

http://dx.doi.org/10.18576/isl/120657

On Congruences of Principal GK₂-Algebras

Abd El-Mohsen Badawy¹, Mohiedeen Ahmed², Essam El-Seidy² and Ahmed Gaber^{2,*}

¹Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt ²Department of Mathematics, Faculty of Science, Ain shams University, Cairo, Egypt

Received: 22 Nov. 2022, Revised: 22 Dec. 2022, Accepted: 24 Jan. 2023 Published online: 1 Jun. 2023

Abstract: We investigate some features of principal GK_2 -algebras (PGK_2 -algebras). Necessary and sufficient conditions for a principal GK_2 - algebra to have 2-permutable congruences are obtained. Furthermore, it is established how 2-permutable congruences are characterized using pairs of principal congruences. Also, a generalization of the 2-permutability of the primary congruences of the GK_2 -algebras concept to the concept of the n-permutable congruences is provided. We round off with strong extensions of principal GK_2 -algebras.

Keywords: MS-algebra, GMS-algebra, GK_2 -algebra, principal GK_2 -algebra, congruence pair, 2-permutability of congruences, n-permutability of congruences, strong extension

1 Introduction

T.S. Blyth and J.C. Varlet [1] introduced the variety **MS** of *MS*-algebras. In [2], they determined the subvarieties of **MS**. Many properties of *MS*-algebras, principal *MS*-algebras, principal *p*-algebras and decomposable *MS*-algebras are investigated in [3,4,5,6,7,8]. The variety **GMS** was defined and characterized by D. Ševčovič in [9]. Certain modular generalized MS-algebras with distributive skeletons, called K_2 -algebras, were introduced by A. Badawy [10]. Each K_2 -algebra was built using quadruples. A. Badawy [11] considered the subclass **GK**₂ of *GK*₂-algebras. He constructed any *PGK*₂-algebra by means of triple. Also, he deduced that each congruence α on a *GK*₂-algebra *L* can be constructed by a congruence pair (α_1, α_2) in a unique way, where $\alpha_1 \in Con(L^{\circ\circ})$ and α_2 is a congruence of lattices on the bounded lattice *D*(*L*). Many authors considered the concepts of permutable congruences, strong extensions and related properties (see [12], [13] and [14]).

This paper applies the concepts of 2-permutability of congruences and *n*-permutability of congruences to PGK_2 -algebras. We characterize such concepts by using congruence pairs (α_1, α_2) of a principal GK_2 -algebra L, where α_1 is a congruence on GK-algebra $L^{\circ\circ}$ of all closed elements of L, and α_2 is a lattice congruence on a lattice bounded D(L). Also, we introduce and characterize the notion of strong extensions of PGK_2 -algebras. We proved that a GK_2 -algebra L is a strong extension of a subalgebra L_1 if and only if $L^{\circ\circ}$ is a strong extension of $L_1^{\circ\circ}$ and D(L) is a strong extension of $D(L_1)$.

2 Preliminaries

This section contains the basic background and results. We refer to [9,11,15,16,17,18] for details. An *MS*-algebra is an algebra $(; \lor, \land, \circ, 0, 1)$ such that $(L; \lor, \land, 0, 1)$ is a bounded distributive lattice and \circ is a unary operation satisfying:

(1) $r \le r^{\circ\circ}$, (2) $(r \land s)^{\circ} = r^{\circ} \lor s^{\circ}$, (3) $1^{\circ} = 0$.

The subvariety M (De Morgan algebras) of MS is defined by

$$r = r^{\circ\circ}$$

* Corresponding author e-mail: a.gaber@sci.asu edu.eg

The subvariety \mathbf{K} (Kleene algebras) of \mathbf{M} is characterized by :

$$r \wedge r^{\circ} \le s \lor s^{\circ} \tag{2}$$

The class **S**(Stone algebras) of **MS** is the subvariety which is defined by:

$$r \wedge r^{\circ} = 0 \tag{3}$$

The subvariety **B** (Boolean algebras) of **MS** is defined by the identity

$$r \lor r^{\circ} = 1 \tag{4}$$

A generalized De Morgan algebra (simply *GM*-algebra) $(L; \lor, \land, \circ, 0, 1)$, where $(L; \lor, \land, 0, 1)$ is a bounded lattice with

(1) $r = r^{\circ\circ}$, (2) $(r \wedge s)^{\circ} = r^{\circ} \vee s^{\circ}$, (3) $1^{\circ} = 0$.

If a GM-algebra satisfies:

$$r \wedge r^{\circ} \le s \lor s^{\circ} \tag{5}$$

it becomes a generalized Kleene algebra.

If we drop the distributivity condition of MS-algebra, we obtain GMS-algebra.

Lemma 2.1.[9] For any two elements r, s of a GMS-algebra L, we have

(1) $0^{\circ} = 1$, (2) $r \leq s \Longrightarrow r^{\circ} \geq s^{\circ}$, (3) $r^{\circ} = r^{\circ\circ\circ}$, (4) $(r \lor s)^{\circ} = r^{\circ} \land s^{\circ}$, (5) $(r \lor s)^{\circ\circ} = r^{\circ\circ} \lor s^{\circ\circ}$, (6) $(r \land s)^{\circ\circ} = r^{\circ\circ} \land s^{\circ\circ}$.

