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Abstract: We investigate some features of principal GK2-algebras (PGK2-algebras). Necessary and sufficient conditions for a

principal GK2- algebra to have 2-permutable congruences are obtained. Furthermore, it is established how 2-permutable congruences

are characterized using pairs of principal congruences. Also, a generalization of the 2-permutability of the primary congruences of the

GK2-algebras concept to the concept of the n-permutable congruences is provided. We round off with strong extensions of principal

GK2-algebras.
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1 Introduction

T.S. Blyth and J.C. Varlet [1] introduced the variety MS of MS-algebras. In [2], they determined the subvarieties of
MS. Many properties of MS-algebras, principal MS-algebras, principal p-algebras and decomposable MS-algebras are
investigated in [3,4,5,6,7,8]. The variety GMS was defined and characterized by D. Ševčovič in [9]. Certain modular
generalized MS-algebras with distributive skeletons, called K2-algebras, were introduced by A. Badawy [10]. Each K2-
algebra was built using quadruples. A. Badawy [11] considered the subclass GK2 of GK2-algebras. He constructed any
PGK2-algebra by means of triple. Also, he deduced that each congruence α on a GK2-algebra L can be constructed by a
congruence pair (α1,α2) in a unique way, where α1 ∈Con(L◦◦) and α2 is a congruence of lattices on the bounded lattice
D(L). Many authors considered the concepts of permutable congruences, strong extensions and related properties (see
[12], [13] and [14]).
This paper applies the concepts of 2-permutability of congruences and n-permutability of congruences to PGK2-algebras.
We characterize such concepts by using congruence pairs (α1,α2) of a principal GK2-algebra L, where α1 is a congruence
on GK-algebra L◦◦ of all closed elements of L, and α2 is a lattice congruence on a lattice bounded D(L). Also, we introduce
and characterize the notion of strong extensions of PGK2-algebras. We proved that a GK2-algebra L is a strong extension
of a subalgebra L1 if and only if L◦◦ is a strong extension of L◦◦

1 and D(L) is a strong extension of D(L1).

2 Preliminaries

This section contains the basic background and results. We refer to [9,11,15,16,17,18] for details. An MS-algebra is an
algebra (;∨,∧,◦ ,0,1) such that (L;∨,∧,0,1) is a bounded distributive lattice and ◦ is a unary operation satisfying:

(1) r ≤ r◦◦,
(2) (r∧ s)◦ = r◦∨ s◦,
(3) 1◦ = 0.

The subvariety M (De Morgan algebras) of MS is defined by

r = r◦◦ (1)
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The subvariety K (Kleene algebras) of M is characterized by :

r∧ r◦ ≤ s∨ s◦ (2)

The class S(Stone algebras) of MS is the subvariety which is defined by:

r∧ r◦ = 0 (3)

The subvariety B (Boolean algebras) of MS is defined by the identity

r∨ r◦ = 1 (4)

A generalized De Morgan algebra (simply GM-algebra) (L;∨,∧,◦ ,0,1) , where (L;∨,∧,0,1) is a bounded lattice with

(1) r = r◦◦,
(2) (r∧ s)◦ = r◦∨ s◦,
(3) 1◦ = 0.

If a GM-algebra satisfies:

r∧ r◦ ≤ s∨ s◦ (5)

it becomes a generalized Kleene algebra.
If we drop the distributivity condition of MS-algebra, we obtain GMS-algebra.

Lemma 2.1.[9] For any two elements r,s of a GMS-algebra L, we have

(1) 0◦ = 1,

(2) r ≤ s =⇒ r◦ ≥ s◦,

(3) r◦ = r◦◦◦,

(4) (r∨ s)◦ = r◦∧ s◦,

(5) (r∨ s)◦◦ = r◦◦∨ s◦◦,

(6) (r∧ s)◦◦ = r◦◦∧ s◦◦.

Definition 2.1.[11] A GK2-algebra L is a GMS-algebra satisfying:

(1) r∧ r◦ = r◦◦∧ r◦ ∀ r ∈ L,

(2) r∧ r◦ ≤ s∨ s◦ ∀ r,s ∈ L.

