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Abstract: This study developed three semi-analytical algorithms to solve nonlinear delay Volterra and delay Fredholm-Volterra

integrodifferential equations under initial conditions. These algorithms embrace Laplace Adomian decomposition algorithm (LADA),

the modified Laplace Adomian decomposition algorithm (MLADA), and the Laplace variational iteration algorithm (LVIA). Using the

suggested approaches, we find the solutions without discretization, or limiting traditions while considering suitable initial conditions.

Moreover, solution terms are easily calculable and fast-converging series are generated. The proposed methodologies are tested

numerically on three numerical applications to prove their efficacy and dependability as well as to compare their computational

efficiency. Based on the numerical results, it is evident that the procedures offered are both effective and correct.

Keywords: Laplace Adomian decomposition algorithm, Integrodifferential equations, Error analysis, Functional differential equation,
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1 Introduction

Volterra delay integrodifferential equations have many
applications in science and engineering, for example,
their usage in electrodynamics, dynamical systems,
mechanics, mathematics, viscoelasticity, oscillating
magnetic fields, heat conduction, electromagnetic,
biology, and other domains. Functional differential and
integrodifferential equations with variable delays are
extensively employed in modeling biological phenomena
and play an important role in different fields [1, 2, 3, 4].
They also describe various reactor-related chemical and
physics operations. Biological processes such as growth,
birth, and death can also be described using neutral
equations. Additionally, these equations have numerous
medical applications. For example, they can be used to
mimic sugar size in the blood, cancer chemotherapy,
immunity, and epidemiology can all be used to show
different characteristics of humans, see in [5].
Abd-Elhameed and Youssri [6] introduced and discussed
the second kind Chebyshev quadrature collocation
method for solving a mixed Volterra-Fredholm integral
equation. The numerical solution of Volterra

integrodifferential equations with type delay has received
a lot of attention in the last few years, Refs. [7]-[16] and
provides an overview of approximation strategies for
solving these types of equations. The Laplace
decomposition algorithm shows how the Laplace
transform can be utilized to estimate the solutions of
nonlinear integrodifferential equations by adjusting the
decomposition approach. This method divides the
equation under inquiry into linear and nonlinear parts and
creates a solution in the form of a convergent series with
easily computed terms that can be found defined by a
recursive relationship and utilizing Adomian polynomials
for nonlinear terms. Furthermore, LADA discovers the
solution without any constricting assumptions, free from
round-off errors and without taking a long time or a lot of
computer memory. This method is powerful and effective,
and it solves a wide range of linear and nonlinear ordinary
and partial differential equations, as well as integral
equations (see in Refs. [17]-[21]). Additionally, LADA is
able to drastically diminish the numerical calculation
while maintaining high accuracy in the numerical solution
because it does not produce a sizeable set of linear or
nonlinear equations, in contrast to other numerical
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methods. Though, solution series converge very rapidly in
very narrow regions or near boundary points but they
converge very slowly in wider and/or outer regions. This
is one of the drawbacks of LADA. Furthermore, LADA
has the disadvantage that his Adomian polynomials for
the nonlinear terms need to be found and evaluated,
which is computationally expensive due to the extensive
computation required. MLADA [22, 23] is a new
modified Laplace Adomian decomposition algorithm for
nonlinear equations based on an appropriate initial
solution selection. The modified Laplace decomposition
approach overcomes the noise oscillation during the
iteration procedure with this adjustment. The LVIA [24,
25, 26] is a novel adjustment of the variational iteration
method (VIM). This approach was planned by combining
the Laplace transform and VIM, and we can derive new
variational iteration formulas. The main gain of LVIA is
that it comes up with a new concept of Lagrange
multipliers from the Laplace transform without tiresome
calculations. A key feature of LVIA is its flexibility and
ability to solve nonlinear equations accurately and
without linearization and polynomials Adomian for
nonlinear terms. Furthermore, LVIA is the freedom to
choose the initial guess without unknown parameters.
LVIA leads to a convergent solution, but the solution
requires a lot of time and a lot of computer memory. The
flexibility and customization offered by these proposed
algorithms made them strong candidates for realistic
solutions leading to closed-form exact solutions.

2 The proposed semi-analytical algorithms

This work studies the semi-analytical solution of delay
Volterra integrodifferential equation (DVIDE), neutral
Volterra delay integrodifferential equation (NVDIDE) and
the nonlinear delay Fredholm-Volterra integrodifferential
equation (NDF-VIDE). The general form of neutral
Volterra delay integrodifferential equation (NVDIDE) is

v′ (t) = f

(

t, v(t) , v(h(t)) ,
∫ t

0
K
(

t, x, v(x) ,

v(h(x)) , v′(h(x))
)

dx

)

, t ≥ a

v(t) = φ(t), t ∈ [a∗, a] (1)

while the general form of retarded Volterra
integrodifferential equation is

v′ (t) = f

(

t, v(t) , v(h(t)) ,

∫ t

0
K
(

t, x, v(x) ,

v(h(x))
)

dx

)

, t ≥ a

v(t) = φ(t), t ∈ [a∗, a] (2)

and the nonlinear retarded Fredholm Volterra
integrodifferential is

v′ (t) = f

(

t, v(t) , v(h(t)) ,
∫ t

0
K1

(

t, x, v(x) ,

v(h(x))
)

dx,

∫ b

a
K2

(

t, x, v(x) , v(h(x))
)

dx

)

, t ≥ a

v(t) = φ(t), t ∈ [a∗, a]

where f , h, K, K1, K2 and φ are functions that are given.
On the finite interval [a,b], the solution v(t) is desired. We
will use the following format to rewrite equation (2):

v′ (t) = f (t, v(t) , v(h(t)) , z(t)) , a ≤ t ≤ b

z(t) =

∫ t

a
K
(

t, x, v(x) , v(h(x))
)

dx.
(3)

