. That is, 𝛿k(𝑥) 	= 	dist(𝑥, 𝜕𝐷). Define 

𝜓(𝜃	) = \ 	
]

O
	𝑒9®	𝑣:+,(𝜃 + 𝑣/2):+,	𝑑𝑣,												𝜃 ≥ 0, 

We put ℛ(1 + 𝜖, 2 + 𝜖) 	= 𝒜(−(1 + 𝜖),2 + 𝜖)/𝜓(0), 
where 𝒜(𝑣, 2 + 𝜖) 	= 	 (𝛤	((2 + 𝜖	 − 	𝑣)/2))/
(𝜋

756
7 2®	|𝛤	(𝑣/2)|). Let 𝜈(𝑥), 𝜈H(𝑥) be the densities of the 

Lévy measures of the relativistic (1 + 𝜖)-stable process and 
the standard (1 + 𝜖)-stable process, respectively. These 
densities are given by 

𝜈(𝑥) =
ℛ(1 + 𝜖, 2 + 𝜖)

|𝑥|�+*, 	𝑒9(:+,)
4
456|t|	𝜓	 I(1

+ 𝜖)
4
456|𝑥|K	,																		(2.1) 

And 

𝑣H(𝑥)

=
𝒜(−(1 + 𝜖), 2 + 𝜖)

|𝑥|�+*, 	.																																																																																						(2.2) 

We need the following estimate of the transition 
probabilities of the process 𝑋:+, which is given in [[10], 
Lemma 2.2]: For any 𝑥, 𝑥 − 𝜖	 ∈ ℝ*+,	and 𝜖 ≥ 	0 there 
exist constants 𝜖 ≥ 	0, 

𝑝(1 + 𝜖, 𝑥, 𝑥 − 𝜖) ≤ (1

+ 𝜖)𝑒(:+,)7 min 	 ³
1 + 𝜖
|𝜖|�+*, 	𝑒

9(:+*,)|,|	, (1

+ 𝜖)9
756
456´	.											(2.3) 

We will also use the fact [[11], Lemma 6] that if 𝐷	 ⊂ ℝ*+, 
is an open bounded set satisfying a uniform outer cone 
condition, then 𝑃t(𝑋(𝜏k) 	∈ 	𝜕𝐷) 	= 	0 for all 𝑥	 ∈ 	𝐷. For 
the open bounded set 𝐷 we will denoted by 𝐺k(𝑥, 𝑥 − 𝜖) 
the Green function for the set 𝐷 equal to, 

𝐺k(𝑥, 𝑥 − 𝜖) = \ 	
]

O
	𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)𝑑(1

+ 𝜖),																	𝑥, 𝑥 − 𝜖	 ∈ ℝ*+,. 

For any such 𝐷 the expectation of the exit time of the 
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processes 𝑋:+, from 𝐷 is given by the integral of the Green 
function over the domain. That is 

𝐸t(𝜏k) 	= \ 	
k
	𝐺k(𝑥, 𝑥 − 𝜖)𝑑(𝑥 − 𝜖). 

 

 

 

Lemma 2.1. Let 𝐷	 ⊂ ℝ*+, be an open set. For any 𝑥, 𝑥 −
𝜖	 ∈ 	𝐷 we have 

𝑟k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)
≤ (1

+ 𝜖)𝑒(:+,)7 <
1 + 𝜖

𝛿k�+*,(𝑥)
𝑒9(:+*,)·w(t) 	

∧ 	(1 + 𝜖)9
756
456>	. 

Proof. Using (1.4) and (2.3) we have 

𝑟k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)
= 	𝐸t9,	(𝑝(1 + 𝜖	 −	𝜏k, 𝑋(𝜏k), 𝑥)		; 	𝜏k 	
< 	1 + 𝜖) 

≤ (1

+ 𝜖)𝑒(:+,)7	𝐸t9, ¹
1 + 𝜖

|𝑥	 − 	𝑋(𝜏k)|�+*,
	𝑒9(:+*,)|t93(vw)| 	

∧ 	(1 + 𝜖)9
756
456º 

≤ (1 + 𝜖)𝑒(:+,)7 <
1 + 𝜖

𝛿k�+*,	(𝑥)
	𝑒9(:+*,)·w(t) 	

∧ 	(1 + 𝜖)9
756
456>	. 

We need the following result for the proof of Proposition 
1.1. 

