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Abstract: An essential tool for comprehending the variable of interest is possessing a variable that can interpret the 

behavior of another. The concept of dependency has been intensively researched throughout the years, with numerous 

models. Copulas are a comprehensive tool for simulating the interdependence of the variables. They provide alternative 

interpretations of the linear and non-linear relationship between associated random variables and their marginal. In 

Insurance sector, one of the most risks that the insurers face is holding inefficient provision amounts for claims. This paper 

explains the dependence structure between the claim amount and the report lag period for claims in the insurance 
companies. 
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1 Introduction 

In property and casualty insurance companies, the loss provision is a significant part of the financial statements because it 
represents the largest liability of the insurer’s balance sheet. Insurance companies are required to maintain an adequate loss 

provision, which is a sufficient fund to settle all the outstanding claims. The following figure summarizes the claims 

procedure for the insurance companies. When an accident occurs, the policyholder reports the incident to the insurer who 

accordingly settles the payments required. Additionally, the claim file will be closed if the insurer determines that no 

additional payments are necessary for this claim. While a single claim may be subject to many payments [1, 2]. 

 

 

Fig 1: process of claim settlement 

 
Claim characteristics describe the speed of which claims occur, are reported, are settled and are occasionally revisited. If 

payment of claims is made by the insurer whenever a claim event takes place [3]. If the policyholder is involved in a car 
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accident, for instance, payment is transferred directly to the accounts of the affected parties. In this case, the insurer has no 
potential liability for outstanding claims [4]. 

   Insurers have outstanding claims liabilities due to the time-lag between the occurrence of the event and the reporting of 

the claim to the insurer. This lag is called the reporting lag or reporting delay [5]. While, the time between the reporting and 

the closure of the claim is called the settlement delay. During this period, the insurer determines which amounts should be 

paid to the insured. Loss provision or provision for outstanding claims includes the outstanding reported claims, which is 

also known as Reported but not Settled (RBNS), and the Incurred but not Reported (IBNR). The RBNS indicates the total 

amount of paid loss that will be needed to settle all reported claims, excluding any payments previously made on those 

claims [6]. On the other hand, The IBNR indicate the amount of paid loss that will be required when claim event has 

occurred, but the claim has not yet been reported to the insurer. 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑠𝑠 𝑝𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛 = 𝐼𝐵𝑁𝑅 + 𝑅𝐵𝑁𝑆 
1.1 Research problem 
A provision in insurers is the sum of money kept aside by the company to cover unforeseen risks like claim occurrences or 

policy cancellations. The IBNR is one of the key provisions that an insurance company must maintain. These provisions are 

kept covering any claims that might have happened but haven't yet been reported to the insurer. Two aspects must be 

considered in order to decide how much money should be set aside for the IBNR: the length of time it takes to report a 

claim and the amount of the claims. Time is a crucial consideration when estimated IBNR claims since it is essential to 

figure out how much time will have passed before the claim is reported [7]. 

 

1.2  Objective of the paper 

The objective of this paper is to understand the reporting lag function of property and casualty insurance claims; in order to 

establish a relationship between delay it takes for an insured party to report a claim and the claim amount, and ascertain an 

effective copula that explains the dependence structure between them. 
 

1.3  Research Methodology 

This paper proposes a copula function. Copula is a Latin word which means a link, where it is a function that links a 

multidimensional distribution to its one-dimensional margins [8]. Copulas are a comprehensive tool to model the 

dependency between runoff triangles within the line of business and with different lines of business [9]. They provide 

alternative interpretations of the linear and non-linear relationship between associated random variables and their marginal. 

 

It allows combining marginal distributions and decomposing joint distributions into marginal and dependence structure. It 

is a multivariate distribution function with uniform marginal densities [0, 1]n  to [0,1] , that has the same properties as a 

joint cumulative distribution. It is a function that links a multidimensional distribution to its one-dimensional margins [10]. 