Let L be a GK2-algebra. An element r of L is called closed if r◦◦ = r and an element d ∈ L is called dense if d◦ = 0. Set
L◦◦ to denote the set of all closed elements of L and D(L) for the set of all dense elements of L.

Lemma 2.2.[11] Let L ∈ GK2-algebra. Then

(1) L◦◦ is a GK-subalgebra of L,

(2) D(L) is a filter of L.

Example 2.1. (1) Every MS-algebra is a GMS-algebra.
(2) Every S-algebra (pseudo-complement lattice satisfying the Stone identity, r∗∨ r∗∗ = 1 ,where r∗ = max{s : s∧ r = 0}

is the pseudo-complement of r) is a GMS-algebra.
(3) The following is a GMS-algebra (L1,

◦) satisfying the Stone identity r∗ ∨ r∗∗ = 1. We observe that it is not an
S-algebra; for example, the element µ has not pseudo-complement.
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d c = q◦ = µ◦ q = c◦ = γ◦b = a◦ = α◦a = b◦ = β ◦

wzyx

1 = 0◦

γ µβα

0 = 1◦ = d◦ = x◦ = y◦ = z◦ = w◦

Also, we have
L◦◦

1 = {0,a,b,c,q,1} is a modular GK-algebra, and D(L1) = {d,x,y,z,w,1} is a modular lattice.

Definition 2.2.[11] A GK2-algebra L is a PGK2-algebra if:

(1) D(L) = [d) for some d ∈ L,

(2) The generator d is distributive, that is, (r∧ s)∨d = (r∨d)∧ (s∨d) for all r,s ∈ L,

(3) r = r◦◦∧ (r∨d) for all r ∈ L.

Example 2.2. (1) Every K2-algebra is a GK2-algebra.
(2) Every S-algebra is a GK2-algebra.
(3) The GK2-algebra L1 of Example 2.4(3) is a PGK2-algebra which is not an S-algebra.
(4) The following GK2-algebra represents an S-algebra L2, where L◦◦

2 = {0,a,b,1} is a Boolean subalgebra and D(L2) =
{1}. It is clear that it is not a principal S-algebra as c◦◦∧ (c∨1) 6= c.

0 = 1◦

c

b = a◦

a = b◦ = c◦

1 = 0◦

From this example, it is not true that every finite GK2-algebra is principal.
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(5) The following GMS-algebra is a PGK2- algebra.

0 = 1◦ = x◦ = y◦ = z◦ = d◦

γβα

c = b◦ = β ◦db = c◦ = γ◦a = a◦ = α◦

zyx

1 = 0◦

Definition 2.3.[6] A binary relation α defined on a lattice L is said to be a lattice congruence if :

(1) α is an equivalence relation on L,

(2) (r,s),(u,v) ∈ α implies (r∧u,s∧ v),(a∨ c,b∨d) ∈ α .

For a congruence relation α on a lattice L, [r]α is given

[r]α = {t ∈ L : (t,r) ∈ α}. (6)

It can be prove that (L/α,∨,∧) forms a lattice, where

L/α = {[r]α : r ∈ L} (7)

is the quotient lattice of L modulo α and

[r]α ∨ [s]θ = [r∨ s]α and [r]α ∧ [s]α = [r∧ s]α (8)

A lattice congruence α on a GK2-algebra (L; ◦) is called a congruence on L if r ≡ s(α) implies r◦ ≡ s◦(α).
For a GK2-algebra L, Con(L) is used to denote the set of all congruence on L and αL◦◦ ,αD(L) are used for α restricted to

L◦◦ and D(L), respectively. Obviously, (αL◦◦ ,αD(L)) ∈Con(L◦◦)×Con(D(L)). Also, we use ▽L = L×L and △L = {(r,r) :

r ∈ L} for the universal and the identity congruences on L, respectively.
A congruence relation α on a lattice L is called principal if there exist r,s ∈ L such that α is the smallest congruence
relation for which r ≡ s(α). Indeed,

α(r,s) =
∧

{α ∈Con(L) | r ≡ s(α)} (9)

Definition 2.4.[11] Let d be the smallest dense element of a PGK2-algebra L . Then a pair

(α1,α2) ∈Con(L◦◦)×Con(D(L)) is called a congruence pair of L if r ≡ s(α1) implies r∨d ≡ s∨d(α2) .

