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Abstract: In this paper, the unsteady and nonlinear Navier-Stokes equations in three Cartesian coordinates are converted to 
the linear diffusion equations based on the concept of linear velocity operator (v" . ∇). The stream function Ψ(x, y, z, t) 
represents the analytical solutions of dimensional continuity and  linear Navier-Stokes equations.  As a physical application, 
the viscous Newtonian fluid flow in a 3D peristaltic horizontal tube is described by non-dimensional continuity and linear 
Navier-Stokes's equations. The analytical solution in terms of stream function is obtained for different values of time, 
wavelengths, and Reynolds numbers for a first time. Moreover, the streamlines change from laminar, to transit, and then to 
turbulent flow with increasing time interval.  Authors introduced the 3D analytical solutions of linear and nonlinear Navier-
Stokes equations as a millennium problem. 
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1 Introduction  

      The Navier-Stokes equations represent the soul of fluid 
mechanics for describing the fluid flow under the effect of 
different forces. The Navier–Stokes equations may be used 
to model the weather, ocean currents, petroleum, biomedical 
engineering, water flow in a pipes and problems of air flow 
around a wing. Moreover, in their full and simplified forms, 
help with the design of aircraft and cars, the study of blood 
flow, the design of power stations, the analysis of pollution, 
and many other problems [1- 11]. In fluid mechanics, the 
physical problems are formulated by continuity, Navier-
Stokes, energy, and state equations [12]. There are many 
problems that can be formulated by the nonlinear partial 
differential equations, which face some difficulties in the 
way of analytical solutions [13-14]. The analytical and 
numerical method for solving the dissipative, nonlinear, and 
non-stationary partial differential equations is obtained by 
Mohammadein [15-22], Nugroho [21], Obada [22],  Schöffel 
[23], and Shalaby [24]. The development of the basis of 
quantum mechanics is illustrated in detail by Obada et al 
[22]. Moreover, the Navier-stokes equation is transformed to 
Schrödinger equation [25] based on assumption that the fluid 
velocity is equal to the gradient of potential by using Hopf-
Cole transformation [4, 25]. The numerical technique in two-
phase bubbly flow is treated by Bilicki [26]. 
      On the existence, Regularity and decay of Navier-Stokes 
solutions, the mathematics scientists tried to make proof that 

the solution of Navier-Stokes equations exists, and the 
solution is unique [8]. Here there are very important question 
for specialist mathematician scientists if the solution is 
existing and unique, then where the efforts to find the 
analytical solution? The solution exists because Navier-
Stokes equation is a well posed problem and there are many 
treatments for solving the nonlinear Navier-Stokes equations 
in different cases [6-7]. The treatments involve numerical, 
approximate, or analytical methods. The numerical methods 
like Rung-Kutta, finite difference, and volume element 
methods [3, 9, 10-11, 15-17] ;which are applied for solving 
many problems. 
      Approximate methods like similarity parameters, 
homotopy, perturbation and iteration methods are used as a 
special solution [4, 10, 22]. Moreover, there are many 
analytical methods like integration, integrodifferential, 
Hopf-Cole transformation, Green's function, and special 
physical assumptions are used for nonlinear problems [4, 
25]. In the following, we mention very brief history for some 
proposals. Some scientists go to the special cases of fluid and 
flow kinds like taking very small velocity of incompressible 
fluid, or to ignore the nonlinear term in the Navier-Stokes 
equations [15-17, 24].  New approximate analytical solutions 
are obtained for two- and three-dimensional unsteady 
viscous incompressible flows by using the kinetically 
reduced local Navier-Stokes equations as Harfash [9]. In the 
previous treatments, without taking special cases in 
consideration, the nonlinear term in acceleration still 
represents an obstacle for analytical solution. 
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       The new treatment of fluid mechanics by Mohammadein 
[18] solved the obstacle of Navier-Stokes equation, which 
exists in the nonlinear term of acceleration. The 
transformation of linear velocity operator based on linear 
momentum operator in quantum mechanics [5, 12] is 
derived. The nonlinear Navier-Stokes, Burger and 
Korteweg-de Vries (KDV) are transformed to linear 
diffusion equations based on this simplest physical idea [18]. 
Moreover, the continuity and linear Navier-Stokes equations 
are solved in analytical way by Mohammadein et al [19-20] 
in two dimensions cartesian coordinates (x, y) and applied to 
describe the viscous incompressible Newtonian fluid with 
peristaltic flow. The analytical solution of dimensional and 
non-dimensional system of Navier-Stokes equations is 
obtained. The solution in terms of stream function is valid 
for all values of wavelengths and Reynolds numbers. Based 
on the pressure gradient as surface force, the Navier-Stokes 
equations are reformulated. Moreover, both linear and 
original nonlinear Navier-Stokes equations are satisfied by 
the obtained solutions. 
 Mohammadein theory for the nonlinear term $v". 𝛁'𝐯 .   
       Based on the Mohammadein new treatment theory [18], 
the total operator for any physical function 𝑓called  !"

