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Abstract: The authors of this paper take a fractional calculus approach to the Casagrandi and Rinaldi mathematical model 
of tourists in an area or country. The tourism model uses an ordinary differential equation to investigate the number of 
tourists in the area, the quality of natural resources, and the amounts invested in tourist infrastructure. For each scenario in 
the model, the ordinary differential equations are fractionalized using the Caputo derivative of a function with respect to a 
specific exponential function. In each example, we incorporate the concept of fractionalization in conjunction with a 
specific exponential function in order to change the model. As a result, various hypotheses are elicited by allowing some 
adjustments to the initial parameters. The results are further displayed by plotting Mittag-Leffler function graphs for 
various parameters and comparing them to the original solutions. The graphs' analysis investigates the behaviour of the 
modified model's solution; in this study, all modified model solutions are of the Mittag – Leffler form, whereas all original 
models solve using an exponential function. The assumptions and changes in parameters cause minor changes in the 
behaviour of the solutions. 
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1 Introduction 
 

Fractional calculus is the mathematical study of the characteristics of integral and differential operators with real or 
complex orders [1]. When modeling processes or systems that have memory or are nonlocal, the techniques of fractional 
calculus may be quite helpful [2]. Different forms of fractional integrals and differential operators have been suggested by 
mathematicians such as Riemann, Liouville, Grunwald, Letnikov, Sonine, Marchaud, Weyl, Riesz, Hadamard, Kober, 
Erdelyi, Caputo, and many more. Among the peculiar characteristics of the fractional derivatives is the fact that they break 
the product and chain principles. A key feature of derivatives of non-integer orders is that they enable us to explain 
complicated features of processes and systems by deviating from the conventional form of the product rule [3]. 
 
Broad terms, sustainability refers to any effort made to ensure that a certain resource will be there for future generations 
[4]. However, the term sustainability truly encompasses four separate domains: the human, social, economic, [5] and 
environmental [6]. Without the development of mathematical models and ancillary tools to predict the main indicators of 
sustainable tourism development, identify key development factors, and evaluate the efficacy of management decisions, the 
economic, socioeconomic, and environmental problems of sustainable tourism development cannot be solved [7]. The key 
uses of economic and mathematical models for company development include predicting visitor numbers and measuring 
the economic performance of the tourist sector [8]. The establishment of models detailing the region's economic, 
environmental, and social sustainability and identifying crucial components of sustainable development may assure long-
term good benefits of hotel sector expansion [5]. The established mathematical models take into account the effects of 
tourist expansion [9] on the economy, the environment, and society[7, 8]. Using factors like the abundance of natural 
attractions and the level of investment in tourist infrastructure, the Casagrandi and Rinaldi Model [10, 11] can estimate the 
total number of visitors to a given nation. It has the following form, as suggested in 2002:               
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Above, The No of tourists, T(t), the quality of the area's natural resources, E(t), the amount of money put into the area's 
tourist infrastructure, C(t), the attractiveness of the environment at E →∞, the attractiveness of the infrastructure at C, the 
half-saturation constants, → ∞, 𝜑! and 𝜑" are all shown in the equation. an is the coefficient of the rate of decline in scenic 
allure as visitor numbers rise, z is the rate of improvement in environmental quality (assuming small E), and K is the 
carrying capacity of the ecosystem. The environmental effect of tourism in the area (country) and the availability of capital 
investments in infrastructure are measured by the metrics γ & β, respectively. Here, ε is the rate of return on investment, 
and δ is the rate at which physical assets are being worn down. 
 
2 A function's fractional derivative with relation to the another function 
 
Fractional calculus is  branch of mathematics that investigates several powers for a particular operator, which can be real or 
complex integers[12]. Fractional calculus applications have gotten a lot of attention in the last five years in the domains of 
economics, physics, engineering, and biology [13, 14]. 
 
The Riemann-Liouville fractional derivative definition may be recreated by replacing the order of the ordinary derivative 
with the fractional integral operator [15].The Laplace transformation is now reliant on the beginning circumstances of this 
new integer order derivative, as opposed to the initial conditions of the fractional order derivative when using the Riemann-
Liouville fractional derivative. 
 
The following definitions are used throughout this article to explain the fractional derivative and the integral of a function 
with respect to another function[16]. 
 
