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Abstract: This paper presents a fractional Newton explicit group method to solve time-fractional nonlinear porous medium equations.

The presented method utilizes implicit finite difference schemes with the Caputo time-fractional derivative operator. This paper aims

to evaluate the accuracy and efficiency of the proposed method in solving initial boundary value problems of porous medium equations

at different orders of time-fractional derivatives. The method is experimented repeatedly by using several large systems of equations to

illustrate the consistency of the method’s performance. In addition, the method is also experimented in solving some physics problems,

which can show the method’s efficacy in solving realistic phenomena.
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1 Introduction

Time-fractional porous medium equation (TFPME) is one of the important equations to describe the diffusion of matter
subjects to a porous medium setting. For the past few years, TFPME has presented in the modelling of anomalous diffusion
that occurred in the stock markets [1], wet porous medium [2], and signal processing [3]. The early applications of
TFPME to mathematical describe such realistic phenomena have made it one of the interests of several researchers.
Some researchers focus on studying the theory behind the solution of TFPME. For instance, Imbert et al. [4] studied the
regularity of solutions of TFPME. Then, Li et al. [5] expanded the regularity of solutions of TFPME and provided proof
of the well-posedness and regularity of solutions to TFPME. Next, Dao [6] studied solutions of a general fractional porous
medium equation with a non-Lipschitz absorption term. His work showed weak solutions, Lp-estimates, decay estimates,
and the disappearance of weak solutions after a finite time. Moreover, Wittbold et al. [7] investigated bounded weak
solutions of TFPME. Recently, Yang and Wang [8] performed Lie group analysis to investigate TFPME and constructed
some explicit group-invariant solutions. The theory about the solutions of TFPME is still expanding, and to date, it is
sufficient to provide a fundamental understanding of the solutions of TFPME.

Apart from the group of researchers that focus on establishing the theory, some researchers developed and proposed
different methods that can be applied to finding the solutions of TFPME. For instance, Plociniczak [9] proposed a
method to reduce a TFPME into a Volterra integral equation and obtain self-similar solutions. Then, Liu et al. [10]
suggested the Lie symmetry approach to obtain invariant solutions and converted TFPME to the fractional ordinary
differential equation. Recently, Plociniczak and Plociniczak [11] extended the method by [9] to obtain self-similar
solutions of TFPME subjects to Dirichlet, Neumann, and Robin boundaries on the half-line. Most of the previous work
used the conversion from a TFPME to other differential equations for self-similar solutions. In addition, there is limited
availability of study that utilizes the finite difference method to solve TFPME specifically. Therefore, this paper
introduces an efficient iterative method based on the implicit finite difference method without converting the original
TFPME to another form of differential equations.
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In this paper, a fractional Newton explicit group method is developed to solve TFPME. The method utilizes implicit
finite difference schemes with the Caputo time-fractional derivative operator. The accuracy and efficiency of the
proposed method is evaluated on different orders of time-fractional derivatives. The paper is organized as follows.
Section 2 describes the numerical method and its systematic formulations. Section 3 discusses the numerical experiment
and illustrates the results with discussions. The conclusion and future work are described in Section 4.

2 Numerical method

This paper aims to study the solution s = s(x, t) of the following reduced form of TFPME,

∂ α s

∂ tα
=

∂

∂x

(

sm ∂ s

∂x

)

,0 < α < 1,m ∈ N, (1)

subject to the initial condition
s0 = s(x,0),0 ≤ x ≤ 1, (2)

and boundary conditions
sa = s(a, t),sb = s(b, t),0 ≤ t ≤ 1. (3)

To facilitate the formulation of the desired approximation equation, Eq. 1 can be expressed in the form of

∂ α s

∂ tα
= sm ∂ 2s

∂x2
+msm−1

(

∂ s

∂x

)2

. (4)

To solve Eq. 4, the time-fractional derivative term of Eq. 4 can be approximated in the Caputo sense, that is [12],

∂ α s

∂ tα
=

1

Γ (1−β )