!#
 as 

proposed by Landau [12] takes the form 
              !…

!#
= %…

%#
+ $v". 𝛁'…                                           (1) 

       Based on quantum mechanics, the linear momentum 
operator term    P. = ħ

'
  %
%	)

  play a real role in proofing 
Schrodinger equation and then linear velocity operator 
becomes  v" = ħ

'*
 %
%	)

  . Then, the general operator !…
!#

 becomes 

              !…
!#
= %…

%#
+ $−𝑀∗∇. 𝛁'…                                    (2) 

where v" = −𝑀∗∇, is the physical proposed and 𝑀∗ called 
Mohammadein parameter. The total differentiation of a 
function f in the point of view of Mohammadein description 
[18] has a simplest form 
!	"
!	#

= %"
%#
−𝑀∗∇,	𝑓                                                            (3) 

where 𝑓 is valid for any physical function represents the 
velocity, pressure, temperature, mass diffusion or blood 
concentration in the bio tissues, plasma, thermal, binary 
thermal, and other fields of heat and mass transfer in fluid 
mechanics. For example, the total differentiations for fluid 
velocity and its temperature in the diffusion form become 
 

23
24⏟

46478	799:8:;74<6=

= >3
>4⏟

86978	799:8:;74<6=

− 𝜈	 ∇@v	A	
B<CCDE<6=		799:8:;74<6=

						(4)                                                                                       

 
and !-

!#⏟
#.#/0	12/#	

= %-
%#⏟

0.3/0	12/#

− 𝑎0	∇,𝑇	KLMLN
4'""56'.7		12/#

,                        (5) 

 

where v(𝑢, v, 𝑤) and T (x, y, z, .t) are the velocity and 
temperature of fluid in 3D respectively. We note that    
𝑀∗equal to kinematic viscosity 𝜈 and thermal diffusivity 𝑎0 
for a linear vector velocity v and scalar temperature T of any 
fluid respectively. 
       In this paper, the continuity and unsteady dimensional 

and non-dimensional linear Navier-Stokes equations are 
formulated in three dimensions cartesian coordinates (x, y, 
z) based on Mohammadein et al [18-20] model. This system 
is used to describe the fluid flow of viscous incompressible 
Newtonian fluid in 3D a peristaltic horizontal Tube. The 
simplest analytical solution is obtained in terms of stream 
function Ψ(x, y, z, t) and fluid velocity components (u, v, w); 
which are valid for all different values of  wave lengths. The 
change of laminar to transit and then to turbulent flows are 
observed through the increasing of time. 
 