Definition 2.1.[11] A GK₂-algebra L is a GMS-algebra satisfying:

(1) $r \wedge r^{\circ} = r^{\circ \circ} \wedge r^{\circ} \forall r \in L$, (2) $r \wedge r^{\circ} \leq s \vee s^{\circ} \forall r, s \in L$.

Let *L* be a *GK*₂-algebra. An element *r* of *L* is called closed if $r^{\circ\circ} = r$ and an element $d \in L$ is called dense if $d^{\circ} = 0$. Set $L^{\circ\circ}$ to denote the set of all closed elements of *L* and D(L) for the set of all dense elements of *L*.

Lemma 2.2.[11] *Let* $L \in GK_2$ *-algebra. Then*

(1) $L^{\circ\circ}$ is a GK-subalgebra of L, (2) D(L) is a filter of L.

Example 2.1. (1) Every *MS*-algebra is a *GMS*-algebra.

- (2) Every S-algebra (pseudo-complement lattice satisfying the Stone identity, $r^* \lor r^{**} = 1$, where $r^* = max\{s: s \land r = 0\}$ is the pseudo-complement of r) is a *GMS*-algebra.
- (3) The following is a *GMS*-algebra (L_1, \circ) satisfying the Stone identity $r^* \lor r^{**} = 1$. We observe that it is not an *S*-algebra; for example, the element μ has not pseudo-complement.

Inf. Sci. Lett. 12, No. 6, 2623-2632 (2023) / www.naturalspublishing.com/Journals.asp

Also, we have

 $L_1^{\circ\circ} = \{0, a, b, c, q, 1\}$ is a modular *GK*-algebra, and $D(L_1) = \{d, x, y, z, w, 1\}$ is a modular lattice.

Definition 2.2.[11] A GK₂-algebra L is a PGK₂-algebra if:

- (1) D(L) = [d) for some $d \in L$,
- (2) The generator d is distributive, that is, $(r \land s) \lor d = (r \lor d) \land (s \lor d)$ for all $r, s \in L$,
- (3) $r = r^{\circ \circ} \wedge (r \lor d)$ for all $r \in L$.

Example 2.2. (1) Every K_2 -algebra is a GK_2 -algebra.

- (2) Every S-algebra is a GK_2 -algebra.
- (3) The GK_2 -algebra L_1 of Example 2.4(3) is a PGK_2 -algebra which is not an S-algebra.
- (4) The following GK_2 -algebra represents an S-algebra L_2 , where $L_2^{\circ\circ} = \{0, a, b, 1\}$ is a Boolean subalgebra and $D(L_2) = \{1\}$. It is clear that it is not a principal S-algebra as $c^{\circ\circ} \wedge (c \vee 1) \neq c$.

From this example, it is not true that every finite GK_2 -algebra is principal.

(5) The following *GMS*-algebra is a PGK_2 - algebra.

2626

Definition 2.3.[6] A binary relation α defined on a lattice *L* is said to be a lattice congruence if : (1) α is an equivalence relation on *L*,

(2) $(r,s), (u,v) \in \alpha$ implies $(r \land u, s \land v), (a \lor c, b \lor d) \in \alpha$.

For a congruence relation α on a lattice L, $[r]\alpha$ is given

$$r]\alpha = \{t \in L : (t,r) \in \alpha\}.$$
(6)

It can be prove that $(L/\alpha, \lor, \land)$ forms a lattice, where

$$L/\alpha = \{ [r]\alpha : r \in L \}$$
⁽⁷⁾

is the quotient lattice of L modulo α and

$$[r]_{\alpha} \vee [s]_{\theta} = [r \vee s]_{\alpha} \text{ and } [r]_{\alpha} \wedge [s]_{\alpha} = [r \wedge s]_{\alpha}$$

$$\tag{8}$$

A lattice congruence α on a GK_2 -algebra $(L; \circ)$ is called a congruence on L if $r \equiv s(\alpha)$ implies $r^\circ \equiv s^\circ(\alpha)$. For a GK_2 -algebra L, $\operatorname{Con}(L)$ is used to denote the set of all congruence on L and $\alpha_{L^{\circ\circ}}, \alpha_{D(L)}$ are used for α restricted to $L^{\circ\circ}$ and D(L), respectively. Obviously, $(\alpha_{L^{\circ\circ}}, \alpha_{D(L)}) \in \operatorname{Con}(L^{\circ\circ}) \times \operatorname{Con}(D(L))$. Also, we use $\nabla_L = L \times L$ and $\Delta_L = \{(r, r) : r \in L\}$ for the universal and the identity congruences on L, respectively.

A congruence relation α on a lattice *L* is called principal if there exist $r, s \in L$ such that α is the smallest congruence relation for which $r \equiv s(\alpha)$. Indeed,

$$\alpha(r,s) = \bigwedge \{ \alpha \in Con(L) \mid r \equiv s(\alpha) \}$$
(9)

Definition 2.4.[11] Let *d* be the smallest dense element of a PGK₂-algebra *L*. Then a pair $(\alpha_1, \alpha_2) \in Con(L^{\circ\circ}) \times Con(D(L))$ is called a congruence pair of *L* if $r \equiv s(\alpha_1)$ implies $r \lor d \equiv s \lor d(\alpha_2)$.