It is assumed that the delay function h(t) is continuous in
the interval [a, b] and that it satisfies the inequality a∗ ≤
h(t)≤ t, t ∈ [a, b]. Let φ ∈ Cr[a∗, a] and suppose that f :
[a, b]×R

3 → R, (t, u, w, z) → f (t, u, w, z) is defined
and continuous together with its rth derivatives, r ∈ N in
the domain D : |t − t0| < σ1, D : |v − v0| < σ2,
satisfying

| f (q)(t, u, w, z)| ≤ S1, q = 1(1)r+ 1, (4)

and the Lipschitz conditions
∣

∣

∣
f (q) (t, u1, w1, z1)− f (q) (t, u2, w2, z2)

∣

∣

∣
≤

L1 {|u1 − u2|+ | w1 − w2 | + |z1 − z2|} , (5)

then, ∃ β such that

| w1 − w2| ≤ β | f (q)(t, u1, w1, z1)

− f (q)(t, u2,w2, z2)|, (6)

∀(t, u, w, z) , (t, u1, w1, z1)

, (t, u2, w2, z2) ∈
(

[a, b]×R
3
)

.

Assume that K : [a, b]× [a, b]×R
2 → R, is both defined

and continuous function and that it satisfies

|K(t, x, u, w)| ≤ S2 (7)

and the Lipschitz conditions

|K(t, x, u1, w1) − K(t, x, u2, w2)| ≤
L2{| u1 − u2| + |w1 − w2|} (8)

∃ β such that

| w1 − w2| ≤ β |K(t, x, u1, w1) − K(t, x, u2, w2)| (9)

∀(t, x, u, w) , (t, x,u1, w1)

, (t, x, u2, w2) ∈
(

[a, b]× [a, b]×R
2
)

,

where β < min{ 1
L1
,

1
L2
}. These conditions guarantee the

existence of a unique solution of problem (3).
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In this paper, we employ three semi-analytical algorithms
to solve the following functional integrodifferential
equation with variable delays

v(n) (t) +
n−1

∑
i=0

[

N1,i

(

v(t) ,v(i) (hi (t))
)

+R1,i

(

v(t) ,v(i) (hi (t))
)

]

= g(t)+I

[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

, (10)

with initial conditions which are given

v(k) (0) = fk(t), k = 0, 1, 2, . . . . . . ., n− 1, (11)

where v(n)(t) = dnv
dtn and,

I

[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

=

∫ t

0
K (t, x)

[

n−1

∑
i=0

R2,i

(

v(t) , v(i) (hi (t))
)

,

n−1

∑
i=0

N2,i

(

v(t) , v(i) (hi (t))
)

]

,

(12)

K (t, x) is the kernel of the integral equation,
R1,i, R2,i, N1,i and N2,i are linear and nonlinear functions

of v(t) and v(i) (hi (t)) that will be determined,
respectively. It also takes into account the first-order
integrodifferential equation with variable delays and
neutral terms, which has the form.

v′(t)+R1(t)v
′(t − τ(t)) = R0(t)v(t)+

∫ t

a
K(t, x) v(x) dx

+ g(t), t ≥ 0

v(t) = v0, (13)

where R0(t), R1(t), v(t), g(t) and τ(t) (delay term) are
defined as continuous functions. The detailed definitions
provided below, as found in [27-28], must be used for this
study.

Definition 2.1. Suppose that u(t) is real-valued function
of the variable t > 0 and s is a real parameter. The
Laplace transform of u(t) is defined by

£t [u(t)] =

∫ ∞

0
e−stu(t)dt.

Theorem 2.2 . Suppose that u(t), u′ (t) , . . . , u(n−1) (t)
real-valued functions are continuous on (0, ∞), then

£t

[

u(n) (t)
]

= sn£t [u(t)]−sn−1u(0)−sn−2u′ (0)−·· ·−u(n−1)(0).

Definition 2.3 . Let v(t) be a continuous differentiable
function on (0, ∞) and let τ be a constant delay such that:

v(t) = ϕ (t) for −τ ≤ t < 0. Then the Laplace transform
of delay function is given by :

£t [v(t − τ)] = e−sτ (£t [v(t)]+Φ(s, τ)) ,

where Φ(s, τ) =
∫ 0
−τ e−stϕ (t)dt.

Definition 2.4 Let g(x) have a power series in a
neighbourhood of x = 0. If polynomials P(x) and Q(x), of
degrees m and n respectively, can be found such that

g(z) = P(x)
Q(x)

+O(|x|m+n+1), with Q(0) = 1, then
P(x)
Q(x)

is a

Pade
′

approximant to g(x). When m = n,
P(x)
Q(x) is called a

diagonal Pade
′

approximant to g(x). The following
examples are given for an illustrative purpose, which we
need in the Laplace transform,

if m = n = 1, Pade
′
(es) = 2+s

2−s
and Pade

′
(e−s) = 2−s

2+s
. If

m = n = 2, Pade
′
(es) = s2+6s+12

s2−6s+12
, and

Pade
′
(e−s) = s2−6s+12

s2+6s+12
.

Corollary 2.5. For any iteration m, define
vm (t) , m = 1, 2, . . . , n, as a series. The algorithms
will reach the analytical solution of (1) shortly afterward.
The following are only a few of the many types of errors:

1. Residual error (Resm (t)) defined by

Resm (t) =

∣

∣

∣

∣

(

v′m (t)− f

(

t, vm (t) , vm (h(t)) ,

∫ t

a
K(t, x, vm (x) , vm (h(x)) ,v′m (h(x)))dx

))

∣

∣

∣

∣

2. Exact error (Extm(t)) that is determined by

Extm(t) =
∣

∣vexact (t)− vm (t)
∣

∣.