A characterization of a congruence relation on PGK2-algebras is given as follows:

Theorem 2.1.[11] Let d be the smallest dense element of a PGK2-algebra L. Then any α ∈ Con(L) determines a

congruence pair (αL◦◦ ,αD(L)). Conversely, any congruences pair (α1,α2) uniquely determines an α ∈ Con(L)satisfies

αL◦◦ = α1 and αD(L) = α2, by the rule: r ≡ s(α)⇔ r◦◦ ≡ s◦◦(α1) and r∨d ≡ s∨d(α2).

Lemma 2.3.[11] Let L be a PGK2-algebra and let A(L) be the set of all congruence pairs of L. Then :

(1) (∀β ∈Con(D(L)))(△L◦◦ ,β ) ∈ A(L),
(2) (∀η ∈Con(L◦◦))(η ,∇D(L)) ∈ A(L).
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3 2-Permutability of PGK2-algebras

We extend the concept of 2-permutability of congruences to PGK2-algebras. Some basic properties are proved, and
necessary and sufficient conditions for a principal GK2-algebra to have 2-permutable congruences are provided.
Moreover, it is established how to characterise 2-permutable congruences in terms of pairs of main congruences.

Definition 3.1.Let L be a PGK2-algebra. Then α,δ ∈Con(L) are 2-permutable congruences (briefly 2-permutable) if

α ◦ δ = δ ◦α , that is, r ≡ s(α) and s ≡ p(δ ) imply the existence of an element u ∈ L such that r ≡ u(δ ) and u ≡ p(α).

A PGK2-algebra L is called 2-permutable congruences if any pair of congruences permute. Let L be a principal GK2-
algebra. Define a relation Γ on L as follows:

(r,s) ∈ Γ ⇐⇒ r◦◦ = s◦◦

⇐⇒ r◦ = s◦.

Lemma 3.1. Let L be a PGK2-algebras. Then

(1) Γ ∈Con(L) with Ker Γ = {0} and Coker Γ = D(L),
(2) r◦◦ is the maximum element of the [r]Γ , where [r]Γ = {s ∈ L : s◦◦ = r◦◦},

(3) [r]Γ = [r◦◦]Γ for any r ∈ L,

(4) L/Γ is a GK-algebra,

(5) L/Γ ∼= L◦◦.

Proof. (1) It is straightforward to show that Γ is an equivalent relation on L. Let (r,s),(u,v) ∈ Γ . Then r◦◦ = s◦◦ and
u◦◦ = v◦◦. Now we have

(r∧u)◦◦ =r◦◦∧u◦◦

=s◦◦∧ v◦◦

=(s∧ v)◦◦.

Then (r∧u,s∧ v) ∈ Γ . Also, we have

(r∨u)◦◦ =r◦◦∨u◦◦

=s◦◦∨ v◦◦

=(s∨ v)◦◦.

Then (r∨u,s∨ v) ∈ Γ . Now, let (r,s) ∈ Γ . Then we have

(r,s) ∈ Γ =⇒ r◦◦ = s◦◦

=⇒ r◦◦◦ = s◦◦◦

=⇒ (r◦,s◦) ∈ Γ .

Then Γ ∈Con(L). We observe that

Ker Γ = {r ∈ L : (r,0) ∈ Γ }

= {r ∈ L : r◦◦ = 0◦◦ = 0}

= {r ∈ L : r◦ = 1}

= {0}.

Moreover,

Coker Γ = {r ∈ L : (r,1) ∈ Γ }

= {r ∈ L : r◦◦ = 1◦◦ = 1}

= {r ∈ L : r◦ = 0}

= D(L).
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(2) Since (r◦◦)◦◦ = r◦◦, then r◦◦ ∈ [x]Γ . Let s ∈ [r]Γ . Then s ≤ s◦◦ = r◦◦. So, r◦◦ ≥ s. Hence, r◦◦ is the greatest element
of [r]Γ .
(3) Since r◦◦◦ = r◦. Then r◦◦◦◦ = r◦◦ implies (r◦◦,r) ∈ Γ , and thereby [r◦◦]Γ = [r]Γ , ∀r ∈ L.
(4) We have (L/Γ ;∨,∧, [0]Γ , [1]Γ ) is a bounded lattice with bounds [0]Γ and [1]Γ , where [r]Γ ∧ [s]Γ = [r ∧ s]Γ and
[r]Γ ∨ [s]Γ = [r∨ s]Γ . Define � on L/Γ by ([r]Γ )� = [r◦]Γ . Now, we have the following equalities