Definition1 Let  𝜃 > 0.		𝑛	 ∈ 𝑁. 𝐼 is an interval 	−	∞	 ≤ 𝑎	 ≤ 𝑏	 ≤ 	∞.		𝑓 is integrable function defined on 	𝐼 and 𝑔	 ∈
	𝐶$(𝐼)such that  𝑔 is strictly increasing and 𝑔' ≠ 0.	for all	𝑡	 ∈ 𝐼. Then, with regard to another function g, the fractional 
integral of function f is provided by 
 

𝐼(%
	*.,𝑓(𝑡) 	 ∶= 	

1
Γ(𝜃)T𝑔

'(𝜏)[𝑔(𝑡) − 𝑔(𝜏)]*-$𝑓(𝜏)𝑑𝜏.
.

(

 
 
(2.1) 

 
Note that if g(t)=t, the above assumption may be reduced to the RiemannLiouville fractional integral. 
 
Using the first definition as a guide, the Caputo derivative of f with respect to g may be thought of in the following way: 
Definition2 Let 	𝜃 > 0.		𝑛 = [𝜃] ∈ 𝑁. 𝐼 = (𝑎. 𝑏) is an interval 	−	∞	 ≤ 𝑎	 ≤ 𝑏	 ≤ 	∞. 𝑓 ∈ 𝐶/(𝐼). 𝑔	 ∈ 	𝐶$(𝐼)two functions 
such that 𝑔 is strictly increasing and 𝑔' ≠ 0.	for all	𝑡	 ∈ 𝐼. The right fractional derivatives of 𝑓  with respect to 𝑔are 
respectively given by 
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(2.2) 

 
Remark 1 If 𝑓(𝑡) = 	 [𝑔(𝑡) − 𝑔(𝑎+)]0-$.			𝛽 > 1 then: 
 

𝑐𝐷(%
	*	.,𝑓(𝑡) = 	

Γ(𝛽)
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(2.3) 

In this context, we recall the Mittag-Leffler functions, which have been extensively studied by several authors owing to 
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their central role in the study of fractional differential equations and their applications (for examples, [17, 18]). 
 
It was recently proposed by Almeida in [19],that Mittag-Leffler functions may be composed with other functions., and can 
potentially be advantageous. Integro-differential equations may provide solid theoretical foundations for these 
investigations. To that purpose, study propose: 
 
Remark 2If 𝑓(𝑡) = 	𝐸*	Z𝜆[𝑔(𝑡) − 	𝑔(𝑎+)]0-*-$\. 𝜆	 ∈ 𝑅	 
 

𝑐𝐷(%
	*	.		,	𝑓(𝑡) = 𝜆	𝑓(𝑡) 

 
(2.4) 

 
Proposition 1 The following application is considered in the present technique. Any form model will suffice. 
 
 

𝑒1.
𝑑𝑀(𝑡)
𝑑𝑡 = 𝑦𝑀(𝑡) (2.5) 

 
 
First, we perform a fractionalization of the first order differential equation by including fractional derivative of 𝑀(𝑡)with 
regard to the strictly increasing function	𝑔(𝑡) = 𝑒1.. The new model will then be: 
 

𝑐𝐷(%
*	.		,𝑀*(𝑡) = 		𝑦𝑀*(𝑡).									𝜃 ∈ (0.1].			with	initial	condition	𝑀*(0) = 	𝑀2 

 
(2.6) 
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$

2

.	 

 

 
(2.7) 

This is a specific case of the fractional derivative of a function with regard to another function that is of the Caputo type ,as 
we assumed that 	𝑔(𝑡) = 𝑒1. with the restriction of	𝜃 ∈ (0.1]. It is evident that Equation (2.6) is an Eigenvalue problem for 
the Caputo-type fractional operator defined in Equation (2.7), whose solution is given by 
 

		𝑀*(𝑡) = 	𝑀2𝐸* n
𝑦
𝑥*
(1 − 𝑒-1.)*o 

 

 
(2.8) 

3  Fractionalizing Casagrandi and Rinaldi Model (General) 

 
We consider the case The vector (Т, Е, С) = (0,0,0) which is a non-movable point that linearizes (1.1) in its vicinity: 
 

⎩
⎪
⎨

⎪
⎧
𝑑𝑇
𝑑𝑡 = −𝑎𝑇																

𝑑𝐸
𝑑𝑡 = 𝑧𝐸																					

𝑑𝐶
𝑑𝑡 = −𝛿𝐶 + 𝜀𝑇							

																																																																																																					(3.1)	 

 
The solutions to the first two equations (3.1) may be found with relative ease:  

𝑇(𝑡) = 𝑒-(.𝑇2.																																																																																																													(3.2) 
𝐸(𝑇) = 𝑒4.𝐸2.																																																																																																															(3.3) 