Lemma 2.2. 

lim
,→9:

	 	𝑝(1 + 𝜖, 0)𝑒9(:+,)7(1 + 𝜖)
756
456

= 𝐶:,																																																								(2.4) 

Where 

𝐶: = (4𝜋)
756
7 	\ 	

]

O
	𝑢9

756
7 𝜃I4567 K(1, 𝑢)𝑑𝑢	

= 	
𝜔*+,𝛤	 I

*+,
:+,
K

(2𝜋)*+,(1 + 𝜖)	. 

Proof. By (1.2) we have 

𝑝(1 + 𝜖, 𝑥, 𝑥) = 	𝑝(1 + 𝜖, 0)

= 	 𝑒(:+,)7 \ 	
]

O

1

(4𝜋𝑢)
756
7

	𝑒9(:+,)
7
456Y𝜃I4567 K(1 + 𝜖, 𝑢)𝑑𝑢. 

Now using the scaling of stable subordinator 𝜃I4567 K	(1 +

𝜖, 𝑢) 	= 	 (1 + 𝜖)9
7
456	𝜃I4567 K	(1, 𝑢(1 + 𝜖)

9 7
456	) and a change 

of variables we get 

𝑝(1 + 𝜖, 0) =
𝑒(:+,)7

(4𝜋)
756
7 (1 + 𝜖)

756
456

	\ 	
]

O
	(𝑥

− 2𝜖)9
756
7 𝑒9(:+,)

7
456(1

+ 𝜖)
7(`»76)
456 𝜃I4567 K(1, 𝑥 − 2𝜖)𝑑(𝑥 − 2𝜖) 	

=
𝐶:(1 + 𝜖)𝑒(:+,)

7

(1 + 𝜖)
756
456

	, 

then by dominated convergence theorem, we obtain 

lim
,→9:

	 	𝑝(1 + 𝜖, 0)𝑒9(:+,)7(1 + 𝜖)
756
456

=
1

(4𝜋)
756
7

	\ 	
]

O
	(𝑥 − 2𝜖)9

756
7 𝜃I4567 K(1, 𝑥

− 2𝜖)𝑑(𝑥 − 2𝜖), 

and this last integral is equal to the density of (1 + 𝜖)-
stable process at time 1 and 𝑥	 = 	0 which was calculated in 
[2] to be 

𝜔*+,𝛤	 I
*+,
:+,
K

(2𝜋)*+,(1 + 𝜖)	. 

We next give the proof of Proposition 1.1. 

Proof of Proposition 1.1. By (1.4) we see that 

𝑝k(1 + 𝜖, 𝑥, 𝑥)

𝐶:𝑒(:+,)
7(1 + 𝜖)9

756
456

	

=
𝑝(1 + 𝜖, 0)

𝐶:𝑒(:+,)
7(1 + 𝜖)9

756
456

	

−
𝑟k(1 + 𝜖, 𝑥, 𝑥)

𝐶:𝑒(:+,)
7(1 + 𝜖)9

756
456

	.												(2.5) 

Since the first term tend to 1 as 𝜖	 → −1	by (2.4), in order 
to prove (1.9), we show that 

(1 + 𝜖)
756
456

𝐶:𝑒(:+,)
7 	\ 	

k
	𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥	 → 	0,																						𝑎𝑠	𝜖	

→ −1.																(2.6) 

For 𝜖 ≥ −1, we define 𝐷:+, 	= 	 {𝑥	 ∈ 	𝐷:	𝛿k(𝑥) ≥ 1 + 𝜖}. 
Then for 0	 < 	𝜖	 < 	1, consider the subdomain 

𝐷(:9,)4/7(456)
¼ = 	 {𝑥	 ∈ 	𝐷:	𝛿k(𝑥) ≥ (1 − 𝜖)

4
7(456)} and its 

complement 𝐷(:9,)4/7(456)
¼ = 	 {𝑥	 ∈ 	𝐷:	𝛿k(𝑥) 	<

	(1 − 𝜖)
4

7(456)}. Recalling that |𝐷| 	< 	∞, by Lebesgue 
dominated convergence theorem we get |𝐷(:9,)4/7(456)

¼ 	| 	→
	0, as 𝜖	 → 1. Since 𝑝k(1 − 𝜖, 𝑥, 𝑥) ≤ 𝑝(1 − 𝜖, 𝑥, 𝑥), by 
(1.3) we see that 
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𝑟k(1 − 𝜖, 𝑥, 𝑥)