A characterization of a congruence relation on PGK_2 -algebras is given as follows:

Theorem 2.1.[11] Let *d* be the smallest dense element of a PGK₂-algebra *L*. Then any $\alpha \in Con(L)$ determines a congruence pair $(\alpha_{L^{\circ\circ}}, \alpha_{D(L)})$. Conversely, any congruences pair (α_1, α_2) uniquely determines an $\alpha \in Con(L)$ satisfies $\alpha_{L^{\circ\circ}} = \alpha_1$ and $\alpha_{D(L)} = \alpha_2$, by the rule: $r \equiv s(\alpha) \Leftrightarrow r^{\circ\circ} \equiv s^{\circ\circ}(\alpha_1)$ and $r \lor d \equiv s \lor d(\alpha_2)$.

Lemma 2.3.[11] Let L be a PGK₂-algebra and let A(L) be the set of all congruence pairs of L. Then : (1) $(\forall \beta \in Con(D(L)))(\triangle_{L^{\circ\circ}}, \beta) \in A(L),$ (2) $(\forall \eta \in Con(L^{\circ\circ}))(\eta, \nabla_{D(L)}) \in A(L).$

3 2-Permutability of *PGK*₂-algebras

We extend the concept of 2-permutability of congruences to PGK_2 -algebras. Some basic properties are proved, and necessary and sufficient conditions for a principal GK_2 -algebra to have 2-permutable congruences are provided. Moreover, it is established how to characterise 2-permutable congruences in terms of pairs of main congruences.

Definition 3.1.*Let L* be a PGK₂-algebra. Then $\alpha, \delta \in Con(L)$ are 2-permutable congruences (briefly 2-permutable) if $\alpha \circ \delta = \delta \circ \alpha$, that is, $r \equiv s(\alpha)$ and $s \equiv p(\delta)$ imply the existence of an element $u \in L$ such that $r \equiv u(\delta)$ and $u \equiv p(\alpha)$.

A PGK_2 -algebra L is called 2-permutable congruences if any pair of congruences permute. Let L be a principal GK_2 algebra. Define a relation Γ on L as follows:

$$(r,s) \in \Gamma \iff r^{\circ\circ} = s^{\circ\circ} \\ \iff r^{\circ} = s^{\circ}.$$

Lemma 3.1. Let L be a PGK₂-algebras. Then

(1) $\Gamma \in Con(L)$ with Ker $\Gamma = \{0\}$ and Coker $\Gamma = D(L)$, (2) $r^{\circ\circ}$ is the maximum element of the $[r]\Gamma$, where $[r]\Gamma = \{s \in L : s^{\circ\circ} = r^{\circ\circ}\}$, (3) $[r]\Gamma = [r^{\circ\circ}]\Gamma$ for any $r \in L$, (4) L/Γ is a GK-algebra, (5) $L/\Gamma \cong L^{\circ\circ}$.

Proof. (1) It is straightforward to show that Γ is an equivalent relation on L. Let $(r,s), (u,v) \in \Gamma$. Then $r^{\circ\circ} = s^{\circ\circ}$ and $u^{\circ\circ} = v^{\circ\circ}$. Now we have

$$(r \wedge u)^{\circ \circ} = r^{\circ \circ} \wedge u^{\circ \circ}$$
$$= s^{\circ \circ} \wedge v^{\circ \circ}$$
$$= (s \wedge v)^{\circ \circ}.$$

Then $(r \land u, s \land v) \in \Gamma$. Also, we have

$$(r \lor u)^{\circ\circ} = r^{\circ\circ} \lor u^{\circ\circ}$$
$$= s^{\circ\circ} \lor v^{\circ\circ}$$
$$= (s \lor v)^{\circ\circ}$$

Then $(r \lor u, s \lor v) \in \Gamma$. Now, let $(r, s) \in \Gamma$. Then we have

$$(r,s) \in \Gamma \Longrightarrow r^{\circ\circ} = s^{\circ\circ}$$
$$\Longrightarrow r^{\circ\circ\circ} = s^{\circ\circ\circ}$$
$$\Longrightarrow (r^{\circ}, s^{\circ}) \in \Gamma$$

Then $\Gamma \in Con(L)$. We observe that

Ker
$$\Gamma = \{r \in L : (r,0) \in \Gamma\}$$

= $\{r \in L : r^{\circ \circ} = 0^{\circ \circ} = 0\}$
= $\{r \in L : r^{\circ} = 1\}$
= $\{0\}.$

Moreover,

Coker
$$\Gamma = \{r \in L : (r, 1) \in \Gamma\}$$

= $\{r \in L : r^{\circ \circ} = 1^{\circ \circ} = 1\}$
= $\{r \in L : r^{\circ} = 0\}$
= $D(L)$.

(2) Since $(r^{\circ\circ})^{\circ\circ} = r^{\circ\circ}$, then $r^{\circ\circ} \in [x]\Gamma$. Let $s \in [r]\Gamma$. Then $s \leq s^{\circ\circ} = r^{\circ\circ}$. So, $r^{\circ\circ} \geq s$. Hence, $r^{\circ\circ}$ is the greatest element of $[r]\Gamma$.

(3) Since $r^{\circ\circ\circ} = r^{\circ}$. Then $r^{\circ\circ\circ\circ} = r^{\circ\circ}$ implies $(r^{\circ\circ}, r) \in \Gamma$, and thereby $[r^{\circ\circ}]\Gamma = [r]\Gamma, \forall r \in L$.

