
*Corresponding author e-mail: L.Maghrabi@ubt.edu.sa

© 2023 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) 1637

Information Sciences Letters
 An International Journal

http://dx.doi.org/10.18576/isl/120348

An Efficient Firefly Algorithm for Optimizing Task Scheduling in
Cloud Computing Systems

Ahmed Y. Hamed1, M. Kh. Elnahary1, Hamdy H. El-Sayed1 and Louai Maghrabi2,*
1Department of Computer Science, Faculty of Computers and Artificial Intelligence, Sohag University, Sohag, 82524, Egypt
2Department of Software Engineering, College of Engineering, University of Business and Technology, Jeddah, Saudi Arabia

Received: 27 Jul. 2022, Revised: 2 Nov. 2022, Accepted: 5 Nov. 2022.
Published online: 1 Mar. 2023.

Abstract: As user service demands change constantly, task scheduling becomes an extremely significant study area
within the cloud environment. The goal of scheduling is distributing the tasks on available processors in order to
achieve the shortest possible makespan while adhering to priority constraints. In heterogeneous cloud computing
resources, task scheduling has a large influence on system performances. The various processes in the heuristic-based
algorithm of scheduling will result in varied makespans when heterogeneous resources are utilized. As a result, a smart
method of scheduling must be capable of establishing precedence efficacy for each task to decrease makespan time. In
our study, we develop a novel efficient method of scheduling tasks according to the firefly algorithm to tackle an
essential task and schedule a heterogeneous cloud computing problem. We evaluate the performance of our algorithm
by putting it through three situations with changing amounts of processors and numbers of tasks. The findings of the
experiment reveal that our suggested technique found optimal solutions substantially more frequently in terms of
makespan time when compared with other methods.

Keywords: heterogeneous resources, firefly algorithm, task scheduling, cloud computing.
.

1 Introduction

The distributed computing concept underpins the model of the cloud and consists of a collection of virtual machines
that may be dynamically linked to build computing resources. Unutilized computing resources should be employed
internationally to raise the rate of utilization and gain resources by improving their economic efficiency. The primary
objective of the model of the cloud is to share users' data and resources. There are three forms of cloud computing: the
first is IaaS, which refers to Infrastructure as a Service; the second is SaaS, which refers to Software as a Service; and
the third is PaaS, which refers to Platform as a Service [1]. All of the services are available to users on a pay-as-you-go
basis, and computing resources, applications, servers, networks, and data storage are shared. In a service SaaS, the
licensed program is made available to the user on a subscription basis. The services can be accessed via a web browser
from any device. In a service PaaS, the user can construct customized applications utilizing the services of the cloud and
then publish them on their device. In a service IaaS, the client’s organizational architecture is accessible online. The
consumer is not required to comprehend the internal structure of the required infrastructure in order to use this service
[1]. Rather than purchasing the complete corporate infrastructure, the consumer accepts only the necessary services as
they are required. Because the number of cloud users has expanded in recent years, by default, the number of tasks that
must be managed have increased for scheduling activities [1].

To address the issue of scheduling tasks more efficiently, we suggest a new approach based on the firefly algorithm to
minimize the makespans of user requests on resources. Our Proposed Firefly Algorithm (PFA) minimizes makespans.
In the firefly algorithm, the representation of a vector is a continuous value, so we use five manners that convert the
continuous value to a discrete value. The priority is generated randomly to preserve the precedence constraints. These
modifications improve the global optimization of the firefly algorithm's performance. We assess the performance of the
PFA by putting it through three situations with changing amounts of processors and numbers of tasks. In terms of
makespan, the results confirm that the PFA reaches the best solutions faster and more efficiently than other algorithms.

1638 A. Y. Hamed: An Efficient Firefly Algorithm for …

© 2023 NSP
Natural Sciences Publishing Cor.