([0]Γ )� = [1]Γ and ([1]Γ )� = [0]Γ ,

([r]Γ )�� = [r◦◦]Γ = [x]Γ ,

([r]Γ ∧ [s]Γ )� = ([r∧ s]Γ )�

= [(r∧ s)◦]Γ

= [r◦∨ s◦]Γ

= [r◦]Γ ∨ [s◦]Γ

= ([r]Γ )�∨ ([s]Γ )�.

Then L/Γ is a GM-algebra. Since r∧ r◦ ≤ s∨ s◦, then [r∧ r◦]Γ ≤ [s∨ s◦]Γ . Hence,

[r]Γ ∧ ([r]Γ )� = [r]Γ ∧ [r◦]Γ

= [r∧ r◦]Γ

≤ [s∨ s◦]Γ

= [s]Γ ∨ [s◦]Γ

= [s]Γ ∨ ([s]Γ )�.

Thus, L/Γ is a GK-algebra.
(5) Define f : L◦◦ −→ L/Γ by

f (r) = [r]Γ ∀r ∈ L◦◦ (10)

It is clear that f is well-defined. Let f (r) = f (s). Then [r]Γ = [s]Γ implies r ≡ s(Γ ). Then r = r◦◦ = s◦◦ = s as
r,s ∈ L◦◦. Then f is one-to-one. Let [s]Γ ∈ L/Γ for some s ∈ L. Then [s] = [s◦◦]Γ and so f (s◦◦) = [s◦◦]Γ = [s]Γ . Then f

is onto Also, we need to show that f is a homomorphism. Clearly, f (r∨ s) = f (r)∨ f (s) and f (r∧ s) = f (r)∧ f (s). Also,

f (r◦) = [r◦]Γ

= [r◦◦◦]Γ

= ([r◦◦]Γ )�

= ([r]Γ )�

= ( f (r))�.

Clearly f (0) = [0]Γ and f (1) = [1]Γ . Hence, L◦◦ ∼= L/Γ .

Lemma 3.2. Let L be a PGK2-algebras. Then:

(1) Γ permutes with any α ∈Con(L),
(2) △L permutes with any α ∈Con(L),
(3) ▽L permutes with any α ∈Con(L).

Proof. (1) Let α ∈Con(L). Then we need to show that α ◦Γ = Γ ◦α . Let r ≡ s(α ◦Γ ). Then r ≡ p(α) and p ≡ s(Γ ) for
some p ∈ L. So, r ≡ p(α) and p◦◦ = s◦◦. Now

r ≡ p(α) =⇒ r◦◦ ≡ p◦◦(α),s∨d ≡ s∨d(α)

=⇒ r◦◦ ≡ s◦◦(α),s∨d ≡ s∨d(α) as p◦◦ = s◦◦

=⇒ r◦◦∧ (s∨d)≡ s◦◦∧ (s∨d)(α) = s(α) as s = s◦◦∧ (s∨d).

Since [r◦◦∧(s∨d)]◦◦ = r◦◦, then r◦◦∧(s∨d)≡ r(Γ ). Since r ≡ r◦◦∧ (s∨d)(Γ ) and r◦◦∧(s∨d)≡ s(α), then r ≡ s(Γ ◦α).
(2) Let r ≡ s(α ◦△L). Then r ≡ p(α), p ≡ s(△L) for some p ∈ L. Hence r ≡ s(α) as p = s. Then, r ≡ r(△L) and r ≡ s(α).
Thus, we deduced that r ≡ s(△L ◦α). Therefore, △L permutes with any element of Con(L).
(3) Let r ≡ s(α ◦▽L). Then r ≡ p(α), p ≡ s(▽L) for some p ∈ L. Then we have r ≡ s(▽L) and s ≡ s(α). Thus, r ≡
s(▽L ◦α). Therefore, ▽L permutes with any element of Con(L).
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Now, we provide a characterization of 2-permutable congruences.