2 The physical and Mathematical Model in 3D  
consider the incompressible viscous fluid flow in a 3D 
peristaltic horizontal tube (see Fig. 1) in x-axis. The flow is 
caused by infinite sinusoidal wave train moving ahead with 
constant velocity c along the walls of the tube. The gravity 
force is ignored in our case. The peristaltic of four walls 
around x-axis in y and z directions. The peristaltic boundary 
conditions have the form 

𝑦 = ∓𝐻8a+𝑎8 sin (,	9
:;
(𝑥 − 𝑐𝑡)) 

𝑧 = ∓𝐻,=b+𝑏8sin (,9
:<
(𝑥 − 𝑐𝑡))                                 (6) 

where		a and b are the tube half-length of width and height in 

the direction y and z with wave amplitudes  𝑎8and  𝑏8 

respectively. Moreover, the wave lengths are represented by 

𝜆8  and 𝜆,  in the x- direction as in Fig.1.  

The mathematical model is described by continuity and 
three-dimensional Navier-Stokes equations for the viscous 
incompressible fluid flow in x-direction under the effect of 
surface and body forces in the following vector form  
 

 
∇ ∙ v = 0                                                              (7) 
 
%=
%#
+ $v ∙ ∇'v = − 8

>
∇𝑃 + 8

>
∇ ∙ 𝜏'?                                  (8) 

 
where  ∇𝑃 is the gradient of pressure field of fluid flow. The 
shearing stress between layers of fluid   𝜏'? takes   

∇ ∙ 𝜏'? = d
𝜂	∇,v										𝑓𝑜𝑟		Newtonian	fluids

∇ ∙ 𝜏'? 											𝑓𝑜𝑟	Non	Newtonian	fluids
   

 
                                                                          (9) 
The vector Navier-Stokes equation (8) for a Newtonian  fluid 
and based on Mohammadein theory [18], becomes 
%=
%#
= − 8

>
∇𝑃 + 2𝜈∇,𝑣                                 (10) 

The continuity and dimensional linear Navier-Stokes 
equations (7) and (10) respectively in 3D Cartesian 
coordinates become 
𝑢) + 𝑣@ +𝑤A = 0,                                          (11) 
%5
%#
= − 8

>
%B
%)
+ 2	𝜈(𝑢)) + 𝑢@@ + 𝑢AA),                        (12)       
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Fig.1. The sketch of problem. 

 
%=
%#
= − 8

>
%B
%@
+ 2	𝜈$v)) + v@@ + vAA',                    (13) 

%C
%#
= − 8

>
%B
%A
+ 2	𝜈$𝑤)) +𝑤@@ +𝑤AA'.                  (14) 

The above 3 D linear system can be solved by analytical way 
under the proposed of initial and boundary conditions.  
Pressure field 
       The pressure field performs an important parameter in 
Navier-Stokes equations. Based on Bernoulli and 
Mohammadein theory [18], the gradient pressure becomes 
8
>
∇𝑃 = 𝜈	∇,v − 𝑔	𝑛".                                                (15) 

The final form of Navier-Stokes equation (10) for Newtonian 
fluid flow by using equation (15) has the form   
%=
%#
= 𝜈∇,v + 𝑔	𝑛"                                                   (16) 

The continuity and Navier-Stokes equations in 3D tube for 
fluid flow in the x-direction (𝑔) = 𝑔@ = 0, 𝑔A = −	𝑔	𝑛" ), are 
in the form 
𝑢) + v@ +𝑤) = 0,                                                      (17) 
%5
%#
= 	𝜈(𝑢)) + 𝑢@@ + 𝑢AA),                                     (18) 

%=
%#
= 	𝜈$v)) + v@@ + vAA',                       (19) 

%C
%#
= 	𝜈$𝑤)) +𝑤@@ +𝑤AA' + 𝑔	𝑛",                               (20) 

Where 𝑛" is the unit normal vector. 
Stream function  𝚿(𝐱, 𝐲, 𝐳, 𝐭) 
 

       In a 3D incompressible fluid flow, the relation 
between stream function  Ψ(x, y, z, t) and fluid velocity 
components u, v, and w as in Appendix I has the form. 