The structure of this paper follows. The notations are provided in Section 2. Section 3 presents some related work on
the task scheduling problem for various system architectures. The description of the issue of scheduling is presented in
Section 4. The firefly algorithm is stated in Section 5. Our PFA is shown in Section 6. The results were obtained by
applying the PFA and the comparisons with other results, as described in Section 7. The discussion is offered in Section
8, and Section 9 includes the conclusion of the paper and future work.

2 Notations

Taki The Task i

Proi The Processor i

MPR The Processor count

NTK The task count

CCO(Taki, Takj) The cost between Taki and Takj

STA(Taki, Proj) Taki start time on a Proj

FNT(Taki, Proj) Taki finish time on a Proj

RYT(Proi) Ready time of the Proi

LST A list of jobs arranged in DAG topological order

DATVE(Taki, Proj) Taki time of data arrival at Proj

3 Related Works
The cloud is a relatively new platform for managing and delivering internet-based services. This novel topic has
recently received a great deal of interest from researchers. High efficiency in a cloud is the result of optimized task
scheduling. Meta-inference methods of scheduling are often used where the scheduling of tasks are non-deterministic
polynomial (NP) problems. A robust and optimized algorithm of genetics was presented by to improve the solutions [2].
The program combined the benefits of evolving genetic algorithms with experimental techniques.

Task scheduling is critical for scaling up dispersed electronic business systems and electronic science systems. This
usage typically includes the communication of tasks that are performed on virtual resources or virtual machines. The
basic goal of any scheduling approach is to decrease the breadth of the configuration, which represents the makespan of
the exit job. A model called H3CSA was proposed in this regard [3].

Cloud service providers provide diverse virtual computers to conduct complicated tasks designated by consumers. A
meta-hybrid method that used a genetic algorithm and thermodynamic simulated annealing algorithms (GATSA) was
presented to solve the problem; the global and local search tendencies of the two algorithms compensated for each
other's weaknesses. A novel theory was introduced and used to generate a semi-conducted starting population [4].

Proper task scheduling is necessary for optimal efficiency in cloud computing; however, traditional experimental
methods in this context lack the necessary efficiency because task scheduling in a cloud is entirely NP. As a result, the
bulk of recently suggested task scheduling methods have concentrated on a hybrid descriptive technique of job
scheduling. A meta-heuristic technique algorithm known as HEFT was proposed [5].

Other researchers suggested inferential algorithms such as the ICA and FA to tackle the issue. Although ICA and FA
can approach reasonable solutions, scalability, time of CPU, stability, and balancing of load are necessary to attain the
most effective outcomes. A smart method that is based on the marriage of FA and ICA to obtain the desired result was
proposed; FA's local search can enhance the ICA [6].

A new strategy was proposed to overcome the challenge of scheduling resources in cloud computing; it employed a
model that improved the parallel scheduling of tasks while maintaining the relationships between serial tasks [7]. The
primary characteristic of dynamic tasks was that users could assign varied and equal priorities to activities performed in
sequential order and arrange them in a scheduling queue. FA was utilized for scheduling subtasks to show improvement
in a short amount of time. The most critical factors to evaluate were fairness and efficiency; the strategy known as
DSFFA was used to solve the task scheduling problems.

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) / https://digitalcommons.aaru.edu.jo/isl/ 1639

 © 2023 NSP
 Natural Sciences Publishing Cor.

The scheduling of tasks is a primary concern within the cloud to prevent diminished system performance. A significant
method that organizes the requirements of the user and achieves several aims, the technique aims to lessen the workload
makespan and the cost of execution while increasing resource usage [8].