𝐶:𝑒:9,
7(1 − 𝜖)9

756
456

≤ 1, 

for all 𝑥	 ∈ 	𝐷. It follows that 

(1 − 𝜖)
756
456

𝐶:𝑒:9,
7 	\ 	

k
(4»6)

4
7(456)

½
		𝑟k(1 − 𝜖, 𝑥, 𝑥)𝑑𝑥	

→ 	0,																									𝑎𝑠	𝜖	 → 1.			(2.7) 

On the other hand, by Lemma 2.2 in [10] we obtain 

𝑟k(1 − 𝜖, 𝑥, 𝑥)

𝐶:𝑒:9,
7(1 − 𝜖)9

756
456

	

=
𝔼tu𝑝�1 − 𝜖	 −	𝜏k, 𝑋vw	, 𝑥�; 1 − 𝜖 ≥ 𝜏ky

𝐶:𝑒:9,
7(1 − 𝜖)9(*+,)(:+,)

 

≤ 𝑐𝔼t9, min 	 ¿
(1 − 𝜖)

À576
456 	

|𝑥	 − 	𝑋(𝜏k)|�+*,
𝑒9(:+*,)|t93(vw)|	, 1Á 

≤ 𝑐min 	 ¿
(1 − 𝜖)

À576
456

𝛿k(𝑥)�+*,
	𝑒9(:+*,)·w(t), 1Á	.																(2.8) 

For 𝑥	 ∈ 	𝐷
(:9,)

4
7(456)

 and 0	 < 𝜖	 < 	1, the right-hand side 

of (2.8) is bounded above by 𝑐(1 − 𝜖)
À576
7(456) and hence 

(1 − 𝜖)
756
456

𝐶:𝑒:9,
7 	\ 	

k4»6

4
7(456)

	𝑟k(1 − 𝜖, 𝑥, 𝑥)𝑑𝑥

≤ 𝑐(1 − 𝜖)
À576
7(456)|𝐷|,																												(2.9) 

and this last quantity goes to 0 as 𝜖	 → 1. 

For an open set 𝐷	 ⊂ ℝ*+, and 𝑥	 ∈ ℝ*+,, the distribution 
𝑃t(𝜏k 	< 	∞, 𝑋(𝜏k) 	∈	·) will be called the relativistic (1 +
𝜖)-harmonic measure for 𝐷. The following Ikeda–
Watanabe formula recovers the relativistic (1 + 𝜖)-
harmonic measure for the set 𝐷 from the Green function. 

Proposition 2.3. (See [10].) Assume that 𝐷 is an open, 
nonempty, bounded subset of ℝ*+,, and 𝐴 is a Borel set 
such that dist(𝐷, 𝐴) 	> 	0. Then 

𝑃t(𝑋(𝜏k) ∈ 𝐴, 𝜏k < ∞ =)\ 	
k
𝐺k(𝑥, 𝑥 − 𝜖)\	

Ã
𝑣(𝜖)𝑑(𝑥

− 2𝜖)𝑑(𝑥 − 𝜖), 𝑥 ∈ 𝐷. (2.10) 

Here we need the following generalization already stated 
and used in [2]. 

Proposition 2.4. (See [12], [[10], Proposition 2.5].) 
Assume that 𝐷 is an open, nonempty, bounded subset of 
ℝ*+,, and 𝐴 is a Borel set such that 𝐴	 ⊂ 	𝐷Ä\𝜕𝐷 and 0 ≤
𝜖	 < 	∞, 𝑥	 ∈ 	𝐷. Then we have 

𝑃t(𝑋(𝜏k) ∈ 𝐴, 1 + 𝜖 < 𝜏k < 1 + 2𝜖)

= \ 	
k
\ 	
:+*,

:+,
𝑝k(𝑠, 𝑥, 𝑥

− 𝜖)𝑑𝑠\	
Ã
𝑣(𝜖)𝑑(𝑥 − 2𝜖)𝑑(𝑥 − 𝜖). 

The following proposition holds for a large class of Lévy 
processes 

Proposition 2.5. (See [[2], Proposition 2.3].) Let 𝐷 and 𝐹 
be open sets in ℝ*+, such that ⊂ 	𝐹 . Then for any 𝑥, 𝑥 −
𝜖	 ∈ ℝ*+, we have 

𝑝Æ(1 + 𝜖, 𝑥, 𝑥 − 𝜖) − 𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)
= 𝐸t(𝜏k < 1 + 𝜖, 𝑋(𝜏k)
∈ 𝐹/𝐷;	𝑝Æ(1 + 𝜖 − 𝜏k, 𝑋(𝜏k), 𝑥 − 𝜖)	). 