∫ t

0

∂ s

∂ϕ
(t −ϕ)−αdϕ , (5)

and the space derivative terms of Eq. 4 are discretized using first and second-order central difference schemes. The
proposed method uses the usual finite difference framework in which the solutions, s(x, t), 0 < x < x f and 0 < t < t f ,
are partitioned uniformly with equidistant of both temporal and spatial steps, h = x f /M, M ∈ Z

+ and k = t f /N, N ∈ Z
+,

respectively. The solutions can be computed using the discrete points Sp,n = S(ph,nk) where for p = 1,2, . . . ,M − 1 and
n = 1,2, . . . ,N. Eq. 5 can be expressed in a discrete form as follows,

∂ α Sp,n

∂ tα
= τ

n

∑
q=1

σ
(

Sp,n−q+1− Sp,n−q

)

, (6)

where

τ = τ(α,k) =
1

Γ (1−α)(1−α)kα
, (7)

and
σ = σ(α,q) = q1−α

− (q− 1)1−α. (8)

Using Eq. 6 together with the central difference schemes, an implicit finite difference approximation equation to
represent Eq. 4 can be formulated into

τ
n

∑
q=1

σ
(

Sp,n−q+1− Sp,n−q

)

=−φ1Sm
p,nSp+1,n + 2φ1Sm+1

p,n −φ1Sm
p,nSp−1,n

−φ2mSm−1
p,n S2

p+1,n + 2φ2mSm−1
p,n Sp+1,nSp−1,n −φ2mSm−1

p,n S2
p−1,n, (9)

where φ1 = 1/h2 and φ2 = 1/(4h2).
The approximate solutions of Eq. 4 can be obtained by solving the system of equations in the form of

F̃ =









F1,n

F2,n
...

FM−1,n









(M−1)×1

= 0, (10)
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where the dimension is (M− 1)× 1 for p = 1,2, . . . ,M − 1 and n = 1,2, . . . ,N, and

Fp,n = c∗Sp,n −φ1Sm
p,nSp+1,n + 2φ1Sm+1

p,n −φ1Sm
p,nSp−1,n

−φ2mSm−1
p,n S2

p+1,n+ 2φ2mSm−1
p,n Sp+1,nSp−1,n −φ2mSm−1

p,n S2
p−1,n −Gp,n−1. (11)

Based on Eq. 11, c∗ is a constant and Gp,n−1 is an accumulated value, which both are obtained from the calculation of

Gp,n−1 = τ
n

∑
q=2

σ
(

Sp,n−q+1− Sp,n−q

)

. (12)

Next, when Newton’s method is applied to solve Eq. 10, the resultant system of equations can be expressed in terms
of

AH̃ =−F̃, (13)

and the paper suggests an iterative method to solve Eq. 13 due to its capability to solve Eq. 13 with better accuracy
in which large matrices are taken per iteration. Also, the iterative method to be developed for solving Eq. 13 can find
solutions in case the analytical method fails. Firstly, the development of the iterative method needs to consider the type of
coefficient matrix A from the system of equations shown in Eq. 13. Since A is a tridiagonal matrix because of the result
from the implicit finite difference discretization, it can be expressed as

A =









D1 V1

L2 D2 V2

. . .
. . .

. . .

LM−1 DM−1









(M−1)×(M−1)

. (14)

where the dimension (M − 1)× (M− 1) and the entries D j, V j and L j for j = 1,2, . . . ,M − 1 are calculated using

D j = c∗−φ1mSm−1
j S j+1 + 2φ1(m+ 1)Sm

j −φ1mSm−1
j S j−1

−φ2m(m− 1)Sm−2
j S2

j+1 + 2φ2m(m− 1)Sm−2
j S j+1S j−1

−φ2m(m− 1)Sm−2
j S2

j−1, j = 1,2, ...,M− 1,0 < c∗ ≤ 1, (15)

L j =−φ1Sm
j + 2φ2mSm−1

j S j+1 − 2φ2mSm−1
j S j−1, j = 2, ...,M− 1, (16)

and
V j =−φ1Sm

j − 2φ2mSm−1
j S j+1 + 2φ2mSm−1

j S j−1, j = 1,2, ...,M− 2. (17)

In addition, the values of H̃, which can be defined as the approximation of the solutions, are obtained by using

H̃ = S̃(ℓ)− S̃(ℓ−1), ℓ= 1,2, ..., (18)

which can also be expressed as

H̃ =









S1,n

S2,n
...