𝑢 = 2 %<D
%@	%A

,				v = − %<D
%A	%)

, 𝑎𝑛𝑑		𝑤 = − %<D
%)	%@

                                     
                                                                        (21) 
The simplest analytical solution for the above continuity and 
linear Navier-Stokes equations (17-20) by using Picard 
method [19] become  

u(𝑥, 𝑦, 𝑧, 𝑡) = 2	𝑐,	𝑐E𝐴8𝑒
F3;<G3<<G3H<I#J	

K;LMK<NMKHO
√Q                               

v(𝑥, 𝑦, 𝑧, 𝑡) = −𝑐E𝑐8𝐴8𝑒
F3;<G3<<G3H<I#J	

K;LMK<NMKHO
√Q                                

w(𝑥, 𝑦, 𝑧, 𝑡) = −𝑐8𝑐,𝐴8𝑒
F3;<G3<<G3H<I#J	

K;LMK<NMKHO
√Q − 𝑔𝑡     

                                                                            (22) 

where 𝑐8,𝑐,, 𝑐E		and 𝐴8are constants, which are obtained 
based on initial and boundary conditions of the proposed 
physical problem. Moreover, the 3D fluid velocity 
components (22) are satisfied the continuity and linear 
Navier-Stokes equations (17-20). Moreover, the 3D stream 
function Ψ(𝑥, 𝑦, 𝑧, 𝑡)	becomes 

Ψ(𝑥, 𝑦, 𝑧, 𝑡) = 	𝐴8𝑒
F3;<G3<<G3H<I#J	

(K;LMK<NMKHO)
√Q                              

                                                              (23) 
The unknowns  𝐴8, 𝑐8, 𝑐,, and  𝑐E under the following initial 
and boundary conditions 
𝜓(𝑥, 𝑦, 𝑧, 0) = 𝐴8𝑒J(3;	)G	3<	@G	3HA)	                                 (24) 
and six boundary conditions 
 
𝜓(𝐿8, 𝑦, 𝑧, 𝑡) = 𝑞8,								𝜓(𝐿,, 𝑦, 𝑧, 𝑡) = 𝑞,             
𝜓(𝑥, ℎ8, 𝑧, 𝑡) = 𝑞E,        𝜓(𝑥, ℎ,, 𝑧, 𝑡) = 𝑞T, 
𝜓(𝑥, 𝑦, ℎE, 𝑡) = 𝑞U,         𝜓(𝑥, 𝑦, ℎT, 𝑡) = 𝑞V,                  (25)                             
are obtained in the form 
 𝐴8 = 1,  𝑐8 =	

8
W<JW;

ln X;
X<
,				𝑐, =	

8
1<J1;

ln XH
XY

, and  

  𝑐E =	
8

1YJ1H
ln XZ

X[
,                                               (26)  

where 𝑞8, 𝑞,, 𝑞E, 𝑞T, 𝑞U, 𝑞V	are given constants or functions. 

    

3 The Incompressible and Viscous Newtonian Fluid 
Flow in a Horizontal 3D peristaltic Tube for 
different wave lengths (𝜹 ≠ 𝟎) described by 
continuity and non-dimensional linear Navier-
Stokes equations 
 

The most previous problems are described by the nonlinear 
Navier-Stokes equations, which are approximately solved 
for long wavelength 𝛿 = 0 and low Reynolds numbers 
[6,7,13-14, 23-24]. The simplest analytical solution of 
Navier-Stokes equation in a 2D fluid flow is already solved 
and discussed by Mohammadein et al. [18-20] In this 
application, the proposed 3 D problem is solved analytically. 
Moreover, the stream function Ψ(𝑥, 𝑦, 𝑧, 𝑡) and fluid 
velocity components u (x, y, z, t), v (x, y, z, t), and w (x, y, 
z, t) are obtained for different values of time, wave lengths 𝜆 
and Reynolds number. 
 