Theorem 3.1. Let d be the smallest dense element of a PGK2-algebra L . Then L has 2-permutable congruences if and

only if:

(1) L◦◦ has 2-permutable congruences,

(2) D(L) has 2-permutable congruences.

Proof. Suppose that α,δ are 2-permutable on L. First, we prove that αL◦◦ ,δL◦◦ are 2-permutable on L◦◦. Consider that
r,s, p ∈ L◦◦ be such that r ≡ s(αL◦◦) and s ≡ p(δL◦◦). Then r ≡ s(α) and s ≡ p(δ ). Since α,δ are 2-permutable, we have
r ≡ q(δ ),q ≡ p(α) for some q ∈ L. Now,

r ≡ q(δ ),q ≡ p(α) =⇒ r◦◦ ≡ q◦◦(δ ),q◦◦ ≡ p◦◦(α)

=⇒ r ≡ q◦◦(δ ),q◦◦ ≡ p(α) as r, p ∈ L◦◦

=⇒ r ≡ q◦◦(δL◦◦),q
◦◦ ≡ p(αL◦◦) as q◦◦ ∈ L◦◦.

Therefore αL◦◦ ,δL◦◦ are 2-permutable on L◦◦ and (1) is proved. Secondly, we show that 2-permutability of α,δ implies
2-permutability of αD(L) and δD(L). Let r,s, p ∈ D(L) be such that r ≡ s(αD(L)) and s ≡ p(δD(L)). Then r ≡ s(α), s ≡ p(δ ).

Since α,δ are 2-permutable, then r ≡ u(δ ) and u ≡ p(α) for some u ∈ L. Now,

r ≡ u(δ ),u ≡ p(α) =⇒ r∨d ≡ u∨d(δ ),u∨d ≡ p∨d(α)

=⇒ r ≡ u∨d(δ ),u∨d ≡ p(α) as r, p ≥ d

=⇒ r ≡ u∨d(δ ),u∨d ≡ p(α) where u∨d ∈ D(L).

Hence r ≡ u∨d(δD(L)) and u∨d ≡ p(αD(L)). Therefore αD(L) and δD(L) are 2-permutable congruences on D(L). For the

converse direction, let α,δ ∈Con(L) such that αL◦◦ ,δL◦◦ and αD(L),δD(L) are 2-permutable on L◦◦ and D(L), respectively.

Consider the elements r,s, p ∈ L with r ≡ s(α) and s ≡ p(δ ). We have, by Theorem 2.9, that r◦◦ ≡ s◦◦(αL◦◦) and s◦◦ ≡
p◦◦(δL◦◦). Since αL◦◦ ,δL◦◦ are 2-permutable congruences on L◦◦, then r◦◦ ≡ u(δL◦◦) and u ≡ p◦◦(αL◦◦) with u ∈ L◦◦

implies that r◦◦ ≡ u(δ ) and u ≡ p◦◦(α). On the other hand, also by Theorem 2.9, we get r∨d ≡ s∨d(αD(L)) and s∨d ≡
p∨d(δD(L)). Since αD(L),δD(L) are 2-permutable congruences on D(L), then r ∨ d ≡ v(δD(L)) and v ≡ p∨d(αD(L)) for

some v ∈ D(L). It follows that
(11)

Since L is a PGK2-algebra, then we have r = r◦◦∧ (r∨d) and p = p◦◦∧ (p∨d). Then we have

r◦◦ ≡ u(δ ),r∨d ≡ v(δ ) imply that r = r◦◦∧ (r∨d)≡ u∧ v(δ ), (12)

and
u ≡ p◦◦(α),v ≡ p∨d(α) imply that a∧ v ≡ p◦◦∧ (p∨d)(α) = p (13)

Consequently, we deduce that r ≡ u∧ v(δ ) and u∧ v ≡ p(α). Therefore α,δ are 2-permutable congruences.

Theorem 3.2. A PGK2-algebra L has 2-permutable congruences if and only if every pair of principal congruences on L

permutes.