(4) We have $(L/\Gamma; \lor, \land, [0]\Gamma, [1]\Gamma)$ is a bounded lattice with bounds $[0]\Gamma$ and $[1]\Gamma$, where $[r]\Gamma \land [s]\Gamma = [r \land s]\Gamma$ and $[r]\Gamma \lor [s]\Gamma = [r \lor s]\Gamma$. Define \Box on L/Γ by $([r]\Gamma)^{\Box} = [r^{\circ}]\Gamma$. Now, we have the following equalities

$$([0]\Gamma)^{\square} = [1]\Gamma \text{ and } ([1]\Gamma)^{\square} = [0]\Gamma,$$
$$([r]\Gamma)^{\square\square} = [r^{\circ\circ}]\Gamma = [x]\Gamma,$$
$$([r]\Gamma \wedge [s]\Gamma)^{\square} = ([r \wedge s]\Gamma)^{\square}$$
$$= [(r \wedge s)^{\circ}]\Gamma$$
$$= [r^{\circ} \vee s^{\circ}]\Gamma$$
$$= [r^{\circ}]\Gamma \vee [s^{\circ}]\Gamma$$
$$= ([r]\Gamma)^{\square} \vee ([s]\Gamma)^{\square}.$$

Then L/Γ is a *GM*-algebra. Since $r \wedge r^{\circ} \leq s \vee s^{\circ}$, then $[r \wedge r^{\circ}]\Gamma \leq [s \vee s^{\circ}]\Gamma$. Hence,

$$\begin{split} [r]\Gamma \wedge ([r]\Gamma)^{\Box} &= [r]\Gamma \wedge [r^{\circ}]\Gamma \\ &= [r \wedge r^{\circ}]\Gamma \\ &\leq [s \vee s^{\circ}]\Gamma \\ &= [s]\Gamma \vee [s^{\circ}]\Gamma \\ &= [s]\Gamma \vee ([s]\Gamma)^{\Box}. \end{split}$$

Thus, L/Γ is a *GK*-algebra. (5) Define $f: L^{\circ\circ} \longrightarrow L/\Gamma$ by

$$f(r) = [r]\Gamma \ \forall r \in L^{\circ \circ} \tag{10}$$

It is clear that f is well-defined. Let f(r) = f(s). Then $[r]\Gamma = [s]\Gamma$ implies $r \equiv s(\Gamma)$. Then $r = r^{\circ\circ} = s^{\circ\circ} = s$ as $r, s \in L^{\circ\circ}$. Then f is one-to-one. Let $[s]\Gamma \in L/\Gamma$ for some $s \in L$. Then $[s] = [s^{\circ\circ}]\Gamma$ and so $f(s^{\circ\circ}) = [s^{\circ\circ}]\Gamma = [s]\Gamma$. Then f is onto Also, we need to show that f is a homomorphism. Clearly, $f(r \lor s) = f(r) \lor f(s)$ and $f(r \land s) = f(r) \land f(s)$. Also,

$$f(r^{\circ}) = [r^{\circ}]\Gamma$$

= $[r^{\circ\circ\circ}]\Gamma$
= $([r^{\circ\circ}]\Gamma)^{\Box}$
= $([r]\Gamma)^{\Box}$
= $(f(r))^{\Box}$.

Clearly $f(0) = [0]\Gamma$ and $f(1) = [1]\Gamma$. Hence, $L^{\circ\circ} \cong L/\Gamma$.

Lemma 3.2. Let L be a PGK₂-algebras. Then:

(1) Γ permutes with any $\alpha \in Con(L)$,

(2) \triangle_L permutes with any $\alpha \in Con(L)$,

(3) \bigtriangledown_L permutes with any $\alpha \in Con(L)$.

Proof. (1) Let $\alpha \in \text{Con}(L)$. Then we need to show that $\alpha \circ \Gamma = \Gamma \circ \alpha$. Let $r \equiv s(\alpha \circ \Gamma)$. Then $r \equiv p(\alpha)$ and $p \equiv s(\Gamma)$ for some $p \in L$. So, $r \equiv p(\alpha)$ and $p^{\circ \circ} = s^{\circ \circ}$. Now

$$r \equiv p(\alpha) \Longrightarrow r^{\circ\circ} \equiv p^{\circ\circ}(\alpha), s \lor d \equiv s \lor d(\alpha)$$

$$\Longrightarrow r^{\circ\circ} \equiv s^{\circ\circ}(\alpha), s \lor d \equiv s \lor d(\alpha) \text{ as } p^{\circ\circ} = s^{\circ\circ}$$

$$\Longrightarrow r^{\circ\circ} \land (s \lor d) \equiv s^{\circ\circ} \land (s \lor d)(\alpha) = s(\alpha) \text{ as } s = s^{\circ\circ} \land (s \lor d).$$

Since $[r^{\circ\circ} \land (s \lor d)]^{\circ\circ} = r^{\circ\circ}$, then $r^{\circ\circ} \land (s \lor d) \equiv r(\Gamma)$. Since $r \equiv r^{\circ\circ} \land (s \lor d)(\Gamma)$ and $r^{\circ\circ} \land (s \lor d) \equiv s(\alpha)$, then $r \equiv s(\Gamma \circ \alpha)$. (2) Let $r \equiv s(\alpha \circ \triangle_L)$. Then $r \equiv p(\alpha)$, $p \equiv s(\triangle_L)$ for some $p \in L$. Hence $r \equiv s(\alpha)$ as p = s. Then, $r \equiv r(\triangle_L)$ and $r \equiv s(\alpha)$. Thus, we deduced that $r \equiv s(\triangle_L \circ \alpha)$. Therefore, \triangle_L permutes with any element of Con(*L*). (3) Let $r \equiv s(\alpha \circ \bigtriangledown_L)$. Then $r \equiv p(\alpha)$, $p \equiv s(\bigtriangledown_L)$ for some $p \in L$. Then we have $r \equiv s(\bigtriangledown_L)$ and $s \equiv s(\alpha)$. Thus, $r \equiv s(\alpha)$.