 
3.1 The physical and mathematical description 
       The motion of flow of an incompressible Newtonian 
viscous fluid in a peristaltic horizontal tube (see Fig. 2) in x-
axis is considered.  
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Fig.2.The sketch of problem 

The fluid flows in x-direction. The two surfaces 0xy and 0xz 

move as a peristaltic motion around x-axis. The gravity force 

is ignored in a horizontal tube. The peristaltic boundary 

conditions of two walls (ℎ8, ℎ,) in y-axis and other two walls 

(ℎE, ℎT) in z-axis has the form                 

ℎ8 = 1 + 𝑒8	sin	(2𝜋(𝑥 − 𝑐𝑡)),  

ℎ, = −1 − 𝑒8 sin$2𝜋(𝑥 − 𝑐𝑡)', 

ℎE = 1 + 𝑒, sin$2𝜋(𝑥 − 𝑐𝑡)',  

ℎT = −1 − 𝑒,	sin	(2𝜋(𝑥 − 𝑐𝑡)).          (27)   

 

3.2 Transformation of dimensional system to 
the non-dimensional form 
In section 2, on the basis of the linear equations (17-20), the 
fluid velocities and stream function are obtained in the 
dimensional form. In this section, we need to find the 
solutions in terms of non-dimensional numbers.  The above 
system (17-20), can be rewritten in the frame (¯x, ¯y, ¯z) as 
follows 
 
%5
%)
+ %=

%@
+	%C

%A
= 0,                             (28)  

%5
%#
= 	𝜈(%

<5
%)<

+ %<5
%@<

+ %<5
%A<
),        (29) 

%=
%#
= 	𝜈 �%

<=
%)<

+ %<=
%@<

+ %<=
%A<
�,                       (30) 

%C
%#
= 	𝜈(%

<C
%)<

+ %<C
%@<

+ %<C
%A<
),                                           (31) 

where     
	𝑢 = 2 %<D

%@	%A
,				v = − %<D

%A	%)
, 𝑎𝑛𝑑		𝑤 = − %<D

%)	%@
             (32)                                                         

The non-dimensional parameters in terms of dimensional 
ones have the form 
𝑥 = 𝜆𝑥, 𝑦 = 𝑎𝑦, 𝑧 = 𝑏	𝑧, 𝑢 = 𝑐𝑢,				v = 𝑐v𝛿, ,				 w =

𝑐	𝑤𝛿,			𝛿 = _/<G`<

:
	,   

, 𝛿8 =
/
:;
, 𝛿, =

`
:<
	 , 𝑒8 =

/;
/

 , 𝑒, =
`;
`

  , 	, 𝑡 = :
3
t		, 𝜓 =

	𝑐	√𝑎, + 𝑏,	𝜓. 

     ℎ8 =
a;
/
	 , ℎ, =

a<
`
		                                 (33) 

The above equations (28-31) by using the above 
transformations (33) in frame (x, y, z) introduces a linear 
partial differential equation in terms of stream function 𝜓 in 
the form  
%D
%#
= 8	

	bc	d;
(𝛿8

,Ψ)) +Ψ@@ +
d;

<

d<
<ΨAA),                 (34) 

where gravity is ignored in this study. The analytical solution 
by using Picard method [10] of the above linear partial 
differential equation (34) has the form become 

𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴8𝑒
;

ec	f;	
g3;<	d;<G3<<G

	f;
<

	f<
<3H
<h#	J(3;)G3<@G3HA)

 

, 𝛿8 ≠ 0, 𝛿, ≠ 0	.                                             (35) 

where, 𝑐8, 𝑐,, 	𝑐E  and 𝐴8 are unknows and can be estimated 
from the following initial and boundary conditions: 
𝜓(𝑥, 𝑦, 𝑧, 0) = 𝐴8𝑒J(3;	)G	3<	@G	3HA)	 
𝜓(𝐿8, 𝑦, 𝑧, 𝑡) = 1,								𝜓(𝐿,, 𝑦, 𝑧, 𝑡) = 0.3            
𝜓(𝑥, ℎ8, 𝑧, 𝑡) = 2,        𝜓(𝑥, ℎ,, 𝑧, 𝑡) = 1, 
𝜓(𝑥, 𝑦, ℎE, 𝑡) = 1,        𝜓(𝑥, 𝑦, ℎT, 𝑡) = 0.7,                                     
                                               (36) 
in the form 
 𝐴8 = 1,  𝑐8 =	