Lemma 2.6. (See [[3], Lemma 5].) Let 𝐷	 ⊂ ℝ*+, be an 
open set. For any 𝑥, 𝑥 − 𝜖	 ∈ 	𝐷 and 𝜖 ≥ 0 the following 
estimates hold 

𝑝k(1 + 𝜖, 𝑥, 𝑥 − 𝜖) ≤ 𝑒(:+,)7𝑝Hk(1 + 𝜖, 𝑥, 𝑥 − 𝜖), 

𝑟k(1 + 𝜖, 𝑥, 𝑥 − 𝜖)
≤ 𝑒*(:+,)7�̃�k(1 + 𝜖, 𝑥, 𝑥
− 𝜖).																														(2.11) 

We need the following lemma given by van den Berg in 
[8]. 

 

Lemma 2.7. (See [[8], Lemma 5].) Let 𝐷 be an open 
bounded set in ℝ*+, with (1 + 2𝜖)-smooth boundary 𝜕𝐷 
and for 𝜖 ≥ 0 denote the area of boundary of 𝜕𝐷:+, by 
|𝜕𝐷:+,|.Then 

I
𝜖

1 + 2𝜖K
:+,

	|𝜕𝐷| ≤ |𝜕𝐷:+,| ¹
1 + 2𝜖
𝜖 º

:+,

	|𝜕𝐷|,								𝜖
≥ 0.					(2.12) 

Corollary 2.8. (See [[2], Corollary 2.14].) Let 𝐷 be an 
open bounded set in ℝ*+, with (1 + 2𝜖)-smooth boundary. 
For any 𝜖 ≥ 0 we have 

(i) 29(:+,)|𝜕𝐷| ≤ |𝜕𝐷:+,| ≤ 2:+,	|𝜕𝐷|, 
(ii) |𝜕𝐷| ≤ *756|k|

:+*,
	, 

(iii) |𝜕𝐷:+,| − |𝜕𝐷| ≤
*756(*+,)(:+,)|Çk|

:+*,
≤

*7(756)(*+,)(:+,)|k|
(:+*,)7

	. 

3 Proof of the main result 

Proof of Theorem 1.4. (See [1])For the case (1 + 𝜖)
4
456 	>

:+*,
*

 the theorem holds trivially. Indeed, by Eq. (1.3) 
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𝑍k(1 + 𝜖) ≤ \	
k
	𝑝(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥 ≤

(1 + 𝜖)𝑒(:+,)7|𝐷|

(1 + 𝜖)
756
456

≤
(1 + 𝜖)𝑒(:+,)7|𝐷|(1 + 𝜖)

7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

	. 

By Corollary 2.8 and Lemma 2.6 we also have 

𝐶*(1 + 𝜖)|𝜕𝐷| ≤
𝐶�𝑒*(:+,)

7|𝜕𝐷|(1 + 𝜖)
4
456

(1 + 𝜖)
756
456

≤
2*+,𝐶�𝑒*(:+,)

7|𝐷|(1 + 𝜖)
4
456

(1 + 2𝜖)(1 + 𝜖)
756
456

≤
2�+,𝐶�𝑒*(:+,)

7|𝐷|(1 + 𝜖)
7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

, 

𝐶:(1 + 𝜖)𝑒(:+,)
7|𝐷|

(1 + 𝜖)
756
456

≤
𝐶:𝑒(:+,)

7|𝐷|(1 + 𝜖)
7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

. 

Therefore for (1 + 𝜖)
4
456 	> :+*,

*
 (1.11) holds. Here and in 

sequel we consider the case (1 + 𝜖)
4
456 ≤ :+*,

*
. From (1.5) 

and the fact that 𝑝(1 + 𝜖, 𝑥, 𝑥) = ¼4(:+,)È(456)
7

(:+,)
756
456

	, we have 

that 

𝑍k(1 + 𝜖) −
𝐶:(1 + 𝜖)𝑒(:+,)

7|𝐷|

(1 + 𝜖)
756
456

	

= \ 	
k
	𝑝k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥	

− \ 	
k
𝑝(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥 

	= 	−\ 	
k
	𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥,																										(3.1) 

where 𝐶:(1 + 𝜖) is as stated in the theorem. Therefore we 
must estimate (3.1). We break our domain into two pieces, 
𝐷4576

7
 and its complement 𝐷4576

7

¼ . We will first consider the 

contribution of 𝐷4576
7

. 