 
When the answer to equations (3.2) and (3.3) are swapped into the third equation, we get the following result: 

𝑑𝐶
𝑑𝑡 = −𝛿𝐶 + 𝜀𝑇2𝑒-(. .																																																																																																		(3.4) 

The solution of (3.4) has the form: 
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𝜀𝑇2
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𝑒-(. =
𝜀𝑇2

−𝑎 + 𝛿 𝑒
-(.																																																																																			(3.5) 

 
Despite the exponential increase in environmental quality, the number of visitors and capital investments in infrastructure 
trend exponentially to zero if a > 0. (3.3). Obviously, the resort won't be operational, so let's assume that. The number of 
visitors, environmental quality (z > 0), and investment all increase at a constant exponential rate in solutions (3.2), (3.3), 
and (3.5), respectively. The start of the holiday season may be seen in these decisions. 
 
Proposition 2: “The Caputo fractional derivate of 𝑇(𝑡) with respect to	𝑒1.”. 
We let 	𝑎 = −𝑒-1. .		𝑥 > 1 in assertion (3.1), that is 
 

𝑑𝑇
𝑑𝑡 = 𝑒-1.𝑇	 → 			 𝑒1.

𝑑𝑇
𝑑𝑡 	= 𝑇 

 

(3.6) 

Then we apply Proposition 1, we fractionalize the latter by considering the Caputo fractional derivative of 𝑇(𝑡) with 
respect to 𝑔(𝑡) = 	𝑒1. .	which is strictly increasing with 𝑔'(𝑡) 	≠ 0.	the model equation will be 
 

𝑐𝐷2%
	*	.,𝑇*(𝑡) = −𝑇*(𝑡).									𝜃 ∈ (0.1) (3.7) 

 
With initial condition	𝑇*(0) = 𝑇2 > 0 

𝑐𝐷2%
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𝑥 m
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2

 
 
(3.8) 

 
The solution is given by 

𝑇*(𝑡) = 𝑇2𝐄𝛉	 u
1
𝑥*
(1 − 𝑒-1.)*v  

(3.9) 
  
 
Proposition 3: “The Caputo fractional derivate of 𝐸(𝑡) with respect to	𝑒1.” 
We apply the same modifications as in Proposition 2 , we also consider the case when the rate of growth z is  a function of 
t that is 𝑧 = 𝑧(𝑡) = 𝑒-1., then equation 2 in (3.2)  can be viewed as 
 
 

5!
5.
= 𝑒-1.𝐸 →	𝑒1. 5!

5.
= 𝐸.		𝜃 ∈ (0.1).  

(3.10) 
 
This leads to yield a new model of equation 

𝑐𝐷2%
	*	.,𝐸*(𝑡) = 𝐸*(𝑡).									𝜃 ∈ (0.1) (3.11) 

 
Following the similar approach, we receive 
 

𝐸*(𝑡) = 𝐸2𝐄𝛉	 u
1
𝑥*
(1 − 𝑒-1.)*v 

 
(3.12)  

 
Proposition 4: “The Caputo fractional derivate of 𝐶(𝑡) with respect to	𝑒1.” 
We consider the case when the pace of depreciation of the infrastructure is  a function of t that is 𝛿 = 𝛿(𝑡) = 𝑒-1., then 
equation 3 in (3.1)  can be viewed as 
 

𝑑𝐶
𝑑𝑡 = −𝑒-1.𝐶 + 𝜀𝑇2𝑒-(. 	→ 	 𝑒1.

𝑑𝐶
𝑑𝑡 = 𝐶 + 𝜀𝑇2𝑒(-(%1.)	. 𝑇2 ≈ 0	 → 			 𝑒1.

𝑑𝐶
𝑑𝑡 = 𝐶		(3.13) 

 
This leads to yield a new model of equation 
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𝑐𝐷2%
	*	.,𝐶*(𝑡) = 𝐶*(𝑡).									𝜃 ∈ (0.1)                                                                   (3.14)  

 
 

 
With solution; 
 

𝐶*(𝑡) = 𝐶2𝐄𝛉	 u
1
𝑥*
(1 − 𝑒-1.)*v																																																																																													(3.15)	 

 
 
4  Fractionalizing Casagrandi and Rinaldi Model (Peak of the holiday season) 

 
We consider the peak season where T >> 1. We can than view (1.1) as: 
 

⎩
⎪
⎨

⎪
⎧
𝑑𝑇
𝑑𝑡 ≈ 𝑇 3

𝜇!𝐸
𝐸 + 𝜑!