3. Consecutive error (Conm (t)) , which is defined by

Conm (t) =
∣

∣vm+1 (t)− vm (t)
∣

∣.

We apply the our proposed algorithms to solve the problem
(10)-(11) in the following subsections.

2.1 Formulation of LADA

In the present section we use LADA to solve functional
integrodifferential equation with variable delays of the
following form:

v(n) (t)+
n−1

∑
i=0

[

N1,i

(

v(t) , v(i) (hi (t))
)

+R1,i

(

v(t) , v(i) (hi (t))
)

]

= g(t)+I

[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

. (14)
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Using the initial conditions that are stated

v(k) (0) = fk(t), k = 0, 1, 2, . . . . . . ., n− 1. (15)

Following are the steps that should be taken to solve
Eq. (14) using LADA:

Step1: Eq. (14), when transformed by the Laplace
transform, yields

£t

[

v(n) (t)
]

+
n−1

∑
i=0

£t

[

N1,i

(

v(t) , v(i) (hi (t))
)

+ R1,i

(

v(t) , v(i) (hi (t))
)

]

= £t

[

I
[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

] ]

+ £t

[

g(t)
]

.

In view of definition 2.1 and the initial conditions (15), we
obtain

sn V (s)−
n−1

∑
j=0

sn− j−1v( j) (0)

+
n−1

∑
i=0

£t

[

N1,i

(

v(t) ,v(i) (hi (t))
)

+R1,i

(

v(t) ,v(i) (hi (t))
)

]

= G(s)+ £t[I[K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i]], (16)

where V (s) = £t[v(t) ] and G(s) = £t[g(t) ].

Step2: LADA describes the solutions by the infinite series
of components.

v(t) =
∞

∑
n=0

vn (t), (17)

and the nonlinear terms N1,i and N2,i in Eq. (16) is
decomposed as follows:

N1,i

(

v(t) , v(i) (hi (t))
)

= An,i, i = 0, 1, 2, . . . ,n−1,

N2,i

(

v(t) , v(i) (hi (t))
)

= Bn,i, i = 0, 1, 2, . . . ,n−1,
(18)

where Ai,n and Bi,n are the Adomian polynomials. The
Adomian polynomials have the following general

formula:

An,i =
1

n!

dn

dλ n

[

N1,i

(

n

∑
k=0

λ kvk(t),

n

∑
k=0

λ kvk (hi (t)) ,
n

∑
k=0

λ kv
(i)
k (hi (t))

)]∣

∣

∣

∣

∣

λ=0

,

Bn,i =
1

n!

dn

dλ n

[

N2,i

(

n

∑
k=0

λ kvk(t),

n

∑
k=0

λ kvk (hi (t)) ,
n

∑
k=0

λ kv
(i)
k (hi (t))

)]∣

∣

∣

∣

∣

λ=0

.

(19)

Step3: Eq.(16) is transformed into a collection of
recursive equations produced by the decomposition
analysis method.

£t [v0 (t)] =
n−1

∑
k=0

fk (t)

sk+1
+

1

sn
G(s),

£t [v1 (t)] =
1

sn
£t

[

n−1

∑
i=0

−(A0,i (v0)+R1,i(v0))+

I[K,

n−1

∑
i=0

R2,i(v0),
n−1

∑
i=0

B0,i(v0)]

]

, · · · (20)

So in general, for k ≥ 0, we obtain

£t [vk(t)] =
1

sn
£t

[

n−1

∑
i=0

−(Ak−1,i(v0, v1, · · · , vk−1)

+R1,i(vk−1)+ I
[

K,

n−1

∑
i=0

R2,ivk−1
,

n−1

∑
i=0

Bk−1,i (v0, v1, · · · , vk−1)
]

]

.

(21)

Step4: We can use the inverse Laplace transform to
evaluate

v0 (t) = £−1
t

{

n−1

∑
k=0

fk (t)

sk+1
+

1

sn
G(s)

}

= H (t) ,

v1 (t) = £−1
t

{

1

sn
£t

[

−A0,i(v0)−R1,i(v0)

+ I[K,R2,i(v0),B0,i(v0)]

]

}

, i = 0,1,2, . . . ,n− 1

...
(22)

So, the n−semi-analytical solution is given by:

φn (t) =
n

∑
i=0

vi (t), (23)

and the analytical solution will be limn→∞ φn (t), in some
circumstances, the analytical solution in closed form can
be obtained.
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2.2 Formulation of MLADA

As we know, the LADA suggest that the zeroth
component v0 (t) usually defined by function H (t) that
arises from the source term g(t) and the prescribed
initial conditions. In comparison to the old methods,
Wazwaz [20] developed a decomposition method that
minimizes the step size in the calculation with good
results. A noise oscillation occurs during iteration if Eq.
(22) is selected as the initial solution. Based on the
assumption that the function H(t) can be divided into
two parts, namely H1(t) and H2(t), one of which is
assigned to the first term, the other to the second. Given
the presumption we established,

H (t) = H1(t)+H2(t). (24)

Our formulation of the repetition relations is modified
according to Eq. (24). By taking a part of H (t), we
identify the zero component v0 (t) and add the rest to
v1 (t). Hence, a set of recursive equations are given by

v0 (t) = £−1
t

{

n−1

∑
k=0

fk (t)

sk+1
+

1

sn
G1(s)

}

,

v1 (t) = £−1
t

{

1

sn
G2 (s)−

1

sn
£t

[

n−1

∑
i=0

(A0,i (v0)+R1,i(v0))

− I[K,

n−1

∑
i=0

R2,i(v0),
n−1

∑
i=0

B0,i(v0)]

]}

,

v2 (t) = £−1
t

{

− 1

sn
£t

[

n−1

∑
i=0

(A1,i (v0, v1)+R1,i (v1))

+ I[K,

n−1

∑
i=0

R2,i(v1),
n−1

∑
i=0

B0,i(v0,v10)]

]}

,

...