Claim 1. For (1 + 𝜖)
4
456 ≤ :+*,

*
 we have  

\ 	
k4576

7

	𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

≤
(1 + 𝜖)𝑒*(:+,)7|𝐷|(1 + 𝜖)

7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

	.																																								(3.2) 

Proof. By Lemma 2.6 we have   

\ 	
k4576

7

	𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

≤ 𝑒*(:+,)7 \ 	
k4576

7

	 �̃�k(1

+ 𝜖, 𝑥, 𝑥)𝑑𝑥,																										(3.3) 

and by scaling of the stable density the right-hand side of 
(3.3) equals 

𝑒*(:+,)7

(1 + 𝜖)
756
456

	\ 	
k4576

7

	 �̃�
k/(:+,)

4
456
	É1,

𝑥

(1 + 𝜖)
4
456

	 ,
𝑥

(1 + 𝜖)
4
456

	Ê 𝑑𝑥.																																															(3.4) 

For 𝑥	 ∈ 	𝐷4576
7

 we have 𝛿
k/(:+,)

4
456

I𝑥/(1 + 𝜖)
4
456K ≥

:+*,

*(:+,)
4
456

≥ 1. By [[2], Lemma 2.1], we get 

�̃�
k/(:+,)

4
456
	É1,

𝑥

(1 + 𝜖)
4
456

	 ,
𝑥

(1 + 𝜖)
4
456
Ê

≤
𝑐

𝛿
k/(:+,)

4
456

�+*, I𝑥/(1 + 𝜖)
4
456K

≤
𝑐

𝛿
k/(:+,)

4
456

* I𝑥/(1 + 𝜖)
4
456K

≤
𝑐(1 + 𝜖)

7
456

(1 + 2𝜖)* 	. 

Using the above inequality, we get  

\ 	
k4576

7

	𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

≤
𝑒*(:+,)7

(1 + 𝜖)
756
456

	\ 	
k4576

7

𝑐(1 + 𝜖)
7
456

(1 + 2𝜖)* 𝑑𝑥

≤
𝑐𝑒*(:+,)7|𝐷|(1 + 𝜖)

7
456

(1 + 2𝜖)*(1 + 𝜖)
756
456

	,	 

which proves (3.2). 

Now we will introduce the following notation. Since 𝐷 has 
(1 + 2𝜖)-smooth boundary, for any point 𝑥 − 𝜖	 ∈ 	𝜕𝐷 
there are two open balls 𝐵: and 𝐵* both of radius (1 + 2𝜖) 
such that 𝐵: 	⊂ 	𝐷, 𝐵* 	⊂ ℝ*+,\(𝐷	 ∪ 	𝜕𝐷), 𝜕	𝐵: 	∩
	𝜕	𝐵* 	= 	𝑥 − 𝜖. For any 𝑥	 ∈ 	𝐷4576

7
 there exists a unique 

point 𝑥∗ 	∈ 	𝜕𝐷 such that 𝛿k(𝑥) 	= 	 |𝑥	 −	𝑥∗|. Let 𝐵: 	=
	𝐵(𝑥: − 2𝜖, 1 + 2𝜖), 𝐵* 	= 	𝐵(𝑥* − 2𝜖, 1 + 2𝜖) be 
inner/outer balls for the point 𝑥∗. Let 𝐻(𝑥) be the half-
space containing 𝐵: such that 𝜕	𝐻(𝑥) contains 𝑥∗ and is 
perpendicular to the segment (𝑥: − 2𝜖)(𝑥* − 2𝜖)ÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌÌ. 

We will need the following very important proposition in 
the proof of Theorem 1.4. Such a proposition has been 
proved for the stable process in [[2], Proposition 3.1] (see 
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[1]). 