4 Problem Descriptions
During this work, the task scheduling model is delineated as distributed NTK’s to be implemented on MPR processors that
may be different. A task graph is mapped to describe the problem structure—a DAG composed of NTK’s Tak1, Tak2,
Tak3, …Takn. Every node of the graph is identified as a task. We know that a task is a series of instructions that are
implemented by the processor in successive order. A task may have pre-requested data; once all the inputs needed for the
execution are received, the task can be put into the processor for implementation. These inputs are intended to be supplied
after the completion of certain other activities, as these tasks assess them. We refer to this as relying on task dependency. If
a task (t) is dependent on data from other tasks, then those tasks are recognized as the fathers of the task (t), and task (t) is
their child. A task that has no father is called an “entry task,” and a task that has no child is called an “exit task” [9]. The
computing cost of a job is based on its execution time. Whenever the cost of computation of a Taki is indicated by weight
(Taki, Proj), the DAG has additional edges that represent a partial order between the tasks. The partial order between the
tasks introduces constrained precedence in a DAG such that if Takj is a child of Taki (Taki → Takj), it cannot begin its
execution until its father Taki finishes its execution. The value on the edge represents the cost of communication between
the tasks and is indicated by CCO(Taki, Takj). The communication cost is considered only if Taki and Takj are assigned to
different processors; otherwise, it is calculated to be zero. In that case, Taki and Takj are given to the processor itself. If a
Taki is given to Prosj, the task's start and finish times are denoted by STA(Taki, Proj) and FNT(Taki, Proj), respectively.
After scheduling the tasks, the makespan is defined as max {FNT(Taki, Proj)} throughout all processors. The problem of
scheduling tasks involves coordinating the schedules of the tasks in the different processors, decreasing the makespan for
all of those schedules, and ensuring that the task dependency constraints are preserved. Task dependency constraints state
that no task can begin before all fathers have terminated. Assuming that Proj is the processor and that the KPth parent task
Takkp of task Taki is scheduled, the DATVE of Taki at processor Proj is when the prerequisite data for the task execution
becomes available. This is defined in [9] by the following:

DATVE(Taki, Proj) = max{FNT(Takkp , Proj) + CCO(Taki , Takkp)} (1)
where kp = 1,2, 3, …. Parent Number

STA(Taki, Proj) = max{RYT(Proj), DATVE(Taki, Proj)} (2)

FNT(Taki, Proj) = STA(Taki, Proj) + weight(Taki, Proj) (3)

RYT(Proj) = FNT(Taki, Proj) (4)

Makespan = max{FNT(Taki, Proj)} (5)

5 Firefly Algorithms
Yang [10] created the firefly algorithm, which was modeled on the motion of flashing fireflies. For the sake of
simplicity, we incorporate this concept into the rules listed below:

• Because all fireflies are unisex, all fireflies are attracted to all other fireflies.

• Their appeal is related to their luminosity. As a result, when two fireflies are flashing, the one with the lower
brightness will move toward the one that is brighter. The attraction is based on the brightness, which decreases
as the distance between the objects increases. If no firefly is brighter, the firefly moves randomly.

• The goal function's landscape to be optimized influences or determines the brightness of a firefly or the
ferocity of a firefly.

There are two major concerns in the FA: the modulation of the intensity of light, and the creation of appeal. In the
simplest example of the greatest improvement issue, the brightness IB of a firefly at a given position y will be selected
as IB(y) α g(y). However, the attractiveness	𝛿 is subjective; it must be viewed according to the other firefly. As a result,
it must change depending on the Rij, which is the separation between fireflies i and j. The intensity of light diminishes in
relation to the distance from the source, and light is also absorbed inside the medium. That is:

IB = IB0exp(−𝜑R) (6)

1640 A. Y. Hamed: An Efficient Firefly Algorithm for …

© 2023 NSP
Natural Sciences Publishing Cor.

where IB0 represents the initial brightness of the light and 𝜑	is the coefficient of light absorption. The attractiveness of a
firefly is shown by:

𝛿 = 𝛿%exp(-𝜑R2) (7)

A firefly i's attraction to a more attractive firefly j is determined by:

yi = yi + 𝛿%exp(−𝜑Rij2)(yj − yi) + αεi (8)

Firefly Algorithm

g(y) is the objective function where y = (y1, ..., yd)T

Initialize a firefly’s yi where i is equal from 1 to n

The IBi is computed by using g(yi)

While (iteration <Maximum of generation)

{

For i equal 1 to n

 {

 For j equal 1 to i

 {

 If (IBj > IBi)

 {

 The firefly(i) should be moved to j in all dimensions.