(25)

So, the n−semi-analytical solution is given by:

ψn (t) =
n

∑
i=0

vi (t), (26)

and the analytical solution will be limn→∞ ψn (t).

2.3 Formulation of LVIA

The procedure begins with the application of the Laplace
transform to (14), followed by the use of the Laplace

transform’s differentiation feature to obtain

[sn£t [vn (t)]−
n−1

∑
k=0

sn−k−1 ∂ kv(t)

∂ t
k

∣

∣

∣

∣

t=0

+
n−1

∑
i=0

£t

[

N1,i

(

v(t) , v(i) (hi (t))
)

+R1,i

(

v(t) , v(i) (hi (t))
)

]

= G(s)+ £t[I[K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i]].

(27)

The basic iterative approach employing the Lagrange
multiplier can be advised using the iteration formula of
(27), then

£t [vn+1 (t)] = £t [vn (t)]+λ (s)

[

sn£

t

[vn (t)]

−
n−1

∑
k=0

sn−k−1 ∂ kv(t)

∂ t
k

∣

∣

∣

∣

t=0

+
n−1

∑
i=0

£t

[

N1,i

(

v(t) , v(i) (hi (t))
)

+R1,i

(

v(t) , v(i) (hi (t))
)

]

−G(s)

− £t

[

I
[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

]

]

.

(28)

Using

£t

[

N1,i

(

v(t) , v(i) (hi (t))
)

+R1,i

(

v(t) , v(i) (hi (t))
)]

and

£t [I(K, R2,i, N2,i)] as restricted terms, a Lagrange
multiplier can be calculated as

λ (s) =
−1

sn
, (29)

with Eq. (29) and £−1
t , Eq. (28) becomes

vn+1 (t) = £−1
t

{

1

sn

n−1

∑
k=0

sn−k−1 ∂ kv(t)

∂ t
k

∣

∣

∣

∣

t=0

− 1

sn

n−1

∑
i=0

£t

[

N1,i

(

v(t) , v(i) (hi (t))
)

+R1,i

(

v(t) , v(i) (hi (t))
)

]

+
1

sn
G(s)+

1

sn
£t

[

I

[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]]}

,

(30)
where v0(t)) is the initial iteration and can be calculated
by

v0 (t) = £−1
t

{

n−1

∑
k=0

fk (t)

sk+1

}

. (31)
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From Eq. (30), Eq. (31) and Eq. (15), we get the solution

v0 (t) = £−1
t

[

1

sn

n−1

∑
k=0

sn−k−1 ∂ kv(t)

∂ t
k

∣

∣

∣

∣

t=0

]

= £−1
t

{

n−1

∑
k=0

fk (t)

sk+1

}

,

v1 (t) = v0 (t)+ £−1
t

{

1

sn
G(s)

}

− £−1
t

{

1

sn

n−1

∑
i=0

£t

[

N1,i

(

v0 (t) , v
(i)
0 (hi (t))

)

+R1,i

(

v0 (t) , v
(i)
0 (hi (t))

)

]}

+ £−1
t

{

1

sn
£t

[

I
[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

]}

,

v2 (t) = v0 (t)+ £−1
t

{

1

sn
G(s)

}

− £−1
t

{

1

sn

n−1

∑
i=0

£t

[

N1,i

(

v1 (t) , v
(i)
1 (hi (t))

)

+R1,i

(

v1 (t) , v
(i)
1 (hi (t))

)

]}

+ £−1
t

{

1

sn
£t

[

I
[

K,

n−1

∑
i=0

R2,i,

n−1

∑
i=0

N2,i

]

]

}

,

...

(32)

The analytical solution is v(t)= limn→∞ vn(t) .

3 Numerical results and discussions

The applicability of LADA, MLADA and LVIA in
solving neutral Volterra delay integrodifferential
equations and Volterra delay integrodifferential equations
of constant type are demonstrated in this section with
numerical results for our suggested algorithms. Three
specific examples are presented to demonstrate the
validity of the results.

Example 4.1: Consider the following nonlinear delay
Fredholm Volterra integrodifferential equation [7]

v′ (t) = g(t)+
∫ 1

0
(t + x) v(x)dx

+
∫ t

0
(t − x) v2

( x

2

)

dx. (33)

The function g(t) is chosen such that the analytical
solution is v(t) = t2 − 2, t ≥ 0 .

Firstly,The LADA will be used to solve this equation. The
recursive relations, according to Eqs. (22), are as follows:

v0 (t) = £−1
t {1

s
(v(0)+G(s))}

vk+1 (t) = £−1
t

{

1

s
£t

[

I1 [k1, vk (t)]

+ I2[k2, Ck (vk (t))]
]

}

, k ≥ 0

(34)

where Ck denotes the Adomian polynomials that express
the nonlinear terms v2( x

2
), k1 and k2 denote the kernels of

the integrals I1 and I2, respectively, and I1 and I2 represent

integral operators defined as I1 =
∫ 1

0 (t + x) v(x) dx and

I2 =
∫ t

0 (t − x) v2
(

x
2

)

dx. By using Eq. (19), the Adomian

polynomials for v2
(

x
2

)

, begin with the first few terms.

C0 = v2
0

( x

2

)

,

C1 = 2v0

( x

2

)

v1

( x

2

)

, (35)

C2 = 2v0

( x

2

)

v2

( x

2

)

+ v2
1

( x

2

)

...

While G(s) = £t [g(t)]

and g(t) = 3
4
+ 11t

3
− 2t2 + t4

12
− t6

480
.