SM−1,n









(ℓ)

(M−1)×1

−









S1,n

S2,n
...

SM−1,n









(ℓ−1)

(M−1)×1

. (19)

Now, to derive the fractional Newton explicit group (FNEG) method for solving Eq. 10, let’s say a system of four
equations is taken randomly from Eq. 13, that is

LiHi−1 +DiHi +ViHi+1 =−Fi, (20)

Li+1Hi +Di+1Hi+1 +Vi+1Hi+2 =−Fi+1, (21)
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Li+2Hi+1 +Di+2Hi+2 +Vi+2Hi+3 =−Fi+2, (22)

and
Li+3Hi+2 +Di+3Hi+3 +Vi+3Hi+4 =−Fi+3, (23)

which has the matrix form as






Di Vi 0 0
Li+1 Di+1 Vi+1 0

0 Li+2 Di+2 Vi+2

0 0 Li+3 Di+3













Hi

Hi+1

Hi+2

Hi+3






=−







Fi +LiHi−1

Fi+1

Fi+2

Fi+3 +Vi+3Hi+4






. (24)

The inversion of Eq. 24 can yield the iterative formula of the FNEG method, that is, for i = 1,5,9, . . . ,







Hi

Hi+1

Hi+2

Hi+3







(ℓ)

=−A∗−1







Fi +LiHi−1

Fi+1

Fi+2

Fi+3 +Vi+3Hi+4







(ℓ−1)

. (25)

where

A∗ =







Di Vi 0 0
Li+1 Di+1 Vi+1 0

0 Li+2 Di+2 Vi+2

0 0 Li+3 Di+3






. (26)

This research study utilizes C++ programming language to code the FNEG method for solving TFPME. The main
reason for using C++ is the flexibility of constructing iteration count and execution time for the FNEG implementation.
The software used in this study is Dev-C++ by Embarcadero Technologies. The source code implementation uses a Lenovo
laptop with the processor AMD Ryzen 7 5700U and 8 GB RAM. Below is the following algorithm of the FNEG method
taken from the full source code.

Algorithm 1 FNEG method

while n ≤ N do

Initialize ℓ f = 0, S̃(ℓ=0) = 1.0 and H̃(ℓ=0) = 0;

Construct A∗;

while

∣

∣

∣
S̃(ℓ)− S̃(ℓ−1)

∣

∣

∣
> 10−10 do

while

∣

∣

∣
H̃(ℓ)− H̃(ℓ−1)

∣

∣

∣
> 10−10 do

For i = 1,5,9, ...;









Hi

Hi+1

Hi+2

Hi+3









(ℓ)

=−A∗−1









Fi+LiHi−1

Fi+1

Fi+2

Fi+3 +Vi+3Hi+4









(ℓ−1)

.

ℓ++;

end while

S̃(ℓ) = H̃(ℓ)+ S̃(ℓ−1);

end while

ℓ f = ℓ f + ℓ;
end while

3 Results and discussion

This study performed several repeated experiments on the proposed FNEG method by solving selected TFPME problems
at various orders of time-fractional derivatives and matrix sizes. The first TFPME problem is given by

∂ α s

∂ tα
=

∂

∂x

(

sm ∂ s

∂x

)

,0 < α < 1,m ∈ N, (27)

c© 2024 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 10, No. 3, 391-398 (2024) / www.naturalspublishing.com/Journals.asp 395

subject to the initial condition
s0 = s(x,0),0 ≤ x ≤ 1, (28)

Eq. 27 can be used to model the process of signal smoothing with an initial noisy signal given by Eq. 28 [1]. This problem
considers a case of nonlinear signal diffusion with the function s represents the signal strength at a certain position and
time. Here, the accuracy of the FNEG method is evaluated using an exact solution [13], that is

s(x, t) = x+
tα

Γ (1+α)
. (29)

Notice that when α = 1, Eq. 29 becomes the solution of a porous medium equation [14],

s(x, t) = x+ t. (30)

The second problem is based on the equation that describes the fluid flow during the fingering phenomenon with an
inclination and gravitational effect [15].