 }

 Through exp [−𝜑R]

 Update the intensity of the light and evaluate newly discovered solutions

 }

 }

To find current best, rank fireflies

}

6 The Proposed Algorithm
PFA begins with the first set of initializations. Then, by applying some operators, the best solution is chosen according
to the value of the goal function. In PFA, we state the following steps:

6.1 Initialization
The initialization is randomly generated according to this equation:

POPij = LB + rand*(UB - LB) (9)

Where UB and LB refer to the upper and lower boundaries, we consider that the value of the UB is equal to the number
of processors and the LB value is equal to one. Because the representation of a vector is a continuous value, we will use
the LPV rule [11] and the SPV rule [12], as shown in Figure 1.

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) / https://digitalcommons.aaru.edu.jo/isl/ 1641

 © 2023 NSP
 Natural Sciences Publishing Cor.

2.5 1.6 2.3 2.1 1.7 1.2 2.2

POP

6 2 5 4 7 3 1

SPV

1 3 3 2 2 1 2

Modulus with SPV and no_processor=3

1 3 7 4 5 2 6

LPV

Modulus with LPV and no_processor=3

 Fig.1: An example of the proposed schedule.

6.2 Priority Operations
Task prioritization plays a big role in task scheduling and calculating the makespan. The proposed priority is randomly
generated in order to preserve the precedence constraints.

6.3 The Objective Function
The scheduling problem's primary goal is to lower the makespan, which is calculated according to equation 5. That is:

Objective Function = Makespan (10)

Algorithm 1: Calculate the makespan of the scheduled task using the Standard Genetic Algorithm (SGA) [9]

Input the schedule of tasks as shown in Figure 1

Output objective function

RYT[Proj] = 0 where j = 1, 2, ……MPR.

For i = 1 to NTK

{

 // LST is generated randomly in an order that preserves precedence constraints

 Take the first Taki from LST

 For j equal 1 to MPR

 {

 If Taki scheduled to Proj

 {

 Calculate start time according to equation 2

 Calculate finish time according to equation 3

 Calculate ready time according to equation 4

 }

2 1 2 2 3 3 1

1642 A. Y. Hamed: An Efficient Firefly Algorithm for …

© 2023 NSP
Natural Sciences Publishing Cor.

 }

}

Calculate makespan according to equation 5

Calculate the objective function according to equation 10

6.4 The Proposed Operations
Algorithm 3: The whole PFA

Input the DAG with computation cost and communication cost

Output the best solution

Initialize the parameters α, 𝛿%, 𝜑, 𝜕, N, max_iteration

Generate the initial population according to equation 9

Convert a continuous value to a discrete value by using Algorithm 2

Calculate the objective function g(yi) by using Algorithm 1

For iteration=1 to max_iteration

{

 For i equal 1 to N

 {

 For j equal 1 to N

 {

 If (g(yi) > g(yj))

 {

 Update the location using equation 8

 Convert a continuous value to a discrete value of the new solution by using Algorithm 2

 Compute the makespan of the newly obtained solution by using Algorithm 1 and update it
if better

 }

 }

 }

}

Algorithm 2: The algorithm that transforms continuous values into discrete values.

Function Convert (s)

A = random number between [1…5]

If (A==1)

 Use the SPV rule

Else if (A==2)

 Use the LPV rule

Else if (A==3)

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) / https://digitalcommons.aaru.edu.jo/isl/ 1643

 © 2023 NSP
 Natural Sciences Publishing Cor.