The decomposition series’ first few terms are given:

v0 (t) =−2+
3t

4
+

11t2

6
− 2t3

3
+

t5

60
− t7

3360
,

v1 (t) = −12781t

30240
− 94979t2

161280
+

2t3

3
− t4

16
− 65t5

2304

+
13t6

2304
+

17t7

24192
− 113t8

483840
+

169t9

11612160

+
157t10

232243200
− 457t11

5109350400
− t12

619315200

+
17t13

44281036800
− t15

1127153664000

+
t17

754672730112000
, (36)

...

So, the n− semi-analytical solution is given by:

ψn (t) =
n

∑
i=0

vi (t),

and the analytical solution will be

lim
n→∞

ψn (t) .
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Secondly, in order to solve Example 4.1 using the
MLADA. Source function g(t) is divided into two

functions, which are g1 (t)=
3
4

and g2 (t)=
11 t

3
− 2t2 + t4

12
− t6

480
. According to Eqs. (25),

the iteration formulas will be

v0 (t) = £−1
t

{

1

s
(v(0)+G1 (s))

}

,

v1 (t) = £−1
t

{

1

s
(G2 (s))

}

+ £−1
t

{

1

s
£t [I1 [k1, v0 (t)]+ I2[k2, C0 (v0 (t))]]

}

,

v2 (t) = £−1
t

{

1

s
£t

[

I1 [k1, v1 (t)]

+ I2[k2, C1 (v0 (t) , v1 (t))]
]

}

, ...

Hence,

v0 (t) =−2+
3

4
t,

v1 (t) =−3t

4
+

49t2

48
− t4

16
+

3t5

1280
, (37)

...

The series form of the solution is then defined by

v(t) =
n

∑
i=0

vi (t),

v(t) =−2+
49t2

48
− t4

16
+

3t5

1280
+ · · · (38)

Third, we will obtain LVIA solution for Eq. (33). The
recursive relation is given by

v0 (t) = £−1
t

{

1

s
(v(0))

}

,

vk+1 (t) = v0 (t)+ £−1
t

{

1

s
(G(s))

}

+ £−1
t

{

1

s
£t

[

I1 [k1, vk (t)]+ I2[k2, vk

( t

2

)

]
]

}

v0 (t) =−2,

v1 (t) =−2− t

4
+

5t2

6
+

t5

60
− t7

3360
, (39)

...

Hence, the analytical solution is

v(t)= lim
n→∞

vn(t).

Numerical results of Example 4.1

We compare our solutions obtained by LADA, MLADA
and LVIA with the analytical solution for various n values
in Figure 1(a, b, c), this graph illustrates how the
suggested algorithms are more straightforward and more
accurate. Figures 2-4 (a, b, c) view the graphics of the
absolute errors Extnapprox(t) =

∣

∣vExact − vapprox n

∣

∣ , the

consecutive errors Conn (t) = |vn+1 (t)− vn (t) | and the
residual errors

Resn (t) =
(

|v′
n (t)− f (t, vn (t) , vn (h(t)) , I [k, vn])

)

for three analytical methods (LADA, MLADA and LVIA)
at different values of n(n = 3, 4, 5) respectively. From
these figures, it is obviously that semi-analytical solution
obtained by LADA, MLADA and LVIA converges
rapidly to analytical solution and MLADA’s
semi-analytical solution is closer to the analytical solution
than LADA and LVIA’s semi-analytical solutions.

Example 4.2: Consider the following linear of
second-order Volterra integrodifferential equation
including variable delay [15]

v
′′
(t)+ v

( t

2

)

− 3

4
v(t)−

∫ t

0
xv(x)dx =−11

4
sin(t)

+t cos(t) + sin
( t

2

)

. 0 ≤ t ≤ 1 (40)

With initial conditions v(0) = 0, v′(0) = 1, and the
analytical solution is v(t) = sin(t) .

LADA solution for Example 4.2

Firstly, Both sides of Example 4.2 are transformed using
the Laplace transform.

s2£t [v(t)]− sv(0)− v′ (0)+ £t

[

v
( t

2

)]

− 3

4
£t [v(t)]

−£t [I [K, v(t)]] = G(s) . (41)

Where K (t, x) = x, g(t) = t cos(t) − 11
4

sin(t) +sin
(

t
2

)

,

G(s) = £t[g(t) ] and I [K, v(t)] =
∫ t

0 xv(x)dx.

By using initial condition’s Example 4.2

£t [v(t)] =
1

s2 − 3
4

(1+G(s)+ £t

[

v
( t

2

)]

+£t [I [K, v(t − 1)]]) (42)

Second, Infinite series of components are used by LADM
to define the solutions,

v(t) =
∞

∑
n=0

vn (t).
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Figure 1. The behaviours of vapprox, n(t) while employing (a) LADA (b) MLADA (c) LVIA for various values of n = 1, 2, 3 of terms

when, 0 ≤ t ≤ 1, with the analytical solution for Example 4.1.

Figure 2. Graphics of the absolute errors Extn
approx(t) for (a) LADA (b) MLADA (c) LVIA at different values of n(n = 3, 4, 5) when

0 ≤ t ≤ 1, for Example 4.1.