8
W<JW;

ln 8i
E
,				𝑐, =	

8
1<J1;

𝐿𝑛(2), and  𝑐E =

	 8
1YJ1H

ln 8i
j

.                                                                    (37)    
 
 4 Discussion of analytical solution  
 

In this section, the Navier-Stokes equations are studied for 
Newtonian incompressible fluid flow inside a peristaltic 
horizontal 3D Tube. The nonlinear system of Navier-Stokes 
equations (8) is transformed to a linear one (16). The 
dimensional linear equations (17-20) are formulated in three 
dimensions x, y, and z. which behave as a linear diffusion 
equation. The fluid velocity components in 3D are obtained 
by equations (22). Moreover, the stream function Ψ(x, y, z, t) 
is obtained as shown in equation (23). The mathematical 
model (28-31) represents an application for viscous 
Newtonian incompressible fluid flow inside a peristaltic 
horizontal 3D Tube, which is converted to the stream 
function equation (34). The solution is obtained in terms of 
stream function Ψ(x, y, z, t) as shown in equation (35); which 
is function of wave lengths and Reynolds number. 
The stream function Ψ(x, y, z, t) for a 3D fluid flow in the 
time interval {0→1} unit time is shown in Fig. 3. It is 
observed that the two surfaces 0zx and 0yx move as a 
peristaltic motion and behaves as a sine function. The 
behavior of the xz-plan(y=o) flow shows the streamlines of 
fluid as a laminar flow with an amplitude range {-25→ 0} 
unit length in z-axis as in Fig.4.The stream function 
Ψ(x, y, z, t) for a fluid flow in the time interval {1 → 2} unit 
time is shown in Fig.5. The xz-plan (y=0) shows the 
streamlines of fluid as a transit flow with an amplitude rang 
{−50	 → −20	} unit length as shown in Fig.6. It is observed 
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Fig.3. The surface in 3D in time {0 − 1	}. 
 

 
Fig.4.The xz-plan (y=0) in time interval {0 − 1	}unit	time 
      

  
Fig.5. The surface in 3D in time {1 − 2	}unit	time. 

 
 

Fig.6. The xz-plan(y=0) in time interval {1 − 2	}unit	time  
 

 

 
 

  
Fig.7.  The surface in 3D in time {	4 − 5}. 

 
Fig.8.  The xz-plan (y=0) in time interval {4 − 5	}unit	time  

 

  
Fig.9. The surface in 3D in time {9 − 10	}unit	time .  

 
Fig.10. The xz-plan(y=0) in time interval  
{9 − 10	}unit	time  
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Fig.11. The xz-plan(y=0) in time interval {0 − 10	} unit time 
when y=0, 𝛿8 = 0.2	, 𝛿, = 0.3, 𝑒8 = 𝑒, = 0.1	𝑎𝑛𝑑	𝑅2=0.5 

 
Fig.12. The xz-plan(y=0) in time interval {0 − 10	} unit time 
when y=0, 𝛿8 = 0.4, 𝛿, = 0.5, 𝑒8 = 𝑒, = 0.1	𝑎𝑛𝑑	𝑅2=0.5 

 
Fig.13. The xz-plan(y=0) in time interval {0 − 10	} unit time 
when y=0, 𝛿8 = 0.2	, 𝛿, = 0.3, 𝑒8 = 𝑒, = 0.1	𝑎𝑛𝑑	𝑅2=0.1 