Proposition 3.1. Let 𝐷	 ⊂ 	ℝ*+,, 𝜖 ≥ 0, be an open 
bounded set with (1 + 2𝜖)-smooth boundary 𝜕𝐷. Then for 
any 𝑥	 ∈ 	𝐷4576

7

¼ 	and 𝜖 ≥ 0 such that (1 + 𝜖)
4
456 ≤ :+*,

*
 we 

have 
Í𝑟k(1 + 𝜖, 𝑥, 𝑥) −	𝑟�(t)(1 + 𝜖, 𝑥, 𝑥)Í 		

≤
𝑐𝑒*(:+,)7(1 + 𝜖)

4
456

(1 + 2𝜖)(1 + 𝜖)
756
456

⎝

⎛¦
(1 + 𝜖)

4
456

𝛿k(𝑥)
¨

4576
7

∧ 1

⎠

⎞.																											(3.5) 

Proof. Exactly as in [2], let 𝑥∗ 	∈ 	𝜕𝐷 be a unique point 
such that |𝑥	 −	𝑥∗| = dist(𝑥, 𝜕𝐷) and 𝐵: and 𝐵* be balls 
with radius (1 + 2𝜖) such that 𝐵: 	⊂ 	𝐷, 𝐵* 	⊂ ℝ*+,\(𝐷	 ∪
𝜕𝐷), 𝜕	𝐵: 	∩ 𝜕	𝐵* 	= 	𝑥∗. Let us also assume that 𝑥∗ 	= 	0 
and choose an orthonormal coordinate system 
(𝑥:, 𝑥*, . . . , 𝑥*+,) so that the positive axis 0𝑥: is in the 
direction of 0𝑝ÒÒÒÒ⃗  where 𝑝 is the center of the ball 𝐵:. Note 
that 𝑥 lies on the interval 0𝑝 so 𝑥	 = 	 (|𝑥|, 0, 0, . . . , 0). Note 
also that 𝐵: 	⊂ 	𝐷	 ⊂ 	 (𝐵*ÌÌÌ)Ä and 𝐵: 	⊂ 	𝐻(𝑥) 	⊂ 	 (𝐵*ÌÌÌ)Ä . 
For any open sets 𝐴:, 𝐴* such that 𝐴: 	⊂ 	𝐴* we have 
𝑟Ã4	(1 + 𝜖, 𝑥, 𝑥 − 𝜖) ≥ 𝑟Ã7	(1 + 𝜖, 𝑥, 𝑥 − 𝜖) so 
Í𝑟k(1 + 𝜖, 𝑥, 𝑥) −	𝑟�(t)(1 + 𝜖, 𝑥, 𝑥)Í

≤ 𝑟P4	(1 + 𝜖, 𝑥, 𝑥) −	𝑟(P7ÌÌÌÌ)Ô	(1 + 𝜖, 𝑥, 𝑥). 
So in order to prove the proposition it suffices to show that 

𝑟P4	(1 + 𝜖, 𝑥, 𝑥) −	𝑟(P7ÌÌÌÌ)Ô	(1 + 𝜖, 𝑥, 𝑥)

≤
𝑐𝑒*(:+,)7(1 + 𝜖)

4
456

(1 + 2𝜖)(1 + 𝜖)
756
456

⎝

⎛¦
(1 + 𝜖)

4
456

𝛿k(𝑥)
¨

4576
7

	∧ 	1

⎠

⎞	, 

for any 𝑥	 = 	 (|𝑥|, 0, . . . , 0), |𝑥| 	∈ 	 (0, :+*,
*
]. Such an 

estimate was proved for the case 𝜖	 = −1 in [2]. In order to 
complete the proof it is enough to prove that 

𝑟P4	(1 + 𝜖, 𝑥, 𝑥) −	𝑟(P7ÌÌÌÌ)Ô	(1 + 𝜖, 𝑥, 𝑥)
≤ 𝑐𝑒*(:+,)7Õ�̃�P4	(1 + 𝜖, 𝑥, 𝑥) − �̃�(P7)Ô(1
+ 𝜖, 𝑥, 𝑥)Ö.	 

To show this given the ball 𝐵*, we set 𝑈	 = 	 (𝐵*ÌÌÌ)Ä	. Now 
using the generalized Ikeda–Watanabe formula, Proposition 
2.5 and Lemma 2.6 we have 

𝑟P4(1 + 𝜖, 𝑥, 𝑥) − 𝑟Ø(1 + 𝜖, 𝑥, 𝑥)
= 𝐸tu1 + 𝜖 > 𝜏P4	, 𝑋�𝜏P4	�
∈ 𝑈\𝐵:; 𝑝Ø	�1 + 𝜖 − 𝜏P4, 𝑋�𝜏P4�, 𝑥�y 	

= \ 	
P4
\ 	
:+,

O
𝑝P4(𝑠, 𝑥, 𝑥

− 𝜖)𝑑𝑠\ 	
Ø\P4

𝑣(𝜖)𝑝Ø(1 + 𝜖 − 𝑠, 𝑥

− 2𝜖, 𝑥)𝑑(𝑥 − 2𝜖)𝑑(𝑥 − 𝜖) 