The decomposition analysis approach is applied to (41) to
create a set of recursive equations that are provided by

v0 (t) = £−1
t { 1

s2 − 3
4

(1+G(s))},

vk+1 (t) = £−1
t

{

1

s2 − 3
4

(

£t

[

vk

( t

2

)]

+ £t [I [K, vk (t)]]

)}

,

k ≥0

(43)

Hence,

v0 (t) =
1

98
(5
√

3 e−
√

3t
2 − 5

√
3 e

√
3t

2

− 56t cos(t)− 98sin(
t

2
)+ 218sin(t),

v1 (t) =
1

561834
[37981

√
3 e

√
3t
2 − 37981

√
3 e−

√
3t

2

+ 50960
√

3 e−
√

3t
4 − 50960

√
3 e

√
3t

4

+ 57330 e−
√

3t
2 t + 57330 e

√
3t
2 t

+ 9555
√

3 e−
√

3t
2 t2 − 1284192tcos(

1

2
t)

+ 1500408t cos(t)− 691488sin(
1

4
t)

− 9555
√

3 e

√
3t

2 t2 + 4781322sin(
1

2
t)

− 2586168sin(t)+ 183456t2sin(t),

...
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Figure 3. Graphics of the consecutive errors Conn(t)for several values of n(n = 3, 4, 5) for (a) LADA (b) MLADA (c) LVIA when

0 ≤ t ≤ 1, for Example 4.1.

Figure 4. Graphics of the residual errors Resn(t) =
(
∣

∣v′n(t)− f (t, vn(t), vn(h(t)), I[K, vn])
∣

∣

)

for (a) LADA (b) MLADA (c) LVIA at

different values of n(n = 3, 4, 5) when 0 ≤ t ≤ 1, for Example 4.1.

As a result, the series solution is as follows:

v(t) =
∞

∑
n=0

vn (t). (44)

MLADA solution for Example 4.2

We divided source function g(t) =− 11
4

sin(t) + tcos(t)

+sin
(

t
2

)

into two functions are g1 (t)=− 11
4

sin(t) and

g2 (t)=t cos(t) + sin
(

t
2

)

By applying MLADA, we get

v0 (t) = v0 (t) = £−1
t { 1

s2 − 3
4

(1+G1 (s))}

=
1

21
(−4

√
3 e−

√
3t

2 (−1+ e
√

3t)+ 33sin(t)), (45)

v1 (t) = £−1
t

{

1

s2 − 3
4

(G2 (s)

+ £t

[

v0

( t

2

)]

+ £t [I [K, v0 (t)]])

}

=
1

9261
2 e−

√
3t
2 [−625

√
3+ 1568

√
3 e

√
3t
4

− 1568
√

3 e
3
√

3t
4 + 625

√
3 e

√
3t + 1764t

+ 1764 e
√

3tt + 294
√

3t2 − 294
√

3 e
√

3tt2

+ 1512e

√
3t
2 t cos(t)+ 2646e

√
3t

2 sin(
t

2
)

− 5886e

√
3t
2 sin(t)],

(46)

...
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As a result, the series solution is as follows:

v(t) =
∞

∑
n=0

vn (t).

It turns out that MLADA yields the analytical solution
from first iteration.

LVIA solution for Example 4.2

The first iterations of LVIA solution can be determined by
applying the initial conditions in Eqs. (32), which are:

v0 (t) = £−1
t

{

1

s2 − 3
4

(

−sv(0)− v′ (0)
)

}

=
e−

√
3t
2 (−1+ e

√
3t)√

3
,

v1 (t) = v0 (t)+ £−1
t

{

1

s2 − 3
4

(

G(s)+ £t

[

v0

( t

2

)]

+ £t [I [K, v0 (t)]]
)

}

=
1

2646
e−

√
3t

2

× (−257
√

3− 1568
√

3 e

√
3t

4 + 1568
√

3 e
3
√

3t
4

+ 257
√

3 e
√

3t − 1764t− 1764 e
√

3tt − 294
√

3t2

+ 294
√

3 e
√

3tt2 − 1512 e

√
3t

2 t cos(t)

− 2646 e

√
3t
2 sin(

t

2
)+ 5886 e

√
3t

2 sin(t)), (47)

...

Hence, the analytical solution is

v(t)= lim
n→∞

vn(t) .

Numerical results of Example 4.2

Graphics of the analytical solution and the
semi-analytical solutions for n = 1, 2, 3, which obtained
by three analytical methods (LADA, MLADA and LVIA)
at 0 ≤ t ≤ 1, are specified in Figure 5(a, b, c),
respectively. This improvement in the accuracy of the
semi-analytical solutions can also be understood visually
from this figure. Values of the absolute errors, the
consecutive errors and the residual error for n = 4 at
several points are given in Table 1.

Example 4.3: Consider the first order neutral Volterra
delay integrodifferential equation (NVDIDE) [16]

v′ (t − 1) = 1− t3

6
+

∫ t

0
(t − x)v(x)dx, 0 ≤ t ≤ 1 (48)

with initial conditions

v(0) = 0, (49)

and the analytical solution is v(t) = t.

LADA solution for Example 4.3

We use the algorithms solution of using LADA for
solving Example 4.3

Firstly, we apply Laplace transform to both sides of
Eq.(48), and use definition 2.3, we get

e−s
(

sV (s)− v(0)+Φ(s)
)

= G(s)+ £t [I [K, v(t)]] .
(50)

Where K (x, t) = t − x, V (s) = £t [v(t)] , g(t) = 1− t3

6
,

G(s)= £t[g(t) ], I [K, v(t)] =
∫ t

0 (t − x)v(x)d and Φ(s)=
∫ 0
−1 e−syϕ ′ (y)dy.

By using initial condition’s Example 4.3

e−s

(

sV (s)+
es

s
− 1

s

)

= G(s)+ £t [I [K, v(t)]] , (51)

V (s) =
1

s2
− es

s2
+

es

s
G(s)+

es

s
£t [I [K, v(t)]] .

By using Padé approximation of exponential function as

es =
1+ s

2

1− s
2

V (s) =
1

s2
− 2+ s

s2 (2− s)
+

2+ s

s(2− s)
G(s)

+
2+ s

s(2− s)
£t [I [K, v(t)]] . (52)

Second, Infinite series of components are used by LADA
to define the solutions,

v(t) =
∞

∑
n=0

vn (t).