(3) Let $r \equiv s(\alpha \circ \bigtriangledown_L)$. Then $r \equiv p(\alpha)$, $p \equiv s(\bigtriangledown_L)$ for some $p \in L$. Then we have $r \equiv s(\bigtriangledown_L)$ and $s \equiv s(\alpha)$. Thus, $r \equiv s(\bigtriangledown_L \circ \alpha)$. Therefore, \bigtriangledown_L permutes with any element of Con(L).

Now, we provide a characterization of 2-permutable congruences.

Theorem 3.1. Let d be the smallest dense element of a PGK_2 -algebra L. Then L has 2-permutable congruences if and only if:

(1) $L^{\circ\circ}$ has 2-permutable congruences,

(2) D(L) has 2-permutable congruences.

Proof. Suppose that α, δ are 2-permutable on *L*. First, we prove that $\alpha_{L^{\circ\circ}}, \delta_{L^{\circ\circ}}$ are 2-permutable on $L^{\circ\circ}$. Consider that $r, s, p \in L^{\circ\circ}$ be such that $r \equiv s(\alpha_{L^{\circ\circ}})$ and $s \equiv p(\delta_{L^{\circ\circ}})$. Then $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. Since α, δ are 2-permutable, we have $r \equiv q(\delta), q \equiv p(\alpha)$ for some $q \in L$. Now,

$$r \equiv q(\delta), q \equiv p(\alpha) \Longrightarrow r^{\circ\circ} \equiv q^{\circ\circ}(\delta), q^{\circ\circ} \equiv p^{\circ\circ}(\alpha)$$
$$\implies r \equiv q^{\circ\circ}(\delta), q^{\circ\circ} \equiv p(\alpha) \text{ as } r, p \in L^{\circ\circ}$$
$$\implies r \equiv q^{\circ\circ}(\delta_{L^{\circ\circ}}), q^{\circ\circ} \equiv p(\alpha_{L^{\circ\circ}}) \text{ as } q^{\circ\circ} \in L^{\circ\circ}.$$

Therefore $\alpha_{L^{\circ\circ}}, \delta_{L^{\circ\circ}}$ are 2-permutable on $L^{\circ\circ}$ and (1) is proved. Secondly, we show that 2-permutability of α, δ implies 2-permutability of $\alpha_{D(L)}$ and $\delta_{D(L)}$. Let $r, s, p \in D(L)$ be such that $r \equiv s(\alpha_{D(L)})$ and $s \equiv p(\delta_{D(L)})$. Then $r \equiv s(\alpha), s \equiv p(\delta)$. Since α, δ are 2-permutable, then $r \equiv u(\delta)$ and $u \equiv p(\alpha)$ for some $u \in L$. Now,

$$r \equiv u(\delta), u \equiv p(\alpha) \Longrightarrow r \lor d \equiv u \lor d(\delta), u \lor d \equiv p \lor d(\alpha)$$
$$\implies r \equiv u \lor d(\delta), u \lor d \equiv p(\alpha) \text{ as } r, p \ge d$$
$$\implies r \equiv u \lor d(\delta), u \lor d \equiv p(\alpha) \text{ where } u \lor d \in D(L)$$

Hence $r \equiv u \lor d(\delta_{D(L)})$ and $u \lor d \equiv p(\alpha_D(L))$. Therefore $\alpha_{D(L)}$ and $\delta_{D(L)}$ are 2-permutable congruences on D(L). For the converse direction, let $\alpha, \delta \in \text{Con}(L)$ such that $\alpha_{L^{\circ\circ}}, \delta_{L^{\circ\circ}}$ and $\alpha_{D(L)}, \delta_{D(L)}$ are 2-permutable on $L^{\circ\circ}$ and D(L), respectively. Consider the elements $r, s, p \in L$ with $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. We have, by Theorem 2.9, that $r^{\circ\circ} \equiv s^{\circ\circ}(\alpha_{L^{\circ\circ}})$ and $s^{\circ\circ} \equiv p^{\circ\circ}(\delta_{L^{\circ\circ}})$. Since $\alpha_{L^{\circ\circ}}, \delta_{L^{\circ\circ}}$ are 2-permutable congruences on $L^{\circ\circ}$, then $r^{\circ\circ} \equiv u(\delta_{L^{\circ\circ}})$ and $u \equiv p^{\circ\circ}(\alpha_{L^{\circ\circ}})$ with $u \in L^{\circ\circ}$ implies that $r^{\circ\circ} \equiv u(\delta)$ and $u \equiv p^{\circ\circ}(\alpha)$. On the other hand, also by Theorem 2.9, we get $r \lor d \equiv s \lor d(\alpha_{D(L)})$ and $s \lor d \equiv p \lor d(\delta_{D(L)})$. Since $\alpha_{D(L)}, \delta_{D(L)}$ are 2-permutable congruences on D(L), then $r \lor d \equiv v(\delta_{D(L)})$ and $v \equiv p \lor d(\alpha_{D(L)})$ for some $v \in D(L)$. It follows that

Since *L* is a *PGK*₂-algebra, then we have $r = r^{\circ\circ} \land (r \lor d)$ and $p = p^{\circ\circ} \land (p \lor d)$. Then we have

$$r^{\circ\circ} \equiv u(\delta), r \lor d \equiv v(\delta) \text{ imply that } r = r^{\circ\circ} \land (r \lor d) \equiv u \land v(\delta), \tag{12}$$

and

$$u \equiv p^{\circ\circ}(\alpha), v \equiv p \lor d(\alpha) \text{ imply that } a \land v \equiv p^{\circ\circ} \land (p \lor d)(\alpha) = p \tag{13}$$

Consequently, we deduce that $r \equiv u \wedge v(\delta)$ and $u \wedge v \equiv p(\alpha)$. Therefore α, δ are 2-permutable congruences.