 Use the round nearest function

Else if (A==4)

 Use the floor nearest function

Else

 Use the ceil nearest function

End if

End function

7 Evaluation of the PFA
We show the effectiveness of the PFA by applying it to three cases. The first case consists of ten tasks and three
heterogeneous processors. The second case consists of ten tasks and three heterogeneous processors. The third case
consists of eleven tasks and three heterogeneous processors. PFA was implemented as a system by MATLAB 2016. We
set the values of the initial parameters α = 1.0, 𝛿% = 1.0, 𝜑 = 0.01, 𝜕 = 0.97, N = 30, max_iteration = 50.

7.1 Case 1
Suppose we have ten tasks to be executed on three heterogeneous processors {Pro1, Pro2, Pro3}. The executing cost of
each task is shown in [3]. The best solution obtained by PFA is shown in Figure 2, and the schedule obtained by PFA
and other algorithms is shown in Table 1. The outcomes of the PFA are compared with those obtained by the New
Genetic Algorithm (N-GA) [2], Proposed Particle Swarm Optimization (PPSO) [13], and H3CSA [3]. The obtained
results are illustrated in Table 2 and Figure 3 with the proposed task priority of PFA {Tak1, Tak4, Tak3, Tak2, Tak6,
Tak7, Tak5, Tak9, Tak8, Tak10}, task priority of N-GA {Tak1, Tak4, Tak2, Tak3, Tak7, Tak5, Tak6, Tak9, Tak8, Tak10},
task priority of PPSO {Tak1, Tak2, Tak3, Tak4, Tak5, Tak6, Tak7, Tak8, Tak9, Tak10}, and task priority of H3CSA {Tak1,
Tak4, Tak3, Tak7, Tak6, Tak2, Tak5, Tak9, Tak8, Tak10}.

 Fig. 2: The best solution for case 1.

Table 1: Schedule obtained by PFA and other algorithms for case 1.

 N-GA PPSO H3CSA PFA

 1 2 3 1 2 3 1 2 3 1 2 3

Tak1 0–4 0–7 0–7 0–7

Tak2 32–50 7–14 36–43 30–37

Tak3 43–60 14–31 13–30 13–30

Tak4 4–32 31–37 7–13 7–13

Tak5 61–78 32–49 54–71 48–65

Tak6 62–89 37–72 33–60 33–60

Tak7 60–66 72–78 30–36 37–43

Tak8 113–
133 84–

104 79–
119 79–

119

Tak9 97–
113 109–

142 75–91 74–90

Tak10 163–
175 142–

154 124–
136 123–

135

1 1 1 1 2 3 1 2 3 2

1644 A. Y. Hamed: An Efficient Firefly Algorithm for …

© 2023 NSP
Natural Sciences Publishing Cor.

Table 2: Comparative results based on case 1.

Algorithm N-GA PPSO H3CSA PFA

Makespan 175 154 136 135

Fig. 3: Comparison of results for case 1.

7.2 Case 2
Suppose we have ten tasks to be executed on three heterogeneous processors {Pro1, Pro2, Pro3}. The executing cost of
each task is shown in [9]. The best solution obtained by PFA is shown in Figure 4, and the schedule obtained by PFA
and other algorithms is shown in Table 3. The outcomes of the PFA are compared with those obtained by the WOA
[14], GSA [15], Simulated Annealing (SA), GA, EGA-TS [16], Genetic Algorithm (GA) [8], and Hybrid Heuristic and
Genetic (HHG) [17]. The obtained results are illustrated in Table 4 and Figure 5 with the proposed task priority of PFA
{Tak1, Tak6, Tak4, Tak5, Tak2, Tak3, Tak8, Tak9, Tak7, Tak10}, task priority of WOA {Tak1, Tak3, Tak5, Tak2, Tak4,
Tak6, Tak7, Tak8, Tak9, Tak10}, task priority of SA {Tak1, Tak5, Tak3, Tak2, Tak4, Tak6, Tak7, Tak8, Tak9, Tak10}, task
priority of EGA-TS {Tak1, Tak3, Tak5, Tak2, Tak4, Tak6, Tak7, Tak8, Tak9, Tak10}, task priority of GSA {Tak1, Tak3,
Tak2, Tak6, Tak4, Tak5, Tak7, Tak8, Tak9, Tak10}, task priority of GA {Tak1, Tak3, Tak2, Tak6, Tak4, Tak5, Tak7, Tak8,
Tak9, Tak10}, task priority of GA {Tak1, Tak2, Tak4, Tak5, Tak9, Tak3, Tak7, Tak6, Tak8, Tak10}, and task priority of
HHG {Tak1, Tak2, Tak6, Tak3, Tak4, Tak5, Tak8, Tak7, Tak9, Tak10}.