 
Fig.14. The xz-plan (y=0) in time interval {0 − 10	} unit 
time when y=0, 𝛿8 = 0.2	, 𝛿, = 0.3, 𝑒8 = 0.1, 𝑒, =
0.2	𝑎𝑛𝑑	𝑅2=0.5 

 
Fig.15. The xz-plan(y=0) in time interval {0 − 10	} unit time 
𝛿8 = 0.2	, 𝛿, = 0.3, 𝑒8 = 0.3, 𝑒, = 0.4	𝑎𝑛𝑑	𝑅2=0.5 
 

 
that the change of 3D surface and amplitudes increases with 
time in z-axis. In Fig.7, the stream function Ψ(x, y, z, t) for 
a fluid flow in the time interval {	4 → 5} unit time is plotted. 
The xz-plan(y=0) shows the turbulent flow of streamlines of 
fluid change with the range of amplitude {−130	 → −80	} 
unit length in z-axis as shown in Fig.8. The stream function 
Ψ (x, y, z, t) for a fluid flow in the time interval {9→10} unit 
time is shown in Fig.9. It is observed that the two surfaces 
0zx and 0zy move with peristaltic motion as a sine function. 
The behavior of the xz-plan(y=0) flow shows the streamlines 
of fluid as a complicated turbulent flow with an amplitude 
range {-250 →-195} unit length in z-direction as in Fig.10. 
The above graphs (Figs.3-10) are plotted when e8 =	e, =
0.1,	L8 = 1, 	L, = 10,	 	δ8 = 0.2, δ, = 0.3	and	 	Rk=0.5.	 It	
is	 noted	 that	 the	 amplitude	 length	 of	 streamlines	
increases	 in	 the	 negative	 direction	 of	 z-axis	 with	
increasing	 of	 time.	 In figures 11-15, the streamlines are 
plotting in xz-plan (y=0) in the time interval	{0 −
10}	unit	time, L8 = 1, and		L, = 10. Streamlines are 
plotting for different values of wave lengths δ8	𝑎𝑛𝑑	δ,, 
Reynolds number Rk, amplitude ratio e8and e,. Streamlines 
are plotting in xz-plan (y=0) when δ8 = 0.2	, δ, = 0.3, e8 =
e, = 0.1	and	Rk=0.5 as shown in Fig.11. It observed that the 
streamlines were affected by wavelengths. The amplitude of 
streamlines in z-axis the range {-80 →2} unit length. 
Moreover, Fig.11 is considered as a standard one for 
comparison with Figs.12-15. In Fig.12, the streamlines for 
different values of  δ8 = 0.3	, δ, = 0.4 is compared with 
Fig.11. It observed that, the wavelengths λ8	and	λ, decreases 
with increasing of 	δ8and		δ, values. The streamlines in z-
axes are valid in the range {-42 → 2}. The streamlines for 
Reynolds number	Rk = 0.1 are plotted as shown in Fig.13. 
The stream range in z-axes is valid in the interval {-400 → 
zero}. The viscosity of fluid increases and decays the fluid 
flow. The streamlines for different values of amplitude ratio 
e8 = 0.1	 and e, = 0.2 are plotted as shown in Fig.14. The 
stream range in z-axes is valid in the interval {-80→ 2}. It 
observed that the peristaltic of fluid flow increased with 
amplitude ratio. The streamlines for different values of 
amplitude ratio e8 = 0.3	 and e, = 0.4 are plotted as shown 
in Fig.15. The stream range in z-axes is valid in the interval 
{-100→2}. It observed that the dense peristaltic fluid flow 
increases with amplitude ratio.  
 