≤ 𝑒*(:+,)7 \ 	
P4
\ 	
:+,

O
	𝑝HP4	(𝑠, 𝑥, 𝑥 − 𝜖)𝑑𝑠	\ 	

Ø\P4
	𝑣H(𝜖)𝑝HØ	(1

+ 𝜖	 − 	𝑠, 𝑥 − 2𝜖, 𝑥)𝑑(𝑥 − 2𝜖)𝑑(𝑥 − 𝜖) 

≤ 𝑐𝑒*(:+,)7𝐸tu1 + 𝜖 > �̃�P4	, 𝑋F�𝜏P4�
∈ 	𝑈\𝐵:; 𝑝HØ�1 + 𝜖 − �̃�P4, 𝑋F��̃�P4	�, 𝑥�y 	
= 	𝑐𝑒*(:+,)7�̃�P4(1 + 𝜖, 𝑥, 𝑥)
− �̃�Ø(1 + 𝜖, 𝑥, 𝑥) 

≤
𝑐𝑒*(:+,)7(1 + 𝜖)

4
456

(1 + 2𝜖)(1 + 𝜖)
756
456

⎝

⎛¦
(1 + 𝜖)

4
456

𝛿k(𝑥)
¨

4576
7

	∧ 	1

⎠

⎞	. 

The last inequality followed by Proposition 3.1 in [2]. 

Now using this proposition we estimate the contribution 
from 𝐷\𝐷4576

7
 to the integral of 𝑟k(1 + 𝜖, 𝑥, 𝑥) in (3.1). 

Claim 2. For (1 + 𝜖)
4
456 ≤ :+*,

*
 we get   

�\ 	
k\k4576

7

𝑟k(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

− \ 	
k\k4576

7

𝑟�(t)(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥�

≤
𝑐𝑒*(:+,)7|𝐷|(1 + 𝜖)*(:+,)

(1 + 2𝜖)*(1 + 𝜖)(*+,)(:+,) 	.																																			(3.6) 

Proof. By Proposition 3.1 the left-hand side of (3.6) is 
bounded above by 

𝑐𝑒*(:+,)7

(1 + 2𝜖)(1 + 𝜖)\ 	
4576
7

O
|𝜕𝐷:+,| <I(1 + 𝜖)

9 6
456K

4576
7 	

∧ 	1> 	𝑑(1 + 𝜖). 

By Corollary 2.8, (i), the last quantity is smaller than or 
equal to 

𝑐𝑒*(:+,)7|𝜕𝐷|
(1 + 2𝜖)(1 + 𝜖)\ 	

4576
7

O
<I(1 + 𝜖)9

6
456K

	4576
7 	∧ 	1>𝑑(1

+ 𝜖). 

The integral in the last quantity is bounded by 𝑐(1 + 𝜖)
4
456. 

To see this observe that since (1 + 𝜖)
4
456 ≤ :+*,

*
 the above 

integral is equal to 
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\ 	
(:+,)

4
456

O
<I(1 + 𝜖)9

6
456K

4576
7 	∧ 	1>𝑑(1 + 𝜖)

+\ 	
4576
7

(:+,)
4
456

<I(1 + 𝜖)9
6

456K
4576
7 	

∧ 	1>𝑑(1 + 𝜖) 	

= \ 	
(:+,)

4
456

O
	1	𝑑(1 + 𝜖)

+\ 	
4576
7

(:+,)
4
456

I(1 + 𝜖)9
6

456K
4576
7 	𝑑(1 + 𝜖)

≤ 𝑐(1 + 𝜖)
4
456. 

Using this and Corollary 2.8, (ii), we get (3.6). 

Recall that 𝐻	 = 	 {(𝑥:, . . . , 𝑥*+,) 	∈ ℝ*+,:	𝑥: 	> 	0}. For 
abbreviation let us denote 

𝑓�	(1 + 𝜖, 1 + 2𝜖)
= 	 𝑟�	�1
+ 𝜖, (1 + 2𝜖, 0, … , 0), (1
+ 2𝜖, 0, … , 0)�,									𝜖 ≥ 0. 