Theorem 3.2. A PGK₂-algebra L has 2-permutable congruences if and only if every pair of principal congruences on L permutes.

Proof. The first statement is obvious. Assume that any pair of principal congruences on *L* permute. Let $\alpha, \delta \in Con(L)$. Consider $r, s, p \in L$ with $r \equiv s(\alpha)$ and $s \equiv p(\delta)$. Then $r \equiv s(\alpha(r, s))$, $s \equiv p(\delta(s, p))$. It is clear that $\alpha(r, s) \subseteq \alpha$ and $\delta(s, p) \subseteq \delta$. Hence, $r \equiv p(\alpha(r, s) \circ \delta(s, p))$. Since $\alpha(r, s), \delta(s, p)$ are 2-permutable, then $r \equiv u(\delta(s, p))$ and $u \equiv p(\alpha(r, s))$ for some $u \in L$. Consequently, $r \equiv u(\delta)$ and $u \equiv p(\alpha)$ and hence $r \equiv p(\delta \circ \alpha)$.

4 *n*-Permutability of *PGK*₂-algebras

The results of this section extend the 2-permutability of congruences of PGK_2 -algebras to *n*-permutable congruences. Two congruences α, δ are *n*-permutable if

$$\alpha \circ \delta \circ \alpha \circ \dots \dots (n-\text{times}) = \delta \circ \alpha \circ \delta \circ \dots \dots (n-\text{times}), \text{ where } n = 1, 2, \dots, n-1$$
(14)

Definition 4.1. A principal GK_2 -algebras L has n-permutable congruences, if every two congruences in L are *n*-permutable.

2630

Lemma 4.1. Let d be the smallest dense element of a PGK₂-algebra L. Let θ , ψ be congruences on L. Then

 $(1) (\alpha \circ \delta \circ \alpha \circ \dots)_{L^{\circ\circ}} = \alpha_{L^{\circ\circ}} \circ \delta_{L^{\circ\circ}} \circ \alpha_{L^{\circ\circ}} \circ \dots (n-times),$ (2) $(\alpha \circ \delta \circ \alpha \circ \dots)_{D(L)} = \alpha_{D(L)} \circ \delta_{D(L)} \circ \alpha_{D(L)} \circ \dots (n-times).$

Proof. (1) To show the equality

(15)

Now, let $r, s \in L^{\circ\circ}$ with $r \equiv s(\alpha \circ \delta \circ \dots)_{L^{\circ\circ}}$. Then $r \equiv s(\alpha \circ \delta \circ \dots)$. Thus there exist elements $t_1, t_2, \dots, t_{n-1} \in L$ be such that $r \equiv t_1(\alpha), t_1 \equiv t_2(\delta), \dots, t_{n-1} \equiv s(\nu)$, where

$$v = \begin{cases} \alpha & \text{if n is odd} \\ \delta & \text{if n is even} \end{cases}$$
(16)

We have, $r^{\circ\circ} = r \equiv t_1^{\circ\circ}(\alpha), t_1^{\circ\circ} \equiv t_2^{\circ\circ}(\delta), \dots, t_{n-1}^{\circ\circ} \equiv s^{\circ\circ} = s(\nu),$ Then, $r \equiv s(\alpha_{L^{\circ\circ}} \circ \delta_{L^{\circ\circ}} \circ \dots)$ because of $t_n^{\circ\circ} \in L^{\circ\circ}$ for $n = 1, 2, \dots, n-1$. The reverse inclusion is obvious. Hence,

(

$$(\alpha \circ \delta \circ \dots)_{L^{\circ\circ}} = (\alpha_{L^{\circ\circ}} \circ \delta_{L^{\circ\circ}} \dots \dots).$$
⁽¹⁷⁾

(2) Let $r, s \in D(L)$ be such that $r \equiv s((\theta \circ \psi \circ \dots)_{D(L)})$, that is $r \equiv s(\alpha \circ \delta \circ \dots)$. Then there exist $t_1, t_2, \dots, t_{n-1} \in L$ be such that $r \equiv t_1(\alpha), t_1 \equiv t_2(\delta), \dots, t_{n-1} \equiv b(v)$. Then, $r = r \lor d \equiv t_1 \lor d(\alpha), \dots, t_{n-1} \lor d \equiv b \lor d = s(v)$. Therefore, $r \equiv s(\alpha_{D(L)} \circ \delta_{D(L)} \circ \dots)$ since $t_n \lor d \in D(L)$ for $n = 1, 2, \dots, n-1$. The reverse inclusion is obvious. Therefore,

$$(\boldsymbol{\alpha} \circ \boldsymbol{\delta} \circ \dots)_{D(L)} = (\boldsymbol{\alpha}_{D(L)} \circ \boldsymbol{\delta}_{D(L)} \dots (n-\text{time})$$
(18)

Theorem 4.1. Let *d* be the smallest dense element of a PGK_2 -algebra *L*. Then *L* has *n*-permutable congruences if and only if $L^{\circ\circ}$ and D(L) are *n*-permutable congruences.