5. Conclusions 
The system of continuity and Navier-Stokes equations (7-8) 
is formulated in dimensional and non-dimensional form (17-
20) and (34) respectively. The discussion of results and 
plotted graphs concluded the following remarks: 
1.The nonlinear system of Navier-Stokes equations is 
converted to a linear one (16) in three dimensions Cartesian 
coordinates.  
2. The analytical solutions are obtained for dimensional and 
non-dimensional equation form (23) and (35) respectively. 
3.The solutions are existed for wave lengths  δ8and		, δ, for 
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a first time in fluid mechanics. 
4. The fluid velocity components in 3D are obtained directly 
in terms of stream function. 
5.The fluid flow patterns change from laminar to transit and 
then turbulent with increasing of time.  
6. During the increase of time, the amplitude of waves and 
the intersection of lines increases in the negative direction 
producing a quick transform from laminar to transit and then 
to turbulent flow. 
7.The streamlines in xz-plan(y=0) are proportional  
inversaly with  wave lengths  𝜆8	𝑎𝑛𝑑	𝜆, and amplitude 
interval through z-axes. 
8. The streamlines in xz-plan(y=0) are proportional with 
Reynolds number	𝑅2 values. 
9. The dense of peristaltic stream lines in xz-plane is 
proportional  with  amplitude ratio values 𝑒8𝑎𝑛𝑑	𝑒,. 
10. The fluid velocities and stream function are obtained for 
the first time in terms of different wavelengths, Reynolds 
number and any time interval. 
11.The output of the physical results proves the validity of 
the proposed physical and mathematical model of linear 
Navier-Stokes equations in 3D. 
12.The authors derived the stream function for the first time 
in three different coordinates as in Appendix I.  
The solution satisfies all requisites of the Millennium 
problem definition of the Clay Institute. 
Appendix I 
 

1. Derivation of stream function  𝚿 in three dimensions  
      Derivation of stream function  Ψ(x, y, z, t)  in three 
dimensional Cartesian coordinates (x, y, z) 
The continuity equation for an incompressible fluid flow has 
the form 
%5
%)
+ %=

%@
+ %C

%A
= 0,                                                          (A1) 

The above equation can be rewritten in the form  
%
%)
(2 %<D

%@	%A
) + %

%@
(− %<D

%A	%)
) + %

%A
(− %<D

%)	%@
) = 0,               (A2)                         

Then 
𝑢 = 2 %<D

%@	%A
,				v = − %<D

%A	%)
, 𝑎𝑛𝑑		𝑤 = − %<D

%)	%@
 .              (A3)                             

  AS a mathematical trick, the above relations are valid in 
three dimensions. 
 2. Derivation of stream function  𝚿(𝐫, 𝛉, 𝐳)  in three 
dimensional cylindrical coordinates (x, y, z) 
       The continuity equation for an incompressible fluid flow 
has the form 
%(l5m)
%l

+ %5n
%o
+ %(l5O)

%A
= 0,                                              (A4) 

The above equation can be rewritten in the form 
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then  
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,
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,				𝑢o = − %<D
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  .          (A6)                                
As a mathematical trick, the above relations are valid in three 
dimensions. 
3. Derivation of stream function  𝚿(𝐫, 𝛉,𝛗)  in three 
dimensional spherical coordinates (𝐫, 𝛉,𝛗) 
      The continuity equation for an incompressible fluid flow 
has the form 
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= 0,                         (A7) 

The above equation can be rewritten in the form  
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                                                                                        (A9) 
As a mathematical trick, the above relations are valid in three 
dimensions. 
 

Appendix II 
 

Picard method 
The Picard method is applied for solving the following linear 
partial differential equations. 
%D
%#
= 	u

	bc	d;
(𝛿8

,Ψ)) +Ψ@@)                                          (A10) 

Ψ7G8 = Ψi				 +
	u

	bc	d;
∫ $𝛿8

,Ψ7))) + (Ψ7)@@'𝑑𝑡
#
i , n=0,1, 2, 

3, …                                                                             (A11) 
where 𝜓(𝑥, 𝑦, 𝑧, 0) = Ψi				 = 𝐴8𝑒 	J(3;)G3<@G3HA). 
The iteration of n values in relation (A11) represents the 
solution of Eqn. (A10). 
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