 Fig. 4: The best solution for case 2.

Table 3: Schedule obtained by PFA and other algorithms for case 2.

 WOA SA EGA-TS GSA GA GA HHG PFA

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Tak1
0

–
21

0

–
21

0

–
21

0

–21

0

–21

0

–
22

0

–
21

0

–
21

Tak2
38
–
56

38
–
56

38 –
60

38
–
58

38
–
58

22
–
44

21
–
39

21
–
39

Tak3
21

–48

21

–48

21
–
48

21 –

48

21 –

48

44
–
76

39
–
66

39
–
66

Tak4
48

–58

48

–58

48
–
58

50
–
57

50
–
57

51

–61

50
–
54

64

–71

Tak5
34
–
63

34
–
63

34
–
69

56
–
91

56
–
91

35
–
70

54
–
89

34
–
69

Tak6 58 58 58 48 48 61 38 38

0

50

100

150

200

N-GA PPSO H3CSA PFA

M
ak

es
pa

n
(S

ec
on

ds
)

2 2 2 1 3 1 2 1 3 1

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) / https://digitalcommons.aaru.edu.jo/isl/ 1645

 © 2023 NSP
 Natural Sciences Publishing Cor.

–75 –75 –
75

–65 –65 –78 –64 –64

Tak7
64
–
78

64
–
78

75
–
10
0

64
–
78

64
–
78

76
–
90

66
–
91

66
–
91

Tak8
75

–98

75

–98

80

–
109

68

–91

68

–91

78

–
101

65

–94

71

–
100

Tak9

86
–
10
1

86
–
10
1

90
–
98

91
–
99

91
–
99

74
–
82

89
–
97

78
–
86

Tak1

0
108
–

124

108
–

124

109
–

122

106
–

122

106
–

122

101
–

117

104
–

117

100
–

113

Table 4: Comparative results based on case 2.

Algorithm WOA SA EGA-TS GSA GA[5] GA[9] HHG PFA

Makespan 124 124 122 122 122 117 117 113

 Fig. 5: Comparison of results for case 2.

7.3 Case 3
Suppose we have eleven tasks to be executed on three heterogeneous processors {Pro1, Pro2, Pro3}. The executing cost
of each task is shown in [18]. The best solution obtained by the PFA is shown in Figure 6, and the schedule obtained by
the PFA and other algorithms is shown in Table 5. The outcomes of the PFA are compared with those obtained by three
heuristic HEFT algorithms. MPQMA [18]. The obtained results are illustrated in Table 6 and Figure 7 with the
proposed task priority of PFA {Tak0, Tak2, Tak1, Tak3, Tak4, Tak6, Tak5, Tak7, Tak8, Tak9, Tak10}, task priority of
HEFT-T {Tak0, Tak4, Tak2, Tak3, Tak1, Tak5, Tak6, Tak7, Tak8, Tak9, Tak10}, task priority of HEFT-B {Tak0, Tak4,
Tak3, Tak2, Tak1, Tak7, Tak6, Tak5, Tak9, Tak8, Tak10}, task priority of HEFT-L {Tak0, Tak3, Tak4, Tak2, Tak1, Tak7,
Tak6, Tak5, Tak9, Tak8, Tak10}, task priority of MPQMA {Tak0, Tak1, Tak2, Tak5, Tak3, Tak4, Tak7, Tak9, Tak6, Tak8,
Tak10}.