The decomposition analysis approach is applied to (52) to
create a set of recursive equations that are provided by

v0 (t) = £−1
t

{

1

s2
− 2+ s

s2 (2− s)
+

2+ s

s(2− s)
G(s)

}

,

vk+1 (t) = £−1
t

{

2+ s

s(2− s)
£t [I [K, v(t)]]

}

. k ≥0

(53)

Hence,

v0 (t) = t +
1

24
(−3+ 3e2t − 6t− 6t2 − 4t3 − t4),

v1 (t) = − 7

32
+

1

32
e2t(7− 2t)+

5t

8

− t2(1575+ t(840+ t(315+ t(84+ t(14+ t)))))

5040
,

...
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Figure 5. The behaviours of vapprox, n(t) obtained by (a) LADA, (b) MLADA, (c) LVIA for various values of ”n” of the components

of the solution series when 0 ≤ t ≤ 1, for Example 4.2.

Table 1: Error analysis for Example 4.2

t EEExxxtttkkk
mmmeeettthhhoooddd

CCCooonnnkkk
mmmeeettthhhoooddd RRReeessskkk

mmmeeettthhhoooddd

EEExxxttt444
LLLAAADDDAAA EEExxxttt444

MMMLLLAAADDDAAA EEExxxttt444
LLLVVVIIIAAA CCCooonnn444

LLLAAADDDAAA CCCooonnn444
MMMLLLAAADDDAAA CCCooonnn444

LLLVVV IIIAAA RRReeesss444
LLLAAADDDAAA RRReeesss444

MMMLLLAAADDDAAA RRReeesss444
LLLVVV IIIAAA

0.0 1.4 E-13 2.5 E-13 9.2 E-13 1.4 E-13 2.5 E-13 9.1 E-13 2.5 E-13 2.7 E-13 3.3 E-12

0.1 2.3 E-12 1.1 E-12 2.6 E-12 2.3 E-12 1.0 E-12 2.6 E-12 9.6 E-12 4.5 E-11 7.8 E-11

0.2 2.7 E-12 8.5 E-13 1.3 E-12 2.7 E-12 8.5 E-13 1.2 E-12 7.5 E-12 1.2 E-11 2.6 E-11

0.3 9.4 E-12 5.9 E-13 9.8 E-13 9.5 E-12 5.7 E-13 1.0 E-12 1.2 E-10 2.3 E-11 3.4 E-11

0.4 3.4 E-12 1.2 E-12 8.2 E-13 3.4 E-12 1.2 E-12 8.0 E-13 4.2 E-10 4.2 E-11 7.5 E-11

0.5 4.5 E-12 1.2 E-12 3.2 E-12 4.4 E-12 1.3 E-12 3.3 E-12 2.1 E-10 3.3 E-11 6.5 E-11

0.6 7.1 E-12 3.2 E-12 3.2 E-12 6.9 E-12 4.4 E-12 4.2 E-12 3.6 E-10 8.9 E-12 1.7 E-11

0.7 7.7 E-12 6.1 E-13 1.6 E-12 6.8 E-12 2.6 E-12 5.0 E-12 2.9 E-11 1.1 E-12 1.7 E-13

0.8 8.0 E-12 2.0 E-12 2.4 E-12 8.1 E-12 2.4 E-12 3.1 E-12 8.5 E-11 4.5 E-11 8.1 E-11

0.9 1.2 E-11 8.0 E-13 1.7 E-12 5.3 E-12 3.4 E-11 5.9 E-11 1.1 E-10 8.7 E-11 1.4 E-10

1 2.9 E-11 1.7 E-12 2.6 E-12 1.5E-10 2.3 E-10 4.0 E-10 3.9 E-10 9.3 E-11 1.6 E-10

As a result, the series solution is as follows:

v(t) =
∞

∑
n=0

vn (t). (54)

MLADA solution for Example 4.3

We divided source function g(t) = 1 − t3

6
into two

functions are g1 (t)=1 and g2 (t)= − t3

6
. By applying

MLADA, we get

v0 (t) = £−1
t

{

1

s2
− 2+ s

s2 (2− s)
+

2+ s

s(2− s)
G1 (s)

}

}= t,

v1 (t) = v2 (t) = v3 (t) = · · ·= 0. (55)

Hence, the solution in series form is provided by

v(t) =
∞

∑
n=0

vn (t) = t.

It turns out that MLADA yields the analytical solution
from first iteration.

LVIA solution for Example 4.3

The first iterations of LVIA solution can be determined by
applying the initial conditions in Eqs. (32), which are:

v0 (t) = £−1
t

{

2+ s

s(2− s)
(v(0))

}

= 0,
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Figure 6. The behaviours of vvvaaapppppprrroooxxx,,, nnn(((ttt))) by using LADA, MLADA and LVIA for various values of ”””nnn ”””of components (a) n=1,

(b) n=2 and (c)n=3 when , 0≤t≤1, with the analytical solution for Example 4.3.