∂ α s

∂ tα
=

1

4

∂

∂x

(

s3/2 ∂ s

∂x

)

−K sinθ s2 ∂ s

∂x
,0 < α ≤ 0.5. (31)

Here, the experiment uses random parameters K = 0.25 and θ = 0. The experiment applies the same initial condition from
Kesarwani and Meher [15], which is

s0 = e−x,0 ≤ x ≤ 1, (32)

and compare the numerical solutions with their analytical solution, which is given by

s = e−x +

(

−
15

8
h(e−x)5/2

− 2K sin θ (e−x)3
−Khsinθ (e−x)3

)

htα

Γ (α + 1)

−
3

896

(

25
16
(e−x)5/2 + 3K sinθ (e−x)3

)2 (
−2h(8K sinθ (e−x)3 + 5(e−x)5/2)tα

)7/2

(

8K sinθ (e−x)3 + 5(e−x)5/2
)3

Γ (α + 1)7/2

−
1

3584

(

− 125
32

(e−x)5/2 − 9K sinθ (e−x)3
)3 (

−2h(8K sinθ (e−x)3 + 5(e−x)5/2)tα
)5/2

(

8K sinθ (e−x)3 + 5(e−x)5/2
)2

Γ (α + 1)5/2
+ ..., (33)

and h =−0.035 [15].
The numerical experiment of the FNEG method to solve the first problem is conducted using three different values

of α such as 0.25, 0.50 and 0.75. Meanwhile, the experiment of solving the second problem considers α = 0.10,0.30
and 0.50. Both experiments use five different dimensions of matrix A, (M−1)× (M−1) = 256×256,512×512,1024×
1024,2048× 2048 and 4096× 4096 to verify the numerical convergence of the solutions. The experiment evaluates the
efficiency of the method based on the total iterations ℓ f and C++ program time measured in seconds. Then, the accuracy
of the method is judged according to the size of the absolute errors from comparing against available solutions, Eq. 29
and 33. A point Gauss-Seidel (GS) iterative method is applied to solve the selected problems as the benchmarking to the
proposed FNEG method in terms of efficiency and accuracy. The experiment uses the point GS iterative method because
it is commonly used to solve the system of equations arising from most fractional differential equations [16,17,18,19].
The following Tables 1, 2, and 3 show the performance of the FNEG method against the benchmark method in solving
the first problem at various α and A. On the other hand, Tables 4, 5 and 6 show the results of comparing the FNEG and
benchmark methods from solving the second problem at different α and A.

Several significant findings were found based on the collected results from experimenting FNEG method to solve the
two selected problems. Table 1 shows that the FNEG method needed lesser iterations than the GS method in computing
numerical solutions of the first problem for all values of α and A. The C++ program elapsed time of FNEG was shorter
than the GS method for all tests because the program time is highly correlated to the number of iterations, see Table 2.
Then, as shown in Table 3, for the three values of α used in the first problem, the maximum absolute errors decrease
when the sizes of matrices used in the computation increase. Therefore, the errors illustrated sufficient proof of numerical
convergence of the finite difference scheme with Caputo’s time fractional derivative operator.

The efficiency of the FNEG method was also proven to be better than the GS method when it was implemented to solve
the second problem. Based on the results in Tables 4 and 5, the FNEG performed much lesser iterations and faster program
time to obtain numerical solutions for the second problem. The absolute errors between the FNEG and GS methods are
comparable for chosen values of α and A, see Table 6. Overall results indicated that the FNEG method via implicit finite
difference scheme in the Caputo sense could be a good numerical method for solving TFPME for the one-dimensional
case. Higher dimensional TFPME problems will be the subject of research interest in the near future.
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Table 1: Total iterations to find solutions to the first problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.25 220,913 756,486 2,528,442 8,251,205 26,206,296

FNEG 65,624 226,941 776,679 2,597,848 8,432,295

GS 0.50 195,163 669,902 2,244,628 7,343,276 23,398,282

FNEG 57,640 199,635 685,268 2,298,473 7,484,378

GS 0.75 149,576 511,435 1,709,093 5,596,658 17,814,569

FNEG 43,976 152,853 523,157 1,746,948 5,679,010

Table 2: C++ program time (seconds) to complete all numerical solutions to the first problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.25 15.92 109.31 732.79 5374.00 35056.68