Of course we have 𝑟�(𝑥)(1 + 𝜖, 𝑥, 𝑥) 	= 	𝑓�	(1 +
𝜖, 𝛿�	(𝑥)). In the next step we will show that 

�\ 	
k\k4576

7

	𝑟�(t)(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

− |𝜕𝐷|\ 	
4576
7

O
	𝑓�	(1 + 𝜖, 1 + 2𝜖)𝑑(1

+ 2𝜖)� 

≤
𝑐𝑒*(:+,)7|𝐷|

(1 + 2𝜖)*(1 + 𝜖)
6

456
	.																																														(3.7) 

We have 

\ 	
k\k4576

7

𝑟�(𝑥)(1 + 𝜖, 𝑥, 𝑥)𝑑𝑥

= \ 	
4576
7

O
	|𝜕𝐷:+*,|𝑓�	(1 + 𝜖, 1 + 2𝜖)𝑑(1

+ 2𝜖). 

Hence the left-hand side of (3.7) is bounded above by 

\ 	
4576
7

O
	|𝜕𝐷:+*,| − |𝜕𝐷|𝑓�	(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖). 

By Corollary 2.8, (iii), this is smaller than 

𝑐|𝐷|
(1 + 2𝜖)* \ 	

4576
7

O
	(1 + 2𝜖)𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)

≤
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)* \ (1 + 2𝜖)
4576
7

O
	𝑓Ù�	(1

+ 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)	 

=
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)* \ 	
4576
7

O
	(1 + 2𝜖)(1

+ 𝜖)9
756
456	𝑓Ù� I1, (1

+ 2𝜖)(1 + 𝜖)9
4
456K 𝑑(1 + 2𝜖)	 

=
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)*(1 + 𝜖)
756
456

	\ 	
4576
7 (:+,)

4
456

O
	(1 + 2𝜖)(1

+ 𝜖)
7
456	𝑓Ù�	(1, 1 + 2𝜖)𝑑(1 + 2𝜖) 

≤
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)*(1 + 𝜖)
6

456
\ 	
]

O
	(1

+ 2𝜖)�(1 + 2𝜖)9(�+*,) 	∧ 	1�𝑑(1 + 2𝜖)

≤
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)*(1 + 𝜖)
6

456
	. 

This shows (3.7). Finally, we have 

�|𝜕𝐷|\ 	
4576
7

O
𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)

− |𝜕𝐷|\ 	
]

O
𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)�

≤ |𝜕𝐷|\ 	
]

4576
7

𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1

+ 2𝜖) 

≤
𝑐|𝐷|
1 + 2𝜖\ 	

]

4576
7

	𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1

+ 2𝜖)	by	Corollary	2.8, (ii) 

≤
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)(1 + 𝜖)
756
456

\ 	
]

4576
7

	𝑓� I1, (1

+ 2𝜖)(1 + 𝜖)9
4
456K 𝑑(1 + 2𝜖) 

=
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)(1 + 𝜖)\ 	
]

4576
7 (:+,)

4
456

	𝑓Ù�	(1, 1 + 2𝜖)𝑑(1 + 2𝜖). 

Since (:+*,)(:+,)
4
456

*
≥ 1, so for 1 + 2𝜖 ≥ (:+*,)(:+,)

4
456

*
≥ 1 

we have 𝑓Ù�	(1, 1 + 2𝜖) ≤ 𝑐(1 + 2𝜖)9(�+*,) ≤
𝑐(1 + 2𝜖)9*. Therefore, 
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\ 	
]

(4576)(456)
4
456

7

	𝑓Ù�	(1, 1 + 2𝜖)𝑑(1 + 2𝜖)

≤ 𝑐 \ 	
]

(4576)(456)
4
456

7

𝑑(1 + 2𝜖)
(1 + 2𝜖)*

≤
𝑐(1 + 𝜖)

4
456

1 + 2𝜖 	. 

Hence, 

�|𝜕𝐷|\ 	
4576
7

O
	𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)

− |𝜕𝐷|\ 	
]

O
	𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖)�

≤
𝑐|𝐷|𝑒*(:+,)7

(1 + 2𝜖)*(1 + 𝜖)	.																																											(3.8) 

Note that the constant 𝐶*(1 + 𝜖) which appears in the 
formulation of Theorem 1.4 satisfies 𝐶*(1 + 𝜖) =
∫ 	]
O 𝑓�(1 + 𝜖, 1 + 2𝜖)𝑑(1 + 2𝜖). Now Eqs. (3.1), (3.2), 

(3.6), (3.7), (3.8) give (1.11). 
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