Proof. The first statement is obvious. Assume that any pair of principal congruences on L permute. Let α,δ ∈Con(L).
Consider r,s, p ∈ L with r ≡ s(α) and s ≡ p(δ ). Then r ≡ s(α(r,s)), s ≡ p(δ (s, p)). It is clear that α(r,s) ⊆ α and
δ (s, p)⊆ δ . Hence, r ≡ p(α(r,s)◦δ (s, p)). Since α(r,s),δ (s, p) are 2-permutable, then r ≡ u(δ (s, p)) and u ≡ p(α(r,s))
for some u ∈ L. Consequently, r ≡ u(δ ) and u ≡ p(α) and hence r ≡ p(δ ◦α).

4 n-Permutability of PGK2-algebras

The results of this section extend the 2-permutability of congruences of PGK2-algebras to n-permutable congruences.
Two congruences α,δ are n-permutable if

α ◦ δ ◦α ◦ .........(n− times) = δ ◦α ◦ δ ◦ ..........(n− times), where n = 1,2, ...,n− 1 (14)

Definition 4.1. A principal GK2-algebras L has n-permutable congruences, if every two congruences in L are

n-permutable.
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Lemma 4.1. Let d be the smallest dense element of a PGK2-algebra L. Let θ ,ψ be congruences on L. Then

(1) (α ◦ δ ◦α ◦ ..........)L◦◦ = αL◦◦ ◦ δL◦◦ ◦αL◦◦ ◦ ......(n− times),
(2) (α ◦ δ ◦α ◦ ......)D(L) = αD(L) ◦ δD(L) ◦αD(L) ◦ ..................(n− times).

Proof. (1) To show the equality

(15)

Now, let r,s ∈ L◦◦ with r ≡ s(α ◦ δ ◦ ......)L◦◦ . Then r ≡ s(α ◦ δ ◦ ......). Thus there exist elements t1, t2, ..........., tn−1 ∈ L

be such that r ≡ t1(α), t1 ≡ t2(δ ),......,tn−1 ≡ s(ν), where

ν =

{

α if n is odd

δ if n is even
(16)

We have, r◦◦ = r ≡ t1
◦◦(α), t1

◦◦ ≡ t2
◦◦(δ ),.........., t◦◦n−1 ≡ s◦◦ = s(ν),

Then, r ≡ s(αL◦◦ ◦ δL◦◦ ◦ ...........) because of tn
◦◦ ∈ L◦◦ for n = 1,2, ....,n− 1.

The reverse inclusion is obvious. Hence,

(α ◦ δ ◦ .....)L◦◦ = (αL◦◦ ◦ δL◦◦ .........). (17)

(2) Let r,s ∈ D(L) be such that r ≡ s((θ ◦ψ ◦ .......)D(L)), that is r ≡ s(α ◦ δ ◦ ....). Then there exist t1, t2, ......, tn−1 ∈ L be

such that r ≡ t1(α), t1 ≡ t2(δ ), ..........,tn−1 ≡ b(ν). Then, r = r∨d ≡ t1 ∨d(α), ........., tn−1 ∨d ≡ b∨d = s(ν). Therefore,
r ≡ s(αD(L) ◦ δD(L) ◦ .......) since tn ∨d ∈ D(L) for n = 1,2, .....,n− 1. The reverse inclusion is obvious. Therefore,

(α ◦ δ ◦ ...........)D(L) = (αD(L) ◦ δD(L)..........(n− time) (18)

Theorem 4.1. Let d be the smallest dense element of a PGK2-algebra L. Then L has n-permutable congruences if and

only if L◦◦ and D(L) are n-permutable congruences.

Proof. (=⇒:) By using Lemma 4.2(1) we have

αL◦◦ ◦ δL◦◦ ◦ ....= (α ◦ δ ◦ ....)L◦◦

= (δ ◦α ◦ ....)L◦◦

= δL◦◦ ◦αL◦◦ ◦ ....

Again by using Lemma 4.2(2) we have

αD(L) ◦ δD(L) ◦ ....= (α ◦ δ ◦ ....)D(L)

= (δ ◦α ◦ ....)D(L)

= δD(L) ◦αD(L) ◦ ....