If F is a n-dimensional cumulative joint function with margins F(1), F(2),..., F(n). And all margins are continuous, and then the 

joint distribution of n random variables (𝑦1, 𝑦2 ,…,, 𝑦𝑛 ) can be represented by a unique copula function [11]: 

𝐹(𝑦1, 𝑦2 ,…,, 𝑦𝑛 ) = C (F(1), F(2),..., F(n), 

ui = Fi(yi),    i =1,….,n 

 Copula has three families; Elliptical (Normal Gaussian) Copula, t-student copula and Archimedean Copula. [12]. An 

Archimedean copula is constructed through a generator, a convex, and decreasing function ϕ with domain (0, 1] and range 

[0, ∞) such that [13] 

ϕ (1) = 0      and     ϕ (0) = ∞ 

C (u1, . . , un) = ϕ−1(ϕ(u1) + · · · + ϕ(un)) 

Where;  

C (u) → the density function of copula 

ϕ ⇒ the generator of Copula 

 
There are three types of Archimedean copulas: the Clayton, Frank and Gumbel. [14]. 

Clayton copula 

   The Clayton copula is an asymmetric Archimedean copula, it demonstrates more dependency in the negative tail than in 

the positive tail. This copula is given by: 

𝐶(𝑢1, 𝑢2; 𝜃) = max ((𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−
1

θ, 0) 

θ ⇒ is the dependence parameter. 

Gumbel Copula  
   The Gumbel copula is an asymmetric Archimedean copula that shows more dependence in the positive tail than in the 

negative. This copula is given by [5]: 
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𝐶(𝑢1, 𝑢2) = exp (−[(−ln𝑢1)𝜃 + (−𝑙𝑛𝑢2)𝜃]
1

𝜃) 

Frank Copula 

 The Frank copula is a symmetric Archimedean copula given by: 

𝐶(𝑢1, 𝑢2) =
−1

𝜃
ln (1 +

(e−𝜃𝑢1 − 1)(e−𝜃𝑢2 − 1)

e−𝜃 − 1
) 

 

Normal Gaussian (Elliptical) Copula: 

The Elliptical copula is a multivariate function of normal marginal distributions, assuming Y =(𝑌1, 𝑌2 ,…,, 𝑌𝑛 ) is multivariate 

normal [15] 

𝐶(𝑢1, 𝑢2; 𝜌) = ∫ ∫
1

2𝜋√1 − 𝜌2
𝑒𝑥𝑝 [

𝑟2 − 2𝜌𝑟𝑠 + 𝑠2

2(1 − 𝜌2)
] 𝑑𝑟𝑑𝑠

𝛷−1(𝑢2)

−∞

𝛷−1(𝑢1)

−∞

 

Where, 

𝜌 ⇒ Pearson correlation coefficient between marginals 

𝛷−1 ⇒The inverse of standard normal 

 

T-student copula: 

The t student copula is a function of t distributions, assuming Y =(𝑌1, 𝑌2 ,…,, 𝑌𝑛 ) is multivariate t student marginals, where R 

is the correlation matrix between marginals, and y is a random variable with 𝜒2  distribution [15]: 

 

𝐶(𝑢1, 𝑢2; 𝜌) = ∫ ∫
1

2𝜋√1 − 𝜌2
𝑒𝑥𝑝 [1 +

𝑟2 − 2𝜌𝑟𝑠 + 𝑠2

𝑣(1 − 𝜌2)
]

−(𝑣+2)

2

𝑑𝑟𝑑𝑠
𝑡𝑣

−1(𝑢2)

−∞

𝑡𝑣
−1(𝑢1)

−∞

 

 

𝑡𝑣
−1 ⇒The inverse of uni-variate student t-distribution function 

𝑣⇒ Degree of freedom           𝜌 ⇒ Pearson correlation coefficient between marginal 

 

2. Materials and Methods 

   The copulas were fitted using the inference for margins technique. This technique requires fitting each marginal 

distribution individually using the maximum likelihood method and then utilizing the fitting results to fit the copula 

distributions. The Akaike Information criterion (AIC) was used to assess the effectiveness of the various copulas in 

interpreting the dependency between the variables, the copula with the lowest AIC value was considered to be the most 

effective. 