Proof. \implies :) By using Lemma 4.2(1) we have

$$egin{aligned} lpha_{L^{\circ\circ}}\circ\delta_{L^{\circ\circ}}\circ....&=(lpha\circ\delta\circ....)_{L^{\circ\circ}}\ &=(\delta\circlpha\circ....)_{L^{\circ\circ}}\ &=\delta_{L^{\circ\circ}}\circlpha_{L^{\circ\circ}}\circ.... \end{aligned}$$

Again by using Lemma 4.2(2) we have

$$\begin{aligned} \alpha_{D(L)} \circ \delta_{D(L)} \circ \dots &= (\alpha \circ \delta \circ \dots)_{D(L)} \\ &= (\delta \circ \alpha \circ \dots)_{D(L)} \\ &= \delta_{D(L)} \circ \alpha_{D(L)} \circ \dots \end{aligned}$$

(\Leftarrow :) Let $r \equiv s(\alpha \circ \delta \circ ...)$. Then $r^{\circ\circ} \equiv s^{\circ\circ}((\alpha \circ \delta \circ ...)_{L^{\circ\circ}})$ and $r \lor d \equiv s \lor d((\alpha \circ \delta \circ ...)_{D(L)})$ by Theorem 2.9. Applying Lemma 4.2 we have

(19)

Since

$$\alpha_{L^{\circ\circ}} \circ \delta_{L^{\circ\circ}} \circ \dots = \delta_{L^{\circ\circ}} \circ \alpha_{L^{\circ\circ}} \circ \dots (n - \text{times}) \text{ and } \alpha_{D(L)} \circ \delta_{D(L)} \circ \dots = \delta_{D(L)} \circ \alpha_{D(L)} \circ \dots (n - \text{times}), \tag{20}$$

then we get

$$s^{\circ\circ} \equiv s^{\circ\circ}((\delta \circ \alpha \circ ...)_{L^{\circ\circ}}) \text{ and } r \lor d \equiv s \lor d((\delta \circ \alpha \circ ...)_{D(L)}).$$

$$(21)$$

Now, by using Definition 2.5(3) and Theorem 2.9, we get

ł

(22)

Therefore, $r \equiv s(\delta \circ \alpha \circ \dots)$. Thus, we deduce that δ and α are *n* permutable.

5 Strong extensions of *PGK*₂-algebras

The concept of strong extensions of PGK_2 -algebras is investigated in this section.

An algebra *L* satisfies the congruence extension property (CEP); if for every subalgebra L_1 of *L* and every α of L_1 , α extends to a congruence of *L*.(see [19])

Definition 5.1. Let M_1 and N be a PGK₂-algebras. Then we call the algebra K a strong extension of the algebra K_1 if K_1 is a subalgebra of K and for any $\alpha_{1 \in} Con(K_1)$, there exists a unique congruence relation $\alpha \in Con(K)$ such that $\alpha_{K_1} = \alpha_1$.

Theorem 5.1. Let K_1 be a subalgebra of a PGK₂-algebra K. Then K is a strong extension of K_1 if and only if

(1) D(K) is a strong extension of $D(K_1)$,

(2) $K^{\circ\circ}$ is a strong extension of $K_1^{\circ\circ}$.

Proof. Let *K* be a strong extension of K_1 . Let $\eta_2 \in \text{Con}(D(K_1))$. Assume that $\dot{\eta}_2, \bar{\eta}_2 \in \text{Con}(D(K))$ such that $\dot{\eta}_{2,D(K_1)} = \bar{\eta}_{2,D(K_1)} = \eta_2$ Then, by Lemma 2.10(1), we have

$$(\triangle_{K^{\circ\circ}}, \hat{\eta}_2), (\triangle_{K^{\circ\circ}}, \bar{\eta}_2) \in A(K) \text{ and } (\triangle_{K^{\circ\circ}_1}, \eta_2) \in A(K_1).$$

$$(23)$$

According to Theorem 2.9, we have $\hat{\eta}, \bar{\eta} \in \operatorname{Con}(K)$ and $\eta \in \operatorname{Con}(K_1)$ corresponding to $(\triangle_{K^{\circ\circ}}, \hat{\eta}_2), (\triangle_{K^{\circ\circ}}, \bar{\eta}_2)$ and $\eta = (\triangle_{K_1^{\circ\circ}}, \eta)$, respectively. We see that $\hat{\eta}_{K_1} = \bar{\eta}_{K_1} = \eta$. We have $\hat{\eta} = \bar{\eta}$. Hence, $\hat{\eta}_2 = \bar{\eta}_2$ proving (1). On the other hand, we need to show that $K^{\circ\circ}$ is a strong extension of $K_1^{\circ\circ}$. Let $\eta_1 \in \operatorname{Con}(K_1^{\circ\circ})$ and η_1 extend to a congruence of $K^{\circ\circ}$. Let $\hat{\eta}_1, \bar{\eta}_1 \in \operatorname{Con}(K^{\circ\circ})$ with $\hat{\eta}_{1,K_1^{\circ\circ}} = \bar{\eta}_{1,K_1^{\circ\circ}} = \eta_1$. Then, by Lemma 2.10(2), we have

$$(\hat{\eta}_1, \bigtriangledown_{D(K)}), (\bar{\eta}_1, \bigtriangledown_{D(K)}) \in A(K) \text{ and } (\eta, \bigtriangledown_{D(K_1)}) \in A(K_1).$$
 (24)