FNEG 8.39 55.41 371.44 2613.75 17382.81

GS 0.50 14.39 99.10 662.43 4942.83 32597.91

FNEG 7.56 50.09 335.63 2373.47 15947.89

GS 0.75 11.22 77.26 524.66 3917.38 25853.99

FNEG 5.85 38.55 258.52 1840.47 12474.91

Table 3: Maximum absolute errors from solving the first problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.25 2.7571E-4 2.7382E-4 2.6619E-4 2.3704E-4 1.2169E-4

FNEG 2.7618E-4 2.7567E-4 2.7376E-4 2.6619E-4 2.3564E-4

GS 0.50 6.5241E-4 6.5049E-4 6.4278E-4 6.1402E-4 5.0057E-4

FNEG 6.5288E-4 6.5236E-4 6.5044E-4 6.4276E-4 6.1200E-4

GS 0.75 1.3673E-3 1.3653E-3 1.3578E-3 1.3302E-3 1.2125E-3

FNEG 1.3678E-3 1.3673E-3 1.3653E-3 1.3575E-3 1.3274E-3

Table 4: Total iterations to find solutions to the second problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.10 192,608 656,839 2,187,946 7,104,066 20,171,159

FNEG 56,399 194,923 662,971 2,203,674 7,132,110

GS 0.30 174,209 596,419 1,998,331 6,542,402 20,787,358

FNEG 50,485 175,435 599,871 2,007,393 6,561,983

GS 0.50 154,768 532,165 1,795,258 5,934,675 19,128,587

FNEG 44,630 155,865 535,819 1,806,479 5,966,782

Table 5: C++ program time (seconds) to complete all numerical solutions to the second problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.10 2.48 11.25 64.87 834.04 32080.69

FNEG 2.20 8.16 41.70 251.81 1615.35

GS 0.30 2.36 10.53 60.87 387.85 2470.81

FNEG 2.16 7.73 39.41 234.97 1503.20

GS 0.50 2.25 9.75 55.39 359.41 2282.60

FNEG 2.09 7.38 35.57 212.15 1371.80
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Table 6: Maximum absolute errors from solving the second problem at different α and A.

A

Method α 256×256 512×512 1024×1024 2048×2048 4096×4096

GS 0.10 9.1623E-02 9.1626E-02 9.1630E-02 9.1641E-02 1.1399E-01

FNEG 9.1623E-02 9.1625E-02 9.1626E-02 9.1630E-02 9.1642E-02

GS 0.30 5.0628E-02 5.0630E-02 5.0632E-02 5.0637E-02 5.0654E-02

FNEG 5.0628E-02 5.0629E-02 5.0630E-02 5.0632E-02 5.0638E-02

GS 0.50 9.3209E-02 9.3203E-02 9.3198E-02 9.3189E-02 9.3160E-02

FNEG 9.3209E-02 9.3203E-02 9.3200E-02 9.3196E-02 9.3186E-02

4 Conclusion

This paper has presented an efficient iterative method called the fractional Newton explicit group for solving several time-
fractional nonlinear porous medium equations. The finite difference approximation equation to the main problem is well
derived based on implicit finite difference schemes with the Caputo time-fractional derivative operator. The novelty of
this study is the systematic formulation of the proposed FNEG method using the implicit finite difference approximation
in Caputo sense. The efficiency of the proposed FNEG method is evidently performs better than the Gauss-Seidel method
for all kinds of problems, various α and A. In addition, the proposed FNEG method performs with higher accuracy
for solving the first problem and comparable to the Gauss-Seidel method when solving the second problem. Since the
proposed method is experimented via solving one-dimensional physics problems, the method’s efficacy in solving realistic
phenomena can be guaranteed. The next course of this study is to consider more complex problems, especially the higher
dimensional problems. Future work can consider to improve the accuracy of the finite difference-based iterative method
for solving higher dimensional time fractional nonlinear porous medium equations.
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