− 𝛼𝑇 − 𝑎6

𝑑𝐸
𝑑𝑡 ≈ 𝑧(𝐾 − 𝐸) − 𝛾𝐸𝑇
𝑑𝐶
𝑑𝑡 ≈ −𝛿𝐶 + 𝜀𝑇

																																																																																																					(4.1) 

 
 
Now, let's take a look at the situation., when 𝐸 ≫ 𝜑!, then the form of (4.1) is as follows: 

⎩
⎪
⎨

⎪
⎧
𝑑𝑇
𝑑𝑡 ≈ 𝑇(𝜇! − 𝛼𝑇 − 𝑎)

𝑑𝐸
𝑑𝑡 ≈ 𝑧(𝐾 − 𝐸) − 𝛾𝐸𝑇

𝑑𝐶
𝑑𝑡 ≈ −𝛿𝐶 + 𝜀𝑇

																																																																																																							(4.2) 

The form of the stationary solution to the first equation of the system (4.2) is as follows: 
 

𝑇2 =
𝜇! − 𝑎
𝛼 																																																																																																																												(4.3) 

As a result of extending the first equation (4.2) around the point (4.3), we get: 
 

𝑑𝑇
𝑑𝑡 ≈

(𝜇! − 𝑎 − 2𝛼𝑇2)(𝑇 − 𝑇2).																																																																																			(4.4) 
The solution of (4.4) has the form: 
 𝑇(𝑡) = 𝑇2 + exp{(𝜇! − 𝑎 − 2𝛼𝑇2)𝑡} (𝑇(𝑜) − 𝑇2).                                                                             (4.5) 
 
When 𝑇2 >

:!	-(	
;<

, Which is usual throughout the holiday season's peak, 𝑇(𝑡) → 𝑇2.  Consequently, the two lower equations 
(4.2) acquire the following form: 
 
 

⎩
⎨

⎧
𝑑𝐸
𝑑𝑡 ≈ −(𝑧 + 𝛾𝑇2) 3𝐸 −

𝑧𝐾
𝑧 + 𝛾𝑇2

6																																																																													(4.6)

𝑑𝐶
𝑑𝑡 ≈ −𝛿 �𝐶 −

𝜀
𝛿 𝑇2�																																																																																														

 

 
The following are its potential solutions: 

𝐸(𝑡) = 4=
4%>&#

+ �𝐸(𝑜) − 4=
4%>&#

� 𝑒-(4%>&#).                                                        (4.7) 
 

𝐶(𝑡) = ?
@
𝑇2 + �𝐶(𝑜) −

?
@
𝑇2� 𝑒-@..                                                                      (4.8) 

These solutions show that, when ≫ 1𝐸(𝑡) ≈ 4=
4%>&#

.		𝐶(𝑡) ≈ ?
A
𝑇2. 
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Proposition 5 
We evoke the impact of a significantly low capacity of the ecosystem, that is 𝑧	 ≈ 0. We also assume that −(𝑧 + 𝛾𝑇2) =
𝑒1. . then equation 1 in (4.6) reduces to 
 

𝑑𝐸
𝑑𝑡 = 	−𝑒

-1.𝐸 → 𝑒1.
𝑑𝐸
𝑑𝑡 = −	𝐸																																																																				(4.9) 

Which after fractionalization solves for 
 

𝐸*(𝑡) = 𝐸2𝐄𝛉	 u
1
𝑥*
(1 − 𝑒-1.)*v																																																																					(4.10)	 

 

Proposition 6 
We consider a very low initial number of tourists, that is 𝑇2 	≈ 0, we also view the pace of depreciation of the 
infrastructure as an exponential function 𝛿 = 𝑒1. then equation 2 in (4.6) is 
 

 
𝑑𝐶
𝑑𝑡 ≈ −𝑒-1.𝐶 →	𝑒1.

𝑑𝐶
𝑑𝑡 = −	𝐶 

 
Which after fractionalization solves for 
 

𝐶*(𝑡) = 𝐶2𝐄𝛉	 u
1
𝑥*
(1 − 𝑒-1.)*v																																																																			(4.11) 

 
 
 

 
 
 
 
 
 
 
   
     
 

 
 
 
 
 

Figure 1: T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.8    and Tө (t) in equation (3.10) for Ө = 0.3 and four 
representative values of x =1.2 (Black), 1.5 (Blue), 2 (Green) and 2.5 (Magenta) 

 
The parameter α is a reference value for attractiveness, and the parameter ∈ describes the investment program being 
pursued. High value has both of these parameters. Both of these criteria are taken into account while looking at the 
bifurcation. 
 