Again, by Theorem 2.9, we have $\hat{\eta}, \bar{\eta} \in \text{Con}(K)$ and $\eta \in \text{Con}(K)$ corresponding to $(\hat{\eta}_1, \bigtriangledown_{D(K)}), (\bar{\eta}_1, \bigtriangledown_{D(K)})$ and $\eta = (\eta, \bigtriangledown_{D(K_1)})$, respectively. We see that $\hat{\eta}_{K_1} = \bar{\eta}_{K_1} = \eta$. Since *K* is a strong extension of *K*₁, then $\hat{\eta} = \bar{\eta}$. Therefore $\hat{\eta}_1 = \bar{\eta}_1$, proving that (2). Conversely, suppose that conditions (1) and (2) hold and let $\eta \in \text{Con}(K_1)$. Let $\hat{\eta}, \bar{\eta}$ be extensions of η in Con(K). By Theorem 2.9, the congruences $\hat{\eta}, \bar{\eta}$ and η can be represented by the congruence pairs $(\hat{\eta}_1, \hat{\eta}_2), (\bar{\eta}_1, \bar{\eta}_2)$ and (η_1, η_2) , respectively. Where

$$\dot{\eta}_{1,K_1^{\circ\circ}} = \bar{\eta}_{1,K_1^{\circ\circ}} = \eta_1 \text{ and } \dot{\eta}_{2,D(K_1)} = \bar{\eta}_{2,D(K_1)} = \eta_2.$$
(25)

By (1) and (2) we get

$$\acute{\eta}_1 = \bar{\eta}_1 \text{ and } \acute{\eta}_2 = \bar{\eta}_2.$$
(26)

Therefore, $\dot{\eta} = \bar{\eta}$.

Corollary 5.1. Let K_1 and K be PGK_2 -algebras. If K_1 is a strong extension of K, then $Con(K_1) \cong Con(K)$.

6 Conclusion

The following three key concepts in algebraic structures: 2-Permutability, n- Permutability, and strong extensions were examined for the PGK_2 -algebras via congruence pairs. this paper's work could be further developed to study many aspects of GK_2 -algebras and related structures. For instance, it can be applied to triple construction of GK_2 -algebras, perfect extensions of PGK_2 -algebras and substructures of PGK_2 -algebras.

References

- [1] T. S. Blyth and J. C. Verlet, On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh, **94A**, , 301-308(1983).
- [2] T. S. Blyth and J. C. Verlet, Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh, 95A, 157-169 (1983).
- [3] A. Badawy, D. Guffova, M. Haviar, Triple construction of decomposable MS-algebras, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math., 51(2), 53-65 (2012).
- [4] A. Badawy and K. P. Shum.: Congruence pairs of principal *p*-algebras, Math. Slovaca, 67, 263-270 (2017).
- [5] A. Badawy, M. Haviar, M. Ploščica, Congruence pairs of principal MS-algebras and perfect extensions, Math. Slovaca, 70, 1275-1288 (2020).
- [6] T. S. Blyth and J. C. Verlet, Congruences on MS-algebras, Bulletin de la Socit des Sciences de Lige, 53, 341-362 (1984).

- [7] S. El-Assar and A. Badawy, Congruence pair of decomposable MS-algebras, Chin. Ann. Math. Ser. B, 42(4), 561-574 (2021).
- [8] M. Haviar, Construction and affine completeness of principal p-algebras, Tatra Mountains Math., 5, 217-228 (1995).
- [9] D. Ševčovič, Free non-distributive Morgan-Stone algebras, New Zealand Journal of Math., 25, 85-94 (1996).
- [10] A. Badawy, On a construction of modular GMS-algebras, Acta Univ. Palacki. Olomuc., Fac.rer. nat., Mathematica, 54(1), 19-31 (2015).
- [11] A. Badawy, On a certain triple construction of *GMS*-algebras, Appl. Math. Inf. Sci., **11**(**3**), 115-121 (2015).
- [12] R. Beazer, Congruence permutability for algebras with pseudocomplementation, Proceedings of the Edinburgh Mathematical Society, 24(1), 55-58 (1981).
- [13] R. Beazer, Distributive *p*-algebras and double *p*-algebras having *n*-permutable congruences, Proc. Edin. Math. Soc., **35**, 301-307 (1992).
- [14] T. Katriňák, Essential and strong extension of p-algebras, Bull. de la Soc. Roy., des Sci. de Liege, 3, 119-124 (1980).
- [15] R. Beazer, Congruence pairs for algebras abestracting of Kleene algebras and Stone algebras, Czechoslovak Math. J., 35, 260-268 (1985).
- [16] G. Birkhoff, Lattice Theory, Amererican Mathematical Society, Providence, R.I.,1-131,(1967).
- [17] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University Press, USA,1-144, (2002).
- [18] G. Grätzer, Lattice Theory, First Concepts and Distributive Lattices, Lecture Notes, Freeman, San Francisco, California,1-174 (1971).
- [19] C. W. Luo, The congruence extension property of MS-algebras, J. Wuhan Univ. Natur. Sci. Ed., 44(3), 282-284 (1998).