(⇐=:) Let r ≡ s(α ◦δ ◦ ...). Then r◦◦ ≡ s◦◦((α ◦δ ◦ ...)L◦◦) and r∨d ≡ s∨d((α ◦δ ◦ ....)D(L)) by Theorem 2.9. Applying
Lemma 4.2 we have

(19)

Since

αL◦◦ ◦ δL◦◦ ◦ ....= δL◦◦ ◦αL◦◦ ◦ ....(n− times) and αD(L) ◦ δD(L) ◦ ....= δD(L) ◦αD(L) ◦ ....(n− times), (20)

then we get

r◦◦ ≡ s◦◦((δ ◦α ◦ ...)L◦◦) and r∨d ≡ s∨d((δ ◦α ◦ ...)D(L)). (21)

Now, by using Definition 2.5(3) and Theorem 2.9, we get

(22)

Therefore, r ≡ s(δ ◦α ◦ ........). Thus, we deduce that δ and α are n permutable.
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5 Strong extensions of PGK2-algebras

The concept of strong extensions of PGK2-algebras is investigated in this section.
An algebra L satisfies the congruence extension property (CEP); if for every subalgebra L1 of L and every α of L1, α
extends to a congruence of L.(see [19])

Definition 5.1. Let M1 and N be a PGK2-algebras. Then we call the algebra K a strong extension of the algebra K1 if K1

is a subalgebra of K and for any α1∈Con(K1), there exists a unique congruence relation α ∈Con(K) such that αK1
= α1.

Theorem 5.1. Let K1 be a subalgebra of a PGK2-algebra K. Then K is a strong extension of K1 if and only if

(1) D(K) is a strong extension of D(K1),
(2) K◦◦ is a strong extension of K1

◦◦.

Proof. Let K be a strong extension of K1. Let η2 ∈Con(D(K1)). Assume that ή2, η̄2 ∈Con(D(K)) such that ή2,D(K1) =
η̄2,D(K1) = η2 Then, by Lemma 2.10(1), we have

(△K◦◦ , ή2),(△K◦◦ , η̄2) ∈ A(K) and (△K◦◦
1
,η2) ∈ A(K1). (23)

According to Theorem 2.9, we have ή , η̄ ∈ Con(K) and η ∈Con(K1) corresponding to (△K◦◦ , ή2),(△K◦◦ , η̄2) and η =
(△K◦◦

1
,η), respectively. We see that ήK1

= η̄K1
= η . We have ή = η̄ . Hence, ή2 = η̄2 proving (1). On the other hand,

we need to show that K◦◦ is a strong extension of K◦◦
1 . Let η1 ∈Con(K1

◦◦) and η1 extend to a congruence of K◦◦. Let
ή1, η̄1 ∈Con (K◦◦) with ή1,K◦◦

1
= η̄1,K◦◦

1
= η1. Then, by Lemma 2.10(2), we have

(ή1,▽D(K)),(η̄1,▽D(K)) ∈ A(K) and (η ,▽D(K1)) ∈ A(K1). (24)

Again, by Theorem 2.9, we have ή , η̄ ∈Con(K) and η ∈Con(K) corresponding to (ή1,▽D(K)),(η̄1,▽D(K)) and η =
(η ,▽D(K1)), respectively. We see that ήK1

= η̄K1
= η . Since K is a strong extension of K1, then ή = η̄ . Therefore ή1 = η̄1,

proving that (2). Conversely, suppose that conditions (1) and (2) hold and let η ∈ Con(K1). Let ή , η̄ be extensions of η in
Con(K). By Theorem 2.9, the congruences ή , η̄ and η can be represented by the congruence pairs (ή1, ή2),(η̄1, η̄2) and
(η1,η2), respectively. Where

ή1,K◦◦
1
= η̄1,K◦◦

1
= η1 and ή2,D(K1) = η̄2,D(K1) = η2. (25)

By (1) and (2) we get
ή1 = η̄1 and ή2 = η̄2. (26)

Therefore, ή = η̄ .

Corollary 5.1. Let K1 and K be PGK2-algebras. If K1 is a strong extension of K, then Con(K1)∼=Con(K).

6 Conclusion

The following three key concepts in algebraic structures: 2-Permutability, n- Permutability, and strong extensions were
examined for the PGK2-algebras via congruence pairs. this paper’s work could be further developed to study many aspects
of GK2-algebras and related structures. For instance, it can be applied to triple construction of GK2-algebras, perfect
extensions of PGK2-algebras and substructures of PGK2-algebras.
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