  This technique was applied to data from a property and casualty insurance company operating in Egypt, which included 

date of loss, reported date and amount per claim information. From this data set we were able to calculate report lag by 

determining number of days between when claim was incurred and when it was reported. The amount considered claim 

amount paid. The data statistical results for the two variables under consideration; report delay and claim amount were as 

follows; 

Table 1: descriptive statistics of the data 

 Report Lag Claims Amount 

Mean 2.654 6504 

Standard Deviation 2.31343 5838.319 

Skewness 1.28 1.33 

Kurtosis 1.11 1.24 

Sample Size 8441 8441 

Median 2 4775 
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Minimum 0 27 

Maximum 10 26464 

Range 10 26437 

Standard Error 0.03 63.55 

Pearson’s Correlation Coefficient = 0.04106869 

Kendall’s Tau = 0.03495474                                        

Spearman’s Rho = 0.04848236 

 

2.1 Fitting Marginal Distributions 

This step is to fit the marginal distributions for two variables: report lag and claim amounts  

Report Lag Distribution 

The report delay was interpreted as a discrete distribution in terms of days. Regarding this, the negative binomial 

distribution and the geometric distribution are the best fit discrete distributions; based on easy-fit software. 

 
 

 
Fig.2: illustration for report delay data 

 

 

The negative binomial distribution  

Using the maximum likelihood method to fit the negative binomial distribution to the report delay data, the following 

results were obtained;  

                                   Parameters: 

Table 2: Results for the negative binomial fit to the report delay variable 

 Estimate     Std. Error 

Size 2.892992    0.09522284 

Mu 2.653856     0.02455322 

The negative binomial density curve superimposed over the histogram of the observed data to highlight how the negative 

binomial distribution fitted on the data as shown in the following graph: 

The Geometric distribution 

Fitting the geometric distribution through the maximum likelihood method, the following results were obtained. 

                         Parameters:              
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Table 3: Results for the geometric distribution fit to the report delay variable 

 Parameter estimate Std. Error 

Probability 0.2736941 0.002538773 

 

The following figure represent graphical illustration for both distributions fitted on report delay data where the negative 

binomial is black, and the geometric distribution is red 

 
Fig.3: Graphical illustration for the negative binomial and geometric distributions fit to the report lag variable. 

Report delay distribution marginal fit summary 

The following table compares the log likelihoods, AIC, and BIC for the three distributions: 

Table 4: Results for the AIC and BIC statistics for the fitted marginal distributions 

Distribution Log likelihood AIC BIC 

Negative binomial -17386.61 34777.22 34791.3 

Geometric  -18100.54 36203.08 36210.12 

 

It was noted that both the AIC and the BIC values for the negative binomial were less than that of the geometric 

distribution implying that the negative binomial distribution was the better fit for the data.  

Claim amount 

The claim amount was interpreted as a continuous distribution. Regard this, the most two fit of continuous distributions 

based on easy fit software are the log normal distribution and the Weibull distribution. 
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Fig.4: illustration for Claim amounts data 

 

The lognormal distribution  
Using the maximum likelihood method to fit the lognormal distribution, the following results were obtained. 

Parameters:  

Table 5: Results for the lognormal distribution fit to the claim amount variable 

 Estimate Standard Error 

Mean-log 8.317397 0.011648240 

Sd-log 1.070181 0.008236517 

The Weibull Distribution  
Using the maximum likelihood method to fit the Weibull distribution, the following results were obtained; 

Parameters:  

Table 6: Results for the Weibull distribution fit to the claim amount variable 

 Estimate Standard Error 

Shape 1.119761 0.009493078 

Scale 6786.39089 69.73720582 

The following figure represent graphical illustration for both distributions fitted on claim amounts data where the 
lognormal is black, and the Weibull distribution is blue. 
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Fig.5: Graphical illustration for the lognormal and Weibull distributions fit to the claim amount variable 

Summary of claims distribution marginal fit  

From graphical illustrations it clearly shows that both distributions could be considered a reasonable fit for the claim amount 

data. Comparison between the log likelihoods, AIC and BIC for the two distributions was as follows;  

Table 7: Summary of claims distribution marginal fit 

Distribution Loglikelihood AIC BIC 

Lognormal -82470.29 165517.9 165532 

Weibull -82756.94 164944.6 164958.7 

It was noted that both the AIC and the BIC values for the Weibull were less than that of the Lognormal distribution implying 

that the log normal distribution was the better fit for the data. 