Table 2: Comparison of the absolute errors of Example 4.3

t EEExxxtttkkk
mmmeeettthhhoooddd

EEExxxttt111
LLLAAADDDAAA EEExxxttt111

MMMLLLAAADDDAAA EEExxxttt111
LLLVVV IIIAAA EEExxxttt333

LLLAAADDDAAA EEExxxttt333
MMMLLLAAADDDAAA EEExxxttt333

LLLVVV IIIAAA EEExxxttt666
LLLAAADDDAAA EEExxxttt666

MMMLLLAAADDDAAA EEExxxttt666
LLLVVV IIIAAA

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.2 3.1 E-9 0.0 7.8E-5 0.0 0.0 3.5 E-14 1.9 E-16 0.0 3.1 E-16

0.4 4.8 E-7 0.0 1.5 E-3 1.7 E-15 0.0 4.4 E-11 6.7 E-16 0.0 8.3 E-16

0.6 9.9 E-6 0.0 8.6 E-3 4.1 E-13 0.0 3.2 E-9 6.7 E-16 0.0 5.6 E-16

0.8 9.0 E-5 0.0 3.2 E-2 2.2 E-11 0.0 6.9 E-8 9.9 E-16 0.0 9.9 E-16

1 5.1 E-4 0.0 9.0 E-2 7.9 E-10 0.0 7.9 E-7 1.3 E-15 0.0 1.8 E-15

t CCCooonnnkkk
mmmeeettthhhoooddd

CCCooonnn111
LLLAAADDDAAA CCCooonnn111

MMMLLLAAADDDAAA CCCooonnn111
LLLVVV IIIAAA CCCooonnn333

LLLAAADDDAAA CCCooonnn333
MMMLLLAAADDDAAA CCCooonnn333

LLLVVV IIIAAA CCCooonnn555
LLLAAADDDAAA CCCooonnn555

MMMLLLAAADDDAAA CCCooonnn555
LLLVVV IIIAAA

0.0 0. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

0.2 3.1 E-9 0.0 7.8 E-5 6.1 E-17 0.0 3.5 E-14 9.9 E-17 0.0 1.7 E-16

0.4 4.8 E-7 0.0 1.5E-3 1.8 E-15 0.0 4.4E-11 5.3 E-16 0.0 5.8 E-16

0.6 9. E-6 0.0 8.7 E-3 4.1 E-13 0.0 3. 2 E-9 4.2 E-16 0.0 3.8 E-16

0.8 9.0 E-5 0.0 3.2 E-2 2.2 E-11 0.0 6.9 E-8 6.6 E-16 0.0 3.9E-15

1 5.2 E-4 0.0 9.1 E-2 4.9 E-10 0.0 7.9E-7 2.4 E-15 0.0 1.5 E-13

t RRReeessskkk
mmmooottthhhoooddd

RRReeesss111
LLLAAADDDAAA RRReeesss111

MMMLLLAAADDDAAA RRReeesss111
LLLVVV IIIAAA RRReeesss333

LLLAAADDDAAA RRReeesss333
MMMLLLAAADDDAAA RRReeesss333

LLLVVV IIIAAA RRReeesss666
LLLAAADDDAAA RRReeesss666

MMMLLLAAADDDAAA RRReeesss666
LLLVVV IIIAAA

0.0 3.9 E-4 0.0 4.9 E-2 5.7 E-10 0.0 7.6 E-7 2.5 E-13 0.0 5.6 E-16

0.2 1.4 E-4 0.0 3.4 E-2 5.0 E-11 0.0 1.3 E-7 7.5 E-12 0.0 6.7 E-16

0.4 3.1 E-5 0.0 1.9 E-2 9.9 E-10 0.0 1.3 E-8 4.2 E-10 0.0 1.7 E-16

0.6 3.5 E-6 0.0 7.0 E-3 4.5 E-8 0.0 4.5 E-10 3.6 E-10 0.0 1.1 E-16

0.8 6.2 E-7 0.0 1.7 E-3 6.9 E-7 0.0 2.9 E-10 8.5 E-11 0.0 1.3 E-15

1 6.0 E-6 0.0 2.4 E-3 6.0 E-6 0.0 5.1 E-9 3.9 E-10 0.0 2.2 E-16
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v1 (t) = v0 (t)+ £−1
t

{

2+ s

s(2− s)
(

G(s)+
2+ s

s(2− s)
£t [I [K, v0 (t)]]

)}

=
1

24
(−3+ 3e2t + 18t− 6t2− 4t3 − t4) (56)

...

Hence, the analytical solution is

v(t)= lim
n→∞

vn(t) .

Numerical results of Example 4.3

We construct our solutions with the analytical solution for
several values of n in Figure 6(a, b, c). The exact error
(Extn(t)), the Consecutive error (Conn(t)) and the
Residual error (Resn(t)), for the three proposed methods
at several values of t and n in Tables 2−4. It is observed
that MLADA solution coincides with the analytical
solution while LADA Solution and LVIA solution
convergence to the analytical solution. Table 2 lists the
exact error (Extn(t)), for the three proposed methods at
different values of t and. Table 3 lists the Consecutive
error (Conn(t)), for the three proposed methods. While
Table 4 lists the Residual error (Resn(t)), for the three
proposed methods. The tabulated data demonstrate that
the three suggested algorithms’ solutions converge to the
analytical solution obtained by applying a few terms of
vapprox, n(t). MLADA solution converges to the analytical
solution faster than LADA and LVIA solutions, as seen in
the comparison. For distinct values n = 1,2,3 of the series
solution terms, Figure 6(a, b, c) shows the curves of the
analytical solution vexact and the semi-analytical solution
vapprox,n derived by LADA, MLADA, and LVIA. The
recommended procedures are shown in this figure to be
effective, simple and accurate.

4 Conclusion

Our main objective was to construct semi-analytical
solutions to functional integrodifferential equations
involving variable delays. The three algorithms we used
to accomplish this aim were LADA, MLADA, and
LVIMA. These strategies provide semi-analytical
solutions for the problems that are close to adequate when
compared with analytical solutions. The visionary
findings’ accuracy and applicability are shown in the
tables and figures, which prove that the procedures were
done correctly. Simple coding, apparent calculations and
algorithm are among the key advantages of these
algorithms. Furthermore, the error analysis comprises
three categories of errors: exact consecutive, and residual
corrections, which are explained and implemented in

examples. These numerical studies and methodologies
can be developed in the future to solve a system of
functional Volterra integrodifferential equations with
variable delays.
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