 Fig. 6: The best solution for case 3

Table 5: Schedule obtained by PFA and other algorithms for case 3.

 HEFT-T HEFT-B HEFT-L MPQMA PFA

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Tak0 0–5 0–5 0–5 0–5 0–7

105

110

115

120

125

WOA SA EGA-TS GSA GA GA HHG PFA

M
ak

es
pa

n
(S

ec
on

ds
)

2 3 1 2 2 1 1 2 1 2 1

1646 A. Y. Hamed: An Efficient Firefly Algorithm for …

© 2023 NSP
Natural Sciences Publishing Cor.

Tak1 22–
30 23–

32 20–
28 5–

13 25–
33

Tak2 15–
22

19–
27 19–

27 13–
20

21–
29

Tak3 20–
31 15–

30 5–
20

20–
31 7–20

Tak4 5–
15 5–

15 16–
23 16–

23 20–
27

Tak5 30–
38 37–

47 37–
45 20–

28
47–
53

Tak6 39–
51 27–

45 27–
45 28–

43
29–
47

Tak7 40–
57 30–

42 38–
48 49–

59 27–
37

Tak8 52–
72 61–

72 56–
67 43–

54
53–
67

Tak9 57–
69 42–

52 48–
56 59–

67 37–
45

Tak10 85–
94 72–

89
80–
89 67–

80 67–
76

Table 6: Comparative results based on case 3.

Algorithm HEFT-T HEFT-B HEFT-L MPQMA PFA

Makespan 94 89 89 80 76

Fig.7: Comparison of results for case 3.

8 Discussions
The outcomes in Figure 3 and Table 2 show that the makespan of the PFA is reduced by (22.85%), (12.33%), and
(0.73%) for N-GA, PPSO, and H3CSA, respectively. The outcomes in Figure 5 and Table 4 show that the makespan of
the PFA is reduced by (8.87%), (8.87%), (7.37%), (7.37%), (3.41%), and (3.41%) for WOA, SA, EGA-TS, GSA, GA,
and HHG, respectively. The outcomes in Figure 7 and Table 6 show that the makespan of the PFA is reduced by
(19.14%), (14.60%), (14.60%), and (5%) for HEFT-T, HEFT-B, HEFT-L, and MPQMA, respectively.

0

20

40

60

80

100

HEFT-T HEFT-B HEFT-L MPQMA PFA

M
ak

es
pa

n
(S

ec
on

ds
)

Inf. Sci. Lett. 12, No. 3, 1637-1647 (2023) / https://digitalcommons.aaru.edu.jo/isl/ 1647

 © 2023 NSP
 Natural Sciences Publishing Cor.

9 Conclusions and Future Work
In order to achieve near-optimal results for the issue of scheduling tasks in a cloud, efficient strategies for the optimal
mapping of the tasks are required. In this study, we suggest a novel efficient scheduling task method in the cloud that
uses the firefly algorithm to address the issue of scheduling tasks. The system is made up of a small number of fully
linked heterogeneous virtual machines. The method has been compared to other algorithms according to makespan. The
comparative analysis illustrates that the PFA is significantly better in all cases. In our future work, we will develop an
efficient algorithm to tackle scheduling tasks in a cloud using the algorithm of cuckoo search.

References
[1] Dubey, K., Kumar, M. & Sharma, S. C. (2018). Modified HEFT algorithm for task scheduling in cloud environment. Procedia

Computer Science., (125), 725–732 (2018).
[2] Keshanchi, B., Souri, A. & Navimipour, N. J. (2017). An improved genetic algorithm for task scheduling in the cloud

environments using the priority queues: Formal verification, simulation, and statistical testing. Journal of Systems and Software.,
(124), 1-21 (2017).