Fitting the Copula Distributions 

The maximum likelihood method was employed to the copulas given the results obtained for the marginal distributions. The 
copula distributions first had to be converted to their respective probability density functions in order to obtain the 

likelihood function. The log likelihood function was then obtained for easier optimization. It is important to note that the 

likelihood and the log likelihood functions were not easily maximized and therefore for some of the copulas; a numeric 

iterative method – The Newton Raphson method was applied to obtain the parameter estimates. The variables used in the 

copula functions were the distribution values of the observed instances using the distribution functions that were 

maximized. The results for the copulas were as follows; 

Gumbel Copula 

The main results for the Gumbel Barnett Copula were as follows: 

Table 8: Results for the Gumbel Barnett Copula 

Method of likelihood maximization Newton Raphson 

Log-Likelihood 6003.885 

Estimate 1.33464 

Std. error 0.01834 

AIC -12005.77 

the parameter value obtained is outside the bounds required for the Gumbel Barnet copula; (0, 1). 

In this case, we find the maximum likelihood estimator within these bounds by plotting the graph of parameter values 

against the log likelihood to obtain the parameter value that maximizes the copula. The graph obtained is as below; 

http://www.naturalspublishing.com/Journals.asp
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Fig.6: The graphical illustration of the maximum likelihood estimates for the Gumbel Barnett Copula 

This shows that the parameter value that maximizes the log likelihood within the bounds is 1. Hence rather than 1.24 as 

obtained by the numerical analysis we settle for 1. 

 

Frank Copula 

The results for Franks Copula were as follows: 

Table 9: Results for the Frank Copula 

Method of likelihood maximization Newton Raphson 

Log-Likelihood 15.20435 

Estimate 0.39269 

Std. error 0.07123 

AIC -28.40869 

The result for the parameter estimates from the numerical approach was further complemented using 

the graphical approach as shown below; 
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Fig .7: The graphical illustration of the maximum likelihood estimates for Frank Copula 

Nelson Number 10  

As a result of the Nelson number 10 copula, the following results were obtained: 

Table 10: Results for the Nelson 10 Copula 

Method of likelihood maximization Newton Raphson 

Log-Likelihood 5917.646 

Estimate -1.078120 

Std. error 0.007324 

AIC -11833.29 

the parameter value obtained is outside the bounds required for the nelson 10 copula: (0, 1). In this 

case, we find the maximum likelihood estimator within these bounds by plotting the graph of 

parameter values against the log likelihood to obtain the parameter value that maximizes the copula. 

The graph obtained is as below; 
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Fig.8:  The graphical illustration of the maximum likelihood estimates for the Nelson No. 10 Copula 

This shows that the parameter value that maximizes the log likelihood within the bounds is 1We 

choose max value between 0 and 1, as figure indicates max on 0.01 

Clayton Copula 

The results for Clayton Copula were as follows: 

Table 11: Results for the Clayton Copula 

Method of likelihood maximization Newton Raphson 

Log-Likelihood 4.011901 

Estimate 0.03938 

Std. error 0.01431 

AIC -6.023802 

When the maximum likelihood graphical approach was considered, the results were as below; 

 
Fig.9: The graphical representation of the maximum likelihood estimates for Clayton Copula 

Summary of the copula fits to the data 

The comparison of the copulas' AIC test statistics yielded the following results: 
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Table 12: Results for the AIC statistics for the four copulas 

Copula AIC 

Gumbel Barnett Copula -12005.77 

Nelson Number 10 -11833.29 

Franks -28.40869 

Clayton Copula -6.023802 

 

3. Results and Conclusion 

It is observed that the two variables claim amount and report lag exists a positive dependence. This 

was illustrated by the correlation measures; Pearson’s correlation coefficient, Kendall’s tau and 

spearman’s rho. In addition to the correlation measures being positive; it was also noted that the 

magnitude of the measures was significantly small. This implied existence of weak dependence. 

And a comparison of the AIC values of each of the copulas was conducted. The Gumbel Barnett 

copula had the smallest AIC value while the clayton copula had the largest AIC value. It is an 

asymmetric Archimedean copula that exhibits greater dependence in the positive tail than the 

negative. This result implied that according to the comparisons of the AIC values for the different 

copulas, the Gumbel Barnett Copula is the best option in modeling dependence between the 

variables report delay and claim amount. Finally, it is concluded that there is weak dependence 

between report lag and claim amounts in property and casualty insurance company. 
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