 
 
 
 
 
  
 
 
 
 
 

Figure 2: T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.2    and Tө (t) in equation (3.10) for Ө = 0.7 and four 
representative values of x =3 (Black), 3.5 (Blue), 4 (Green) and 5 (Magenta) 
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5 Graphical Analysis (ODE Vs Fractional Models) 
 

 
 
 
 

Figure 2:T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.2    and Tө (t) in equation (3.10) for Ө = 0.7 and four 
representative values of x =3 (Black), 3.5 (Blue), 4 (Green) and 5 (Magenta) 
 

   

Figure 3: T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.4 and Tө (t) in equation (3.10) for x = 15 and four 
representative valuesof Ө =03 (Black), 0.5 (Blue), 0.7 (Green) and 0.9 (Magenta). 

 
 

 
 

Figure 4:T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.6 and Tө (t) in equation (3.10) for x = 0.6 and four 
representative values of Ө =0.3 (Black), 0.5 (Blue), 0.7 (Green) and 0.9 (Magenta). 

 
Figure 5: E(t) vs Eө (t), E(t) in equation (3.4) for the value z =  0.8 and Eө (t) in equation (3.13) for Ө = 0.2 and four 
representative values of x =5 (Black), 10 (Blue), 15(Green) and 20 (Magenta). 

Figure 1: T(t) vs Tө (t) T(t) in equation (3.3) for the value a = - 0.8    and Tө (t) in equation (3.10) for Ө = 0.3 and four 
representative values of x =1.2 (Black), 1.5 (Blue), 2 (Green) and 2.5 (Magenta) 
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Figure 6: E(t) vs Eө (t),  E(t) in equation (3.4) for the value z = 0.4 and Eө (t) in equation (3.13) for x = 4.5 and four 
representative values of Ө =0.3 (Black),0.5 (Blue), 0.7 (Green) and 0.9 (Magenta). 
 

 
Figure 7: C(t) vs Cө (t), C(t) in equation (3.6) for the values ε= 0.5, δ = 0.2,   a = - 0.8 and Cө (t) in equation (3.16) for Ө = 
0.4 and four representative values of x =2 (Black), 4 (Blue), 6 (Green) and 8 (Magenta). 

 
Figure 8:C(t) vs Cө (t), C(t) in equation (3.6) for the values ε= 0.9, δ = 0.1,  a = - 0.6      and Cө (t) in equation (3.16) for x 
= 5 and four representative values  of Ө =0.3 (Black), 0.5 (Blue), 0.7 (Green) and 0.9 (Magenta). 
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Figure 9: E(t) vs Eө (t), E(t) in equation (4.7) for the values  z = 0.1, K = 5, γ = 0.8, T0 = 0.2 and Eө (t) in equation (4.10) 
for  E0 = 0.3, x = 1.5, and four representative values of Ө =0.3 (Black),  0.5 (Blue), 0.7 (Green) and 0.9 (Magenta). 
 

 
Figure 10: E(t) vs Eө (t), E(t) in equation (4.7) for the values of z = 0.05,  K = 2, γ = 0.3, T0 = E0 = 0.1 and Eө (t) in 
equation (4.10) for Ө = 0.5  and four representative values of x =2 (Black), 4 (Blue), 6 (Green) and 8 (Magenta). 
 

 
Figure 11:C(t) vs Cө (t,) C(t) in equation (4.8) for the values ε= 0.9, δ = 0.05,   C0 = T0 = 0.1 and Cө (t) in equation (4.11) 
for x= 3 and four representative values of Ө =0.2 (Black), 0.4 (Blue), 0.6 (Green) and 0.8 (Magenta) 
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Figure 2: C(t) vs Cө (t),  C(t) in equation (4.8) for the values ε= 0.6, δ = 0.01,  C0 = T0 = 0.05   and Cө (t) in equation 
(4.11) for Ө = 0.5 and  four representative values of x =2 (Black), 4 (Blue), 6 (Green) and 8 (Magenta). 
 

6 Conclusions 
 

Generally, growth (decay) models are obtained from observations under specific circumstances and within a limited time 
interval, without denigrating the efficiency of such models, the one may question their accuracy for long run especially that 
the constant (decay) rate may also be subject to changes. For that, considering growth rates in this study as functions of 
time notably exponential functions resulted fractional models that solve as Mittag – Leffler functions. Therefore; the 
figures have shown that all fractional models are also increasing exactly like the original exponential one. However, the 
growth of fractional models is almost logarithmic which can be a clue that for long term, fractional calculus models seem 
to be more accurate and realistic than the ODE models. 
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