[3] Mishra, A., Sahoo, M. N. & Satpathy, A. (2021). H3CSA: A makespan aware task scheduling technique for cloud environments.
Transactions on Emerging Telecommunications Technologies., 1-20 (2021).

[4] Tanha, M., Shirvani, M. H. & Rahmani A. M. (2021). A hybrid meta-heuristic task scheduling algorithm based on genetic and
thermodynamic simulated annealing algorithms in cloud computing environments. Neural Computing and Applications., 1-34
(2021).

[5] Kamalinia, A. & Ghaffari, A. (2017). Hybrid Task Scheduling Method for Cloud Computing by Genetic and DE Algorithms.
Wireless Personal Communications., (97), 6301–6323 (2017).

[6] Kashikolaei, S. M. G., Hosseinabadi, A. A. R., Saemi, B., Shareh, M. B., Sangaiah, A. K. & Bian, G. B. (2020). An enhancement
of task scheduling in cloud computing based on imperialist competitive algorithm and firefly algorithm. Journal of
Supercomputing., (76), 6302-6329 (2020).

[7] Saleh, I. A., Alsaif, O. I., Muhamed, S. A. & Essa, E. I. (2019). Task Scheduling for cloud computing Based on Firefly
Algorithm. Journal of Physics: Conference Series., (1294), 042004 (2019).

[8] Hamed, A. Y. & Alkinani, M. H. (2021). Task Scheduling Optimization in Cloud Computing Based on Genetic Algorithms.
Computers, Materials & Continua., (69), 3289-3301 (2021).

[9] Younes, A., BenSalah, A., Farag, T., Alghamdi, F. A. & Badawi, U. A. (2019). Task Scheduling Algorithm for Heterogeneous
Multi Processing Computing Systems. Journal of Theoretical and Applied Information Technology., (97), 3477-3487 (2019).

[10] Yang, X.-S. (2010). Firefly algorithm, stochastic test functions and design optimization. International Journal of Bio-Inspired
Computation., (2), 78-84 (2010).

[11] Wang, L., Pan, Q. & Tasgetiren, F. M. (2011). A hybrid harmony search algorithm for the blocking permutation flow shop
scheduling problem. Computers & Industrial Engineering., (61), 76-83 (2011).

[12] Dubey, I. & Gupta, M. (2017). Uniform mutation and SPV rule based optimized PSO algorithm for TSP problem. 4th
International Conference on Electronics and Communication Systems (ICECS)., 168–172 (2017).

[13] Biswas, T., Kuila, P. & Ray, A. K. (2020). A novel workflow scheduling with multi-criteria using particle swarm optimization for
heterogeneous computing systems. Cluster Computing., (23), 3255-3271 (2020).

[14] Thennarasu, S. R., Selvam, M. & Srihari, K. (2020). A new whale optimizer for workflow scheduling in cloud computing
environment. Journal of Ambient Intelligence Humanized Computing., (12), 3807-3814 (2020).

[15] Biswas, T., Kuila, P., Ray, A. K. & Sarkar, M. (2019). Gravitational search algorithm based novel workflow scheduling for
heterogeneous computing systems. Simulation Modelling Practice and Theory., (96), 101932 (2019).

[16] Akbari, M., Rashidi, H. & Alizadeh, S. H. (2017). An enhanced genetic algorithm with new operators for task scheduling in
heterogeneous computing systems. Engineering Applications of Artificial Intelligence., (61), 35-46 (2017).

[17] Sulaiman, M., Halim, Z., Lebbah, M., Waqas, M. & Tu, S. (2021). An Evolutionary Computing-Based Efficient Hybrid Task
Scheduling Approach for Heterogeneous Computing Environment. Journal of Grid Computing., (19), 1-31 (2021).

[18] Keshanchi, B. & Navimipour, N.J. (2016). Priority-Based Task Scheduling in the Cloud Systems Using a Memetic Algorithm.
Journal of Circuits, Systems, and Computers., (25), 1